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ABSTRACT

NOAA has been gathering high-resolution, flight-level dropwindsonde and airborne Doppler radar data in

tropical cyclones for almost three decades; the U.S. Air Force routinely obtained the same type and quality of

data, excepting Doppler radar, for most of that time. The data have been used for operational diagnosis and

for research, and, starting in 2013, have been assimilated into operational regional tropical cyclone models.

This study is an effort to quantify the impact of assimilating these data into a version of the operational

Hurricane Weather Research and Forecasting model using an ensemble Kalman filter. A total of 83 cases

during 2008–11 were investigated. The aircraft whose data were used in the study all provide high-density

flight-level wind and thermodynamic observations as well as surface wind speed data. Forecasts initialized

with these data assimilated are compared to those using the model standard initialization. Since only NOAA

aircraft provide airborne Doppler radar data, these data are also tested to see their impact above the standard

aircraft data. The aircraft data alone are shown to provide some statistically significant improvement to track

and intensity forecasts during the critical watch and warning period before projected landfall (through 60 h),

with the Doppler radar data providing some further improvement. This study shows the potential for im-

proved forecasts with regular tropical cyclone aircraft reconnaissance and the assimilation of data obtained

from them, especially airborne Doppler radar data, into the numerical guidance.

1. Introduction

Numerical weather prediction is hampered by model

deficiencies, suboptimal model initialization, and the

inherent unpredictability of the system to be forecast.

Though nothing can be done about the chaotic nature

of the atmosphere, improvements to models and their

initialization hold promise. Specific to tropical cyclone

(TC) forecasting, efforts have been made to improve

model forecast systems, including their data assimila-

tion, under the aegis of the Hurricane Forecast Im-

provement Project (HFIP; Gall et al. 2013). As part of

this project, assimilation of all high-resolution inner-

core observations from airborne platforms (Aberson

et al. 2006) is attempted for the first time.

The present study focuses on the impact of airborne

observations on TC forecasts using the ensemble Kalman

filter (EnKF). The EnKF is an advanced data assimila-

tion technique utilizing short-range ensemble forecasts
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to estimate flow-dependent spatial and cross correla-

tions (Evensen 1994; Houtekamer and Mitchell 1998).

F. Zhang et al. (2011) tested the assimilation of airborne

Doppler radar wind data using an EnKF and the Ad-

vanced Research version of the Weather Research and

Forecasting (ARW) Model. They demonstrated im-

provement in intensity forecasts in 61 cases during

2008–10when compared to operational dynamicalmodels,

showing that reducing the uncertainty in mesoscale initial

conditions could have a positive impact on TC forecast

skill. This encouraging result suggests that improving the

vortex-scale initial conditions with advanced data assimi-

lation technology has the potential for improving TC in-

tensity forecasts.

The Hurricane Weather Research and Forecasting

(HWRF) version of the Hurricane Ensemble Data As-

similation System (HEDAS; Aksoy et al. 2012) is an

EnKF-based data assimilation system; the current study

utilizes high-resolution TC observations collected by

NOAA’s WP-3D (P3) aircraft (Aberson et al. 2006) and

high-altitude Gulfstream-IV (G-IV) jet (Aberson 2010),

aswell asU.S.Air ForceReserveC-130 aircraft (Aberson

et al. 2010), although HEDAS has the capability of as-

similating any observation for which operators exist.

Aksoy et al. (2013) demonstrated the value of assimilat-

ing airborne Doppler radar radial wind data with

HEDAS on 83 cases in 20 TCs during the 2008–11 sea-

sons. They found that the assimilation of high-resolution

airborne observations results in realistic analyses of the

primary circulation in termsof intensity,wavenumber-0 radial

structure, and wavenumber-1 azimuthal structure. They

showed direct positive impact on the vortex wind struc-

ture, but also indirect positive impact on the thermo-

dynamic structure. Their comparison of the HEDAS

analyses with independent Doppler-based wind analyses

revealed a significant low intensity bias as well as a large

underestimate of the low-level radial inflow for all cases.

Vukicevic et al. (2013) found that these errors were

caused by a short-term spindown of the entire vortex

circulation in each data assimilation cycle, and that the

magnitude was correlated with the TC intensity. These

systematic errors were caused by both the radial and

vertical components of the secondary circulation being

much weaker than expected in the short-term forecasts

that make up the HEDAS background. This was shown

to be due to three main factors: the observations had

limited information about the secondary circulation, the

model has a bias toward rapid development of a too-deep

planetary boundary layer, and the vertical velocity is not

updated in the assimilation cycling because of theHWRF

nonhydrostatic governing equations. These errors are

likely to limit the impact of the data assimilation on

subsequent forecasts, especially those for intensity.

This study extends the earlier ones by looking at the

impact of the data assimilation on HWRF track, in-

tensity, and basic structure forecasts using a variety of

metrics. HEDAS and the version of HWRF used in the

study are briefly described in section 2. The various

forecast verifications are presented in section 3, with

conclusions following.

2. Model and model initialization

Initial conditions are taken from theHEDAS analyses

described in Aksoy et al. (2013) wherein the details of

the methodology are presented. Briefly, HEDAS is

based on a serial implementation of the square root

EnKF (Whitaker and Hamill 2002). Further technical

details are explained in Aksoy et al. (2012, 2013). In this

study, HEDAS uses 30 ensemble members. The initial

and lateral boundary ensemble perturbations are ob-

tained from the experimental, EnKF-based global en-

semble prediction system developed for the NCEP

Global Forecast System (GFS) (Hamill et al. 2011a,b).

AnHWRF ensemble spinup is initialized 6 h prior to the

synoptic time around which a NOAA P3 flight is cen-

tered. The spinup is carried out until the first observations

are available (usually 3–4h) to develop the covariance

structures relevant for the scales at which data assimilation

is performed. The data assimilation itself is carried out

until the time of the last airborne Doppler radar observa-

tion, generally 3–5h after the end of the spinup period.

Further details can be found in Aksoy et al. (2013).

The research version of HWRF applied here

(Gopalakrishnan et al. 2012; Yeh et al. 2012; X. Zhang

et al. 2011) is configured with two two-way-interacting

computational domains consisting of an outer domain

and a vortex-following 108 3 108 inner domain with 9-

and 3-km horizontal grid spacings. All cases are in the

Atlantic basin, and the outer mesh is configured as in

the then-current operational version of HWRF except

for the difference in resolution. Since assimilation is car-

ried out on the inner domain only, all ensemble mem-

bers are initialized with the domain collocated and with

motion suppressed during the data assimilation to facilitate

gridpoint-based spatial covariance computations. A de-

tailed comparison of the physics parameterizations used in

the experimental and operational HWRF can be found

in Gopalakrishnan et al. (2012) and Yeh et al. (2012).

Analyses are made only when airborne Doppler radar

observations were available. A total of 83 such cases

from 20 individual TCs (Aksoy et al. 2013, their Table 2)

are considered. The ensemble mean at the last cycle

time (after which Doppler radar data are no longer

available) is used to initialize the deterministic forecast;

thus, if the finalHEDAS cycle is at 0200UTC, themodel
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is initialized with the analysis at that time. The opera-

tional GFS is used for initial and boundary conditions

for the outer domain. The GFS fields are removed in the

3-km inner domain, and theHEDAS analysis is inserted.

No special meshing at the domain boundaries is done;

examination of the fields suggests that any discontinu-

ities are small, and gravity waves are of the same mag-

nitude just after initialization as those caused by mesh

moves.

NOAAhas been gathering high-resolution flight-level

(pressure, temperature, humidity, and wind velocity, as

well as surface wind speed from the stepped-frequency

microwave radiometer), dropwindsonde (pressure,

temperature, humidity, and wind velocity), and airborne

Doppler radar data in TCs for almost three decades

(Aberson et al. 2006). The characteristics of the data

processing, including observation error, for these cases

are presented in Aksoy et al. (2013, their Table 3). Until

recently, only dropwindsonde data have been opera-

tionally assimilated into numerical models. This study

represents the first test of the assimilation of high-

resolution aircraft data into a version of HWRF. Three

sets of model runs are considered. The first set is ini-

tialized with HEDAS analyses incorporating all data

including the Doppler radar data. The second set is

identical except that the airborne Doppler radar data

are excluded from the assimilation system. A control set

using the Geophysical Fluid Dynamics Laboratory

model initial vortex (Kurihara et al. 1993, 1995) pro-

cedure is used for comparison (X. Zhang et al. 2011;

Gopalakrishnan et al. 2012; Yeh et al. 2012).

3. Results

a. Track

The homogeneous track verification is shown in Fig. 1.

Only those cases in which a TC exists in the post-

processed best track and is also identified by the model

vortex tracker are compared. The great-circle distance

between the two locations (the error) is calculated for

each pair, and average errors are computed. The num-

ber of cases decreases with forecast time so that fewer

than half the runs are verifiable by 4 days into the

forecasts. Fewer than 83 runs are verified at 12 h due to

either the TC not being in the best track or not being

trackable by the model at that time. No 0-h verification

is available, since the model runs were initialized 1–3 h

after the synoptic time; a detailed investigation of the

analysis quality can be found in Aksoy et al. (2013).

Forecast errors decrease from 108 to 120 h into the

forecasts due to the small sample sizes at those forecast

times. No large difference between the forecast track

errors is expected, since track is mainly controlled by the

flow outside the TC core and nearly all of the observa-

tions are from that region. Some large differences in the

short range can occur due to initial vortex placement

and vortex oscillations that may be predictable within

that time. The control forecast bias is notably different

from that in the forecasts with data assimilation. The

control vortex is placed at the initial location specified

by National Hurricane Center (NHC) analyses and

comprises any asymmetry representing the tropical cy-

clone initial motion, whereas no such specification is

made for the HEDAS analyses. Since the early-period

track forecasts are generally a result of advection of the

FIG. 1. Homogeneous track forecast (a) errors and (b) biases for

the three sets of model runs. The number of cases at each forecast

time is presented across the top.
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vortex, the 12-h forecast biases (Fig. 1b) set up sub-

sequent biases in the forecasts.

The three model versions produce forecasts in which

the TC dissipates at different forecast times, thus pre-

venting standard verification at those times. Pairwise

comparisons between the three versions allow for sam-

ple sizes of up to sevenmore cases at some forecast times

than the homogeneous three-model sample (Fig. 2).1

The assimilation of aircraft data, both with and without

the Doppler radar observations, improves track fore-

casts by up to 10% versus the no-assimilation control at

24–60 h; improvement is also seen in the small sample at

120 h, though none of the differences are statistically

significant (Aberson and DeMaria 1994). The Doppler

radar data improve the track forecasts over those with

only the standard aircraft observations by nearly 10%

during the first 24 h, and the differences are statistically

significant at the 95% level; up to 64% of these forecasts

are improved by the assimilation of the Doppler radar

data. This may be due to better analysis of the outer

wind asymmetry steering the vortex by the assimila-

tion of the relatively extensive Doppler radar data

versus what is possible with the limited flight-level and

dropwindsonde data available in the no-Doppler runs

(Fig. 1b). The difference between the two runs becomes

small after 24 h.

The relatively large 12-h track forecast errors in the two

versions with aircraft data assimilated are likely due to

a slight initial vortex displacement by HEDAS: the con-

trol is designed so that the vortex initialization puts the

center at the assigned location; HEDAS uses observa-

tions to analyze the TC core, but Doppler radar data are

usually not available at the center location due to the lack

of scatterers there, and no explicit location data are as-

similated. Though the covariances from the ensemble

should alleviate some of the problem caused by the lack

of observations near the TC center, the necessarily sub-

optimal ensemble prevents accurate initial center place-

ment. A technique to assimilate data in a storm-relative

framework (Aksoy 2013) alleviates this problem.

b. Intensity

1) STANDARD VERIFICATION

The standard intensity verification (mean and absolute

mean differences between the forecast and best track

values of maximum wind speed at 10-m altitude) for the

same homogeneous set of runs as for track is shown in

Fig. 3. Forecast errors remain about constant through 108h

and increase by 120h, probably due to the small sample

size (Fig. 3a). The difference between the forecast intensity

errors is expected to be larger than for track errors, since

intensity is at least partially controlled by processes within

the TC core. The bias (Fig. 3b) increases in time (from

negative to positive for all three models). The average

biases of the runs with the aircraft data assimilated are

small after 48h and are generally smaller than the average

bias of the control runs. The runs with no data assimilated

have a substantial high intensity bias after 36h. The low

intensity biases in the short range for all three sets of runs

may be due to the vortex spindown issue discussed in

Vukicevic et al. (2013), and suggest that this issue is also

important in the vortex initialization scheme. This suggests

an avenue for further research to improve the representa-

tion of the secondary circulation through assimilation and

initialization schemes. The particularly large negative bias

for the runs without the Doppler radar data may be due to

having data only at the aircraft locations (versus the three-

dimensional picture that the Doppler radar can provide),

which cannot provide an accurate estimate of the intensity.

The degradation from the removal of the Doppler data

disappears by 36h into the forecast, afterwhich the results of

the two sets of runswith data assimilationmirror each other.

Figure 4 shows the intensity forecast error differences

between the three pairs of model runs. As in Fig. 2, the

individual comparisons are homogeneous, but the three

are not homogeneous with each other. The assimilation

of all the aircraft data improves the intensity forecasts by

up to 23% compared to the no assimilation runs, and the

FIG. 2. Pairwise homogeneous differences between possible two-

model combinations of the three-model versions from Fig. 1.

1 The differences shown in Figs. 2 and 4 are calculated using

difference 5 1 2 (e1/e2), where e1 and e2 are the errors from the

first and second forecast, respectively.
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difference at 24, 36, and 60 h is statistically significant at

the 95% level. The Doppler radar data alone improve

the forecasts by up to 11% (statistically significant)

during the first 24 h of the forecasts. This suggests that

most of the improvement at early forecast times is due to

the assimilation of the Doppler radar data; the impact

(memory) of the Doppler radar data decreases with

forecast time, but improvements after 36 h could be at-

tributed to that in the short range. It is unclear why the

Doppler radar data degrade the forecasts after 72 h, but

the difference is not statistically significant.

2) ALTERNATIVE INTENSITY VERIFICATION

Forecasts are not included using the standard verifi-

cation technique if any forecast calls for TC dissipation

(or if the TC is no longer tracked because it has reached

the model boundary) or if the real TC dissipates. To

include these forecasts in the verification, Aberson

(2008) defined an alternative technique in which these

forecasts are included by categorizing all forecasts in

a contingency table. All intensity forecasts values are

rounded to the nearest 5 kt (1 kt 5 0.5144m s21), the

same precision as the best track. Contingency tables

(not shown) are filled with the count of each forecast–

verification pair at each forecast time. The first row and

column represent the number of times the TC does, or is

forecast to, dissipate, respectively. Each subsequent row

and column represents a 5-kt intensity increase. Perfect

forecasts are along the diagonal. A skill score,

S5 (C2E)=(T2E) ,

whereC is the number of (correct) forecasts in which the

forecast and verification are in the same bin, T is the

total number of forecasts, and E is the number of fore-

casts expected to be correct, is calculated for each con-

tingency table (Panofsky and Brier 1958). The expected

number of correct forecasts by chance is

E5S(RiCj)=Ti ,

where Ri and Cj are the numbers of cases in the ith row

and jth column, respectively. The skill score is unity if all

cases are correctly predicted (T 5 C), and less than or

equal to zero for no skill.

The three sets of runs show considerable skill at all

forecast times except at 84 h in that with the Doppler

FIG. 3. As in Fig. 1, but for intensity.

FIG. 4. As in Fig. 2, but for intensity.
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radar data assimilated (Fig. 5a). Differences between

the standard and alternative verifications are evident.

The runs with all data assimilated are better than the

control through 108 h in the standard verification; they

are better than the control at all forecast times except 36,

48, 84, and 96 h in the alternative technique. The runs

with the Doppler radar data assimilated are better than

those with just the regular aircraft data at 12, 24, 48, 60,

and 120 h in the standard verification, but are better than

those with just the regular aircraft data at 24, 60, 72, and

108 h in the alternative technique. This suggests that

a large number of cases had forecasts of dissipation at

different lead times in the three sets of model runs.

Figure 5b shows the proportion of cases for which the

categorical forecasts are good or poor (within three or

more than six categories from the verification, re-

spectively). The assimilation of all aircraft data increases

the proportion of cases with good forecasts versus the

control at all forecast times. Interestingly, the assimila-

tion of the Doppler radar data also increases the pro-

portion of forecasts that are poor at all forecast times

from 36 to 108 h compared to the set of forecasts with the

standard aircraft observations assimilated, an effect that

is not accounted for in the standard verification. How-

ever, the set with the Doppler radar data assimilated has

fewer poor forecasts than the control.

3) RAPID INTENSITY CHANGE

An important issue in intensity forecasting is the

ability of the models to predict large changes in intensity

during short time periods. For this study, rapid in-

tensification is defined as an increase in intensity of 30 kt

or more during a 24-h period; rapid weakening is defined

as a decrease in intensity of at least 25 kt during a 24-h

period. To remove cases in which rapid weakening oc-

curs due to land interactions, all cases in which the

forecast or the observed TC moved over land are re-

moved from the sample. To account for the best track

having a 5-kt granularity and the model forecasts having

one of 1 kt, the forecasts are binned as in the alternative

intensity verification above. Thus, if the best track or

forecast intensity increases by six bins or decreases by

five bins, then the criteria for rapid intensity changes are

met. If a 24-h period during which both the model

forecast and the best track have rapid intensity changes

overlap in time, then the forecast is said to be correct;

since multiple 24-h periods of one forecast can overlap

a single instance of the other, both are counted. If the

model predicts a rapid intensity change episode that

does not overlap with one in the best track, this is

counted as a false alarm; if the model fails to predict

rapid intensity change during the entire period in which

it existed in the best track, this is considered a missed

forecast. The fourth possibility (neither the model

forecast nor the best track have a rapid intensity change

period) is not counted, as they comprise the vast ma-

jority of cases and are uninteresting.

The rapid intensification and rapid weakening forecast

verifications are summarized in a categorical perfor-

mance diagram (Roebber 2009; Fig. 6). The probability of

detection is plotted against the success ratio; the bias is

represented by the lines emanating from the origin, with

the diagonal having no bias; the threat score or critical

success index is represented by the curved lines. The

FIG. 5. (a) As in Fig. 1a, but for the skill score from the alter-

native intensity verification technique, and (b) the proportion of

cases with forecasts within three categories of the verification

(upper set of lines) and more than six categories from the verifi-

cation (lower set of lines) from the alternative intensity verification

technique.
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success ratio and probability of detection would both

be unity (upper-right-hand corner of the figure) if the

forecasts were perfect (every rapid intensity change

event correctly forecast and every forecast event veri-

fying). A total of 30 rapid intensification episodes oc-

curred in the best track during the 120-h forecasts. The

control forecast had 51 rapid intensification episodes,

whereas the runs with and without the Doppler radar

data assimilated forecast had 17 and 19 such periods,

respectively. The control is therefore about 3 times

more likely to predict rapid intensification than the

data assimilation runs and thus is more likely to cor-

rectly forecast rapid intensification episodes and to

have false alarms. Of the 30 observed episodes, the

control correctly forecast 20 events, whereas the runs

with and without the Doppler radar data correctly

forecast 9 and 6 events, respectively; the remainder of

the cases are thus missed forecasts. A total of 24 of the

control forecasts verified, whereas both sets of HEDAS

runs had 4 forecasts verify correctly. The control had 27

false alarms, compared with 13 and 15 false alarms for

the runs with and without the Doppler radar data as-

similated, respectively.

A total of 61 rapid weakening episodes occurred

within 120 h of the initialization times. The control

forecast rapid weakening events 52 times; the runs with

and without the Doppler radar data assimilated forecast

it 16 and 15 times, respectively. The control is 4 times

more likely to forecast rapid weakening than the others,

again suggesting a higher likelihood of correct forecasts

and false alarms. Of the 52 rapid weakening events fore-

cast by the control, 34 events were correctly forecast, and

the runs with and without the Doppler radar data assimi-

lated correctly forecast 11 and 12 events, respectively. The

control had 34 false alarms, and the two sets of runs with

data assimilated had 9 and 10 false alarms, respectively.

Because the rapid intensity change episodes are spread

evenly throughout the forecasts in time in the control and

data assimilation runs, the reason that the control has far

more rapid intensity change episodes than the runs with

the data assimilated is unknown.

c. Structure

Recent cases in which weak, but very large TCs made

landfall leading to catastrophic destruction (Hurricane

Ike in Texas, Hurricane Sandy in the U.S. Northeast)

show the importance of verifying structure forecasts in

addition to track and intensity. NHC provides TC

structure forecasts of maximum gale-, storm-, and

hurricane-force surface (10m) wind speed radii in four

quadrants and radius of maximum wind speed in addi-

tion to the standard track and intensity forecasts, and

best track estimates of these quantities except the radius

of maximum wind speed. Insufficient surface observa-

tions make operational and best track wind speed radii

estimates uncertain; a typical 30 n mi (;55.6 km)

hurricane-force wind speed radius could be in error by

50% or more (Rappaport et al. 2009). Because of these

difficulties, structure forecasts are not generally verified

against the best track. Despite this uncertainty, these

values can be combined into one metric, the integrated

kinetic energy (IKE; Powell and Reinhold 2007), that

helps to alleviate these problems.

To construct a reasonable wind field from the forecast

parameters available in the Automated Tropical Cy-

clone Forecast system from which to approximate IKE

the following simple assumptions are made:

1) Gale-, storm-, and hurricane-force winds all extend

outward from 70% of RMW, and this radius is

denoted r. Because the volume represented between

r andRMW is small, changes to this percentage do not

significantly change the final IKE calculation.

2) The wind speed at RMW is identically Vmax. This

greatly simplifies the calculations, and is not a partic-

ularly poor assumption (Vukicevic et al. 2014).

3) The wind speed varies linearly between each

wind speed radius, allowing for simple mean wind

speed calculations in different annuli (V1,2); V1,2

changes slightly for realistic ratios of the outer to

the inner radius, but can be approximated for

simplicity as

FIG. 6. Categorical performance diagram for all three versions of

the model and for rapid intensification (RI) and rapid weakening

(RW).
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V1,25 0:625(V11V2) .

4) The wind field can be represented approximately as

a vortex of wavenumbers 0 and 1, with the latter having

an amplitude of about 15kt, or near the average

forward motion of TCs. The volume (with a depth of

1m) of a particular quadrant wind speed between two

thresholds outward from RMW is thus approximated as

A5p[R2
22 1/4(R11R2)

2] ,

where R2 is the larger of the two radii. Inside RMW,

the volume of a quadrant is

A5 0:51pR2
MW .

The mass is calculated as the surface air density (r 5
1.15kgm23) multiplied by the volume. If a particular

radius does not exist, its value is set to 0. To calculate

IKE in a particular quadrant, the radii that exist

(between 2 and 5 radii in each quadrant) are ordered

from smallest to largest in each quadrant, and the sum

of IKE between each consecutive one is calculated:

IKE5
1

2
rSAi,j(Vi,j)

2,

where i and j represent consecutively ordered radii.

Model IKE forecasts are verified against the best track

estimates (Fig. 7). Because the model postprocessor that

calculates wind speed radii was developed after the con-

trol run model fields were lost, no comparison with these

runs is possible. The forecasts with the Doppler radar

data provide up to 20% improvement in IKE forecasts

through 36h versus those with the standard aircraft data,

probably due to improved initial analysis from the large

amount of data available, but mostly degrades forecasts

thereafter. However, the difference between the forecast

errors is not statistically significant. The biases grow lin-

early with forecast time, and are always positive, meaning

that both sets of runs tend to predict larger and/or

stronger storms than are suggested by the best track.

4. Forecast examples

Two cases in which the aircraft data provided particu-

larly large and consistent track and intensity forecast im-

pacts are discussed, even though these differenceswere not

always improvements. In the first case, the assimilation of

aircraft data greatly improved the track forecast of Hur-

ricane Irene while degrading the intensity forecasts. In the

second, the assimilation greatly improved both the track

and intensity forecasts for Tropical Storm Tomas even

though none of the forecasts were highly accurate. Though

only location and intensity are generally verified for these

models, the fact that one forecast parameter can be con-

sistently improved and another degraded in the same

model run suggests a more holistic approach to hurricane

model verification is needed.

a. Hurricane Irene: 1200 UTC 26 August 2011

On 26 August 2011, Hurricane Irene was approaching

the North Carolina coastline as a category 2 hurricane

(Fig. 8). The no-assimilation control run forecast Irene to

movemore slowly and less eastward than the two versions

with aircraft data assimilated. Both those forecasts had

very small cross-track errors, and the assimilation of

the Doppler data allowed for large improvements in the

along-track errors throughout the forecast. Despite the

improved track forecasts, the two runs with aircraft data

assimilated forecast Irene to become much stronger than

the no-assimilation control, thus degrading the intensity

forecasts. Both versions of the model with data assimi-

lated predicted rapid weakening between 24 and 48h;

Irene weakened 20kt during this period, just below the

threshold for rapid weakening. This results in a false

alarm forecast for rapid weakening. The IKE forecasts

were not appreciably different from each other.

Figure 9 shows initial condition wind fields at three

levels for the no-assimilation control and the run with all

the aircraft data assimilated; the third run is not appre-

ciably different from the other HEDAS run in this case,

and is not shown. The control (left) has higher wind

speeds than the HEDAS run at all levels, but the major

asymmetry is consistent at all levels in the HEDAS run,

whereas it rotates clockwise with height in the control.

FIG. 7. As in Fig. 1a, but for IKE.
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By 24 h, the midlevel maximum wind speeds had ro-

tated counterclockwise to the northeast quadrant in the

control, but remained steady in the HEDAS run. The

synoptic conditions in the runs (all based on the opera-

tional GFS) were nearly identical and are not shown.

The differences in the wind speed asymmetries between

the runs account for the more westerly track (and im-

proved) forecast by the no-assimilation control versus

the HEDAS runs, but the relatively high wind speeds at

all levels in these runs accounted for the degraded in-

tensity forecasts.

b. Tropical Storm Tomas: 1200 UTC 4 November
2010

Tropical Storm Tomas was located south of Ja-

maica and had turned northeastward toward Haiti at

FIG. 8. (a) Track and (b) intensity forecasts for Hurricane Irene initialized at 1200 UTC 26 Aug 2011. For track,

symbols are plotted every 12 h in the forecast. In (a), the green line is HEDAS all data, the blue line is HEDAS no

Doppler, the red line is the No DA control, and the yellow line is the best track. The full track until dissipation is

shown in (a); intensity forecasts in (b) are shown through 72 h.
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1200 UTC 4 November 2010. The assimilation of air-

craft data slightly degraded the across-track forecasts

(Fig. 10), but the along-track errors were greatly re-

duced leading to large forecast track improvements.

None of the forecasts correctly predicted the in-

teraction between Tomas and an upper-level low that

turned the storm toward the east; all three forecasts

predicted dissipation too early due to the too-rapid

predicted northward motion. The assimilation also

allowed for substantial improvement to intensity

forecasts, though all three model versions predicted

premature dissipation: the version with no Doppler

FIG. 9. Wind velocity initial conditions (kt) (inner mesh only) for Hurricane Irene initialized at 1200 UTC 26 Aug

2011, showing the (left) no-assimilation control and (right) all-data HEDAS at (top) 200, (middle) 500, and (bottom)

850 hPa on the innermost mesh of each run.
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radar data assimilated predicted dissipation at 72 h

when the best track intensity was 60 kt; the version

with all data assimilated and the control predicted

dissipation at 84 h and 96 h, respectively, when the

best track intensity was 50 kt. All three correctly

forecast that rapid intensity change would not happen.

The IKE forecasts were not appreciably different

from each other in this case.

The no-assimilation control was initialized with an ide-

alized vortex initialization (Fig. 11) that was weaker than

those for the HEDAS runs. This allowed Tomas in the no-

assimilation control to be steered northward by the rela-

tively slow low-layer flow, whereas the stronger TCs in the

HEDAS runs were steered by a faster, deeper-layer flow.

Though the HEDAS TCs were initially stronger than that

in no-assimilation control, the fastermotion caused the TC

to move over cooler water and into a high-shear environ-

ment, causing weakening, whereas the slower-moving TC

stayed over warm water and was able to rapidly intensify

toward the end of the forecast partially due to baroclinic

forcing. The improved initial condition improved both the

track and intensity forecasts in this case.

5. Conclusions and discussion

The impact of high-resolution aircraft observations

on forecasts is investigated with an EnKF-based data

assimilation system, HEDAS, and HWRF. A total of

83 cases from 20 TCs during 2008–11 are considered.

HEDAS assimilates available observations from NOAA

P3s and G-IV, and Air Force C-130s in 1-h cycles. Ob-

servation types assimilated include airborne Doppler

radar wind superobservations, temperature and wind

velocity from aircraft flight-level measurements and

dropwindsondes, and Stepped-Frequency Microwave

Radiometer 10-m wind speed retrievals.

The important results are as follows:

1) For track, the assimilation of aircraft data improves

forecasts by up to 10%at 24–60 h; large improvement

is also seen in the small sample at 120 h. The Doppler

FIG. 10. As in Fig. 8, but for Tropical Storm Tomas initialized at 1200 UTC 4 Nov 2010.
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radar data alone improve the forecasts by up to 10%

during the first 24 h, and the difference is statistically

significant at the 95% level; up to 64% of these

forecasts are improved by the assimilation of the

Doppler radar data.

2) For intensity, the assimilation of all the aircraft data

improves the forecasts by up to 23% compared to the

no-assimilation runs, and the difference at 24, 36, and

60 h is statistically significant at the 95% level. The

Doppler radar data alone improve the forecasts by

up to 11% (statistically significant) during the first

24 h of the forecasts.

3) For structure, the forecasts with the Doppler radar

data provide up to 20% improvement in IKE fore-

casts through 36 h, though the difference between the

forecast errors is not statistically significant.

Recent upgrades to the quality-control software for

the airborne Doppler radar are able to provide more

superobservations in the boundary layer than pre-

viously available (J. Gamache 2014, personal commu-

nication). Recent upgrades to the operational HWRF

model addressed model bias through adjustments in

the vertical diffusion parameter in the boundary layer

as well as momentum and heat exchange coefficients in

the surface layer (S. G. Gopalakrishnan 2012, personal

communication). And HEDAS was enhanced to,

among other things, update the vertical acceleration of

the wind to improve initial analyses of the vertical

component of the velocity, all in a storm-relative

framework (Aksoy 2013). These upgrades were im-

plemented for the 2012 hurricane season, and results will

be presented separately.

FIG. 11.Wind velocity initial conditions for Tropical StormTomas initialized at 1200UTC 4Nov 2010 for the (left) no-assimilation control

and (right) all-data HEDAS for the (top) large-scale 850–200-hPa deep-layer mean and (bottom) 700 hPa on the innermost mesh.
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