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Abstract. An analysis of the 130-year record of the
Earth’s global mean temperature reveals a significant
warming trend and a residual consistent with an auto-
correlated (“red”) noise process whose predictability de-
cays with a timescale of two years. Thus global temper-
atures, in isolation, do not indicate oscillations at 95%
confidence against a red noise null hypothesis. Weak
signals identified in the global series can, however, be
traced to significant sea surface temperature oscillations
in the equatorial Atlantic (period ~10 years) and the
El Nifio region of the Pacific (3-5 years). No robust ev-
idence is found in this data for interdecadal oscillations.
The 10-year Atlantic oscillation corresponds to a pat-
tern of temperature anomalies which has been associ-
ated with interannual variations in West African rainfall
and in U.S. hurricane landfall frequency.

Testing against red noise in SSA

When analysing complex systems, we must allow for
noise (or processes indistinguishable from noise) being
autocorrelated in time. The simplest discrete autocorre-
lated noise is the AR(1) process [Davis & Vinter, 1985]:

(1)

where the first term on the RHS represents the mem-
ory of the process, and z; is a white noise (independent,
uniformly distributed) forcing. < and o are real coef-
ficients. The power spectrum of AR(1) noise contains
no spectral peaks, although it is biased towards low
frequencies (i.e. “red”). Predictability decays exponen-
tially with a time-constant 7 = —[In(y)]~!. A variety
of systems, both deterministic and stochastic, generate
red power spectra, so processes like AR(1) noise must
be considered in evaluating evidence for trends or oscil-
lations in climate data.

Singular Spectrum Analysis, or SSA [Broomhead &
King, 1986; Fraedrich, 1986; Vautard & Ghil, 1989],
extracts information from a discrete scalar time se-

Ugt1 = YUt + 2t
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ries by finding the eigenvalues (A¢%!?) and eigenvectors
(“EOFs”, e) of the series’ lag-covariance matrix:

)\iata = ez’cdataek

(2)

where C’fj‘”“ is the estimated covariance of the series

at lag |j — i|. Figure 1 shows Aget® for the 1861-1990
record of global, annual-mean, combined land and sea
near-surface temperatures as compiled for the Intergov-
ernmental Panel on Climate Change (IPCC) [Houghton
et al., 1992]. Here M, the rank of C%%t¢, is 40 sampling
intervals (years), but conclusions are not sensitive to
varying M from 20 to 60 years [Allen, 1992].

The )\ﬁ‘”“ in figure 1 are arranged in the conventional
“rank-order”, i.e. by decreasing size. When SSA is used
for signal detection, a symmetric/anti-symmetric pair
of approximately sinusoidal EOF's, with similar, high-
ranked eigenvalues, has been taken to indicate a physi-
cal oscillation. If the series contains red noise, however,
then sinusoidal EOFs which are entirely due to noise
may have high-ranked eigenvalues. Standard SSA ap-
plied to short realizations of AR(1) noise with the same
lag-1 autocorrelation as the IPCC series (y=0.8) indi-
cates low-frequency oscillations in over 50% of cases,
even when the EOF-selection criteria of [ Vautard et al.,
1992] are applied. Thus we cannot conclude that such
oscillations exist on the basis of conventional SSA alone.

To resolve this problem, we introduce Monte Carlo
SSA. Suppose we suspect that a series consists of a non-
linear trend contaminated with AR(1) noise. We gen-
erate an ensemble of “surrogate” series [Smith, 1992;
Theiler et al., 1992], each consisting of the observed
>40-year variability (reconstructed from EOFs 1 & 2
following [Ghil & Vautard, 1991]) plus a segment of
AR(1) noise, generated using (1). The coeflicients o
and v are chosen to give the surrogates the same ex-
pected variance and lag-1 autocorrelation as the origi-
nal data: the best-fit v = 0.6, giving a decay-time 7 of
~2 years. We calculate lag-covariance matrices, C**"",
for each of the surrogates and project them onto the
EOFs of C4te, The power in the kt* EOF is defined
as \v" = el C**"ey: see (2). Vertical bars in figure 1
show the 95% and 80% limits of the A§*"" distributions.

If the k** data eigenvalue, A%3¢®, lies above the 95%
limit of the corresponding A§{*"" distribution, this would
indicate that we can reject the null hypothesis “power
associated with EOF-k is attributable to the observed
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Figure 1. Squares and diamonds: eigenvalues, A¢%t?,

of C?ete for the IPCC global temperature series. Bars:
distributions of A;*"" for a 1000-member ensemble of
surrogates, each consisting of the observed trend con-
taminated with AR(1) noise. 95% of the A;*"" lie below
(above) the upper (lower) limits of the dotted bars; 80%
for the solid bars. No AZe*¢ lie above the upper 95%
limits, and only 2 lie just below the lower limits, so this
data gives no evidence of oscillations at 95% conﬁdence
against a trend-plus-red-noise null-hypothesis. EOFs
labelled ¢ to f may be significant at the 80% level, but
the “interdecadal” pair, b, is not.

trend plus this specific AR(1) process” at the 95% con-
fidence level. Out of 40 EOF's; we would clearly expect
some such excursions to occur by chance. Quantifying
the probability of a given number of excursions is diffi-
cult because (i) the A\;*"" within each individual surro-
gate realisation are not independent, and (ii) the noise
process parameters have been fitted to the data (not
a serious problem provided the number of parameters
is <M). However, since no excursions above the 95%
limits occur in figure 1, no oscillatory signals are indi-
cated at 95% confidence. v

Excursions above the 80% limits occur in EOF's cor-
responding to periods of 5 (pair d and e), 3.6 (pair f)
and 2.9 years (g) We associate a frequency, fi, with an
EOF by maximizing the correlation between e and a
sinusoid. The spectral resolution of SSA is A fj, ~ :i: M
If these EOF's are included in the signal-reconstructlon
along with the trend, and v and o are reset to give the
surrogates the same variance and lag-1 autocorrelation,
we also find a 10-year signal at this lower significance
level (pair ¢). Some of these excursions should occur
by chance, so our confidence in these possible signals is
even lower than 80%. We draw attention to them not
as conclusive evidence of oscillations, but to stress that
eigenvalue rank-order can fail as a significance criterion
[Allen et al., 1992]. EOF pair f in figure 1 (Which corre-
sponds to the 3—4-year component of El Nifio) is more
significant than the 5 EOFs which precede it. Phys-
ically, this means that this EOF pair explains an im-
probably high proportion of the variance in the data
given the frequencies associated with it. Against a red
noise null-hypothesis, we do not ezpect the same vari-
ance in all EOFs even if the data is pure noise. No
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interdecadal oscillations are indicated at the 80% level:
the Adate Jabelled b lie near the centres of their corre-
sponding Af*"" distributions.

If we test against AR(1) noise without the trend, we
find improbably high power at k=1 (a in figure 1): the
>40-year variability in the IPCC series cannot be ex-
plained as a consequence of this AR(1) process.

The significance tests used by [Ghil & Vautard, 1991]
only considered white noise contamination. The test in-
troduced here can be generalised to distinguish between
a data series and any well-defined process. If we assume
that the noise is white, by setting y=0 in (1), we find
evidence for a trend and oscillations with approximate
periods of 27, 14, 10, 6, 5 and 3.6 years, all apparently
significant at 95%, and together accounting for almost
85% of the variance. Introducing one extra parameter
in the noise (y) explains away all these apparent oscil-
lations. Thus assuming, without a priori grounds, that
noise is white may lead us to underestimate the ampli-
tude of the stochastic component of a series and thus
overestimate system predictability.

Origins of possible signals identified

Signals which cannot be distinguished from AR(1)
noise in the global mean temperatures alone may none-
the-less have a genuine physical origin. To investi-
gate possible oceanic origins, we used “regression-maps”
[Lim & Wallace, 1991] to identify sea surface tempera-
ture (SST) patterns associated with the different modes
of the global temperatures, as follows. SSA allows the
components of a time-series which contribute to vari-
ability on different time-scales to be reconstructed in-
dependently. Figure 3a of [Ghil & Vautard, 1991] shows
“reconstructed components” (RCs) of global tempera-
tures corresponding to the >40-year (trend), 3-5-year,
10-year and 27-year modes. We shall refer to these as
Z1; t0 T4 respectively.

We applied the following regression model to local
time series of annual-mean SSTs on a global 5° x 5°
grid [Bottomley et al., 1990]:

Yy = bo + Z DTt + Us

m=1

3)

where y; is the local SST and wu; is a red noise pro-
cess defined as in (1) above. The 4 RCs of the global
series, Tm¢: m=1,4, were common to all points: the “ref-
erence time series” of the regression map. At each grid
point, we estimated by and the coefficients bm: m=1,4 us-
ing the method of generalized linear regression (GLR)
with missing data [Kmenta, 1981; Allen, 1992]. Because
residuals are autocorrelated, using standard linear re-
gression — replacing u; with z; in (3) — would result in
serious underestimation of the errors, o(bn,) [Davis &
Vinter, 1985]. In many regions, coverage is poor prior
to c. 1950. Rather than requiring any “gap-filling”, we
make use only of the data available: an advantage over
analyses based on spatial EOFs [Folland et al., 1991].
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Optimizing v, the lag-1 autocorrelation of u;, for each
grid-point individually gave a global average of 0.3, im-
plying a decay-time 7<1 year. Thus introducing land
and ice data and/or taking a global average tempera-
ture appears to increase the level of autocorrelation (as
suggested by M. Ghil). Individual estimates of v are
not very robust, so we imposed a global value of 0.3:
the following results are not sensitive to varying +, nor
to omitting the (doubtful) 27-year mode.

Figures 2.1 to 2.4 show maps of regression coeffi-
cients, by,. If 2<b,, <4 in a particular square (medium-
dark grey), then SSTs, y;, at that point have varied
in phase with, and with 2-4 times the amplitude of,
the m** RC of the global temperatures, Zm;. Points
where |by,|>20(by) — locally significant at >95% — are
enclosed by squares. A significant relationship between
y: and Z.,; confined to a particular region with b,, > 1
would indicate that the m** RC of the global tempera-
tures originates in that region.

Regression coefficients on the trend (figure 2.1) in-
dicate a fairly uniform “warming” (b;~1) over the At-
lantic and Indian Oceans, with enhanced warming in
the north-west Pacific. Negative coeflicients (light grey
squares) occur off southern Greenland and in the data-
sparse Arctic and tropical Pacific, but few of these are
significant, so they may simply be due to inadequate
coverage in these regions.

The clearest feature related to the oscillatory compo-
nents of global temperatures is the El Nifio signal as-
sociated with the subdecadal RC, zy; (figure 2.2). The
global nature of El Nifio is clearly visible.

The key significant feature in the pattern associated
with the 10-year RC, z3; (figure 2.3), is a patch of
positive coefficients in the northern equatorial Atlantic,
with negative coeflicients south of the equator. Such a
pattern of SST anomalies has been associated with vari-
ations in Sahel rainfall [Folland et al., 1991] and U.S.
hurricane landfall frequency: figure 9 of [Gray, 1990].
A second patch of significant coefficients is observed in
the south-east Pacific, but coverage is very poor in that
region. Assessing the overall significance of such fea-
tures is difficult, since we expect ~5% of the grid-point
regressions to appear significant by chance. The 10-year
pattern in the equatorial Atlantic is, however, fairly ro-
bust: it is largely unchanged if (following [Elsner &
Tsonis, 1991]) we repeat the analysis using only the
years 1861-1970, 1881-1990 and 1910-1990.

Applying Monte Carlo SSA to the area-mean SST in
the north equatorial Atlantic (figure 3), we found (in
addition to >40-year variability and an ENSO signal)
a 10-year period oscillation with a peak to peak ampli-
tude of up to >0.4°C. The evidence for this oscillation
is weak: it is only distinguishable from AR(1) noise at
95% confidence in the full 130-year series, not in either
the first or the last 110-year segments. A reconstruction
of this signal is, however, in phase with the 10-year com-
ponent of the global series; both go through a quiescent
period between 1910 and 1955 during which they both
undergo a ~180° change of phase. The correspondence
of phase and amplitude suggests this is the origin of
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2.4) Pattern associated with 27-year component

Figure 2. Patterns associated with (2.1) trend, (2.2)
subdecadal, (2.3) 10-year and (2.4) 27-year RCs of
global temperatures. Grey-scales indicate the coeffi-
cients by, in eqn. (3) between local SSTs, y;, and RCs
z1; to x4 of global temperatures. Boxes indicate points
where |by, |>20(b ). Each y; is the average of 4 seasonal
anomalies, calculated from monthly anomalies about
a 1951-80 mean annual cycle. Bucket-corrected data
used from the MOHSST5 data-set. Years in which
northern-winter or northern-summer season contain no
data treated as missing. Points with <20 years of data
shown white.

the 10-year mode in the global temperatures, although
in the early part of the series the appearance of this
mode in the global record could be due to inadequate
coverage of regions outside the Atlantic. No significant
10-year oscillation could be identified in an area-mean
series from the south equatorial Atlantic (confirming
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Figure 3. SST anomalies in the northern equatorial
Atlantic (area-mean 7T0W-10E, 0-20N: ~80% spatial
coverage since 1880). 10-year oscillatory component
(solid line) is significant against AR(1) noise at 95%.
Note correspondence of phase and amplitude with 10-
year signal in figure 3a of [Ghil & Vautard, 1991].

[Houghton & Tourre, 1992] that this is not a simple
north-south dipole), nor from the SE Pacific.

Figure 2.4 shows no such clear “origin” of the 27-year
RC. Significant coefficients occur in the Indian Ocean
(b4>0) and in the northwest Pacific (b4<0). Time series
of area-means from these regions do not, however, in-
dicate significant interdecadal oscillations. Significant
positive coefficients also occur in the eastern Pacific,
but the similarity of the patterns in figures 2.2 and 2.4
in this region suggests this is a consequence of data-
sparsity and amplitude-modulation of the El Nifio sig-
nal. This conclusion is supported by repeating the anal-
ysis on the years 1861-1970: the 27-year pattern in the
Pacific then completely disappears.

Conclusions

In our analysis of the global temperature record, the
only component of variability which we were able to dis-
tinguish, at 95% confidence, from a simple form of red
noise was the warming trend. Generalized regression
analysis between the reconstructed trend and gridded
SSTs indicated it is spatially ubiquitous, which is con-
sistent with (although it does not, of course, establish)
a global change in external forcing. We also identi-
fied subdecadal variability associated with El Nifio and
a possible 10-year period oscillation which appears to
originate in the northern equatorial Atlantic. No ev-
idence was found for oscillations on 20-30 year time
scales, although this may simply indicate that this se-
ries of 130 years is just too short for such oscillations to
be distinguished from red noise.
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