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We use heat kernels or eigenfunctions of the Laplacian to construct
local coordinates on large classes of Euclidean domains and Ri-
emannian manifolds (not necessarily smooth, e.g., with C � metric).
These coordinates are bi-Lipschitz on large neighborhoods of the
domain or manifold, with constants controlling the distortion and
the size of the neighborhoods that depend only on natural geo-
metric properties of the domain or manifold. The proof of these
results relies on novel estimates, from above and below, for the
heat kernel and its gradient, as well as for the eigenfunctions of the
Laplacian and their gradient, that hold in the non-smooth category,
and are stable with respect to perturbations within this category.
Finally, these coordinate systems are intrinsic and efficiently com-
putable, and are of value in applications.

spectral geometry � nonlinear dimensionality reduction

In many recent applications, one attempts to find local param-
etrizations of data sets. A recurrent idea is to approximate a

high dimensional data set, or portions of it, by a manifold of low
dimension. A variety of algorithms for this task have been
proposed (1–8). Unfortunately, such techniques seldomly come
with guarantees on their capabilities of indeed finding local
parametrization (but see, for example, refs. 8 and 9) or on
quantitative statements on the quality of such parametrizations.
Examples of such disparate applications include document anal-
ysis, face recognition, clustering, machine learning (10–13),
nonlinear image denoising and segmentation (11), processing of
articulated images (8), and mapping of protein energy land-
scapes (14). It has been observed in many cases that the
eigenfunctions of a suitable graph Laplacian on a data set
provide robust local coordinate systems and are efficient in
dimensional reduction (1, 4, 5). The purpose of this paper is to
provide a partial explanation for this phenomenon by proving an
analogous statement for manifolds as well as introducing other
coordinate systems via heat kernels, with even stronger guaran-
tees. Here, we should point out the 1994 paper of Bérard et al.
(15) where a weighted infinite sequence of eigenfunctions is
shown to provide a global coordinate system. (Points in the
manifold are mapped to �2.) To our knowledge, this was the first
result of this type in Riemannian geometry. If a given data set
has a piece that is statistically well approximated by a low
dimensional manifold, it is then plausible that the graph eigen-
functions are well approximated by the Laplace eigenfunctions
of the manifold. One of our results is that, with the normalization
that the volume of a d-dimensional manifold M equals one, any
suitably embedded ball Br (z) in M has the property that one can
find (exactly) d eigenfunctions that are a ‘‘robust’’coordinate
system on Bcr (z) (for a constant c depending on elementary
properties of M). In addition, these eigenfunctions, which de-
pend on z and r, ‘‘blow up’’ the ball Bcr (z) to diameter at least
one. In other words, one can find d eigenfunctions that act as a
‘‘microscope’’ on Bcr (z) and ‘‘magnify’’ it up to size �1. Another
of our results is as follows. We introduce simple ‘‘heat coordi-
nate’’ systems on manifolds. Roughly speaking (and in the
language of the previous paragraph), these are d choices of
manifold heat kernels that form a robust coordinate system on

Bcr (z). We call this method ‘‘heat triangulation’’ in analogy with
triangulation as practiced in surveying, cartography, navigation,
and modern GPS. Indeed, our method is a simple translation of
these classical triangulation methods.

The embeddings we propose can be computed efficiently and
therefore, together with the strong guarantees we prove, are
expected to be useful in a variety of applications, from di-
mensionality reduction to data set compression and navigation.

Given these results, it is plausible to guess that analogous
results should hold for a local piece of a data set if that piece has
in some sense a ‘‘local dimension’’ approximately d. There are
certain difficulties with this philosophy. The first is that graph
eigenfunctions are global objects and any definition of ‘‘local
dimension’’ must change from point to point in the data set. A
second difficulty is that our manifold results depend on classical
estimates for eigenfunctions. This smoothness is often lacking in
graph eigenfunctions.

For data sets, heat triangulation is a much more stable object
than eigenfunction coordinates because

Y heat kernels are local objects;
Y if a manifold M is approximated by discrete sets X, the

corresponding graph heat kernels converge rather nicely to
the manifold heat kernel (4, 5);

Y one has good statistical control on smoothness of the heat
kernel, simply because one can easily examine it and because
one can use the Hilbert space {f � L2 : �f � L2};

Y our results that use eigenfunctions rely in a crucial manner on
Weyl’s lemma, whereas heat kernel estimates do not.

The philosophy used in this paper is as follows.
Step 1. Find suitable points yj, 1 � j � d and a time t so that

the mapping given by heat kernels

�x3 Kt�x, y1�, . . . , Kt�x, yd��

is a good local coordinate system on B(z, cr). (This is heat
triangulation.)

Step 2. Use Weyl’s lemma to find suitable eigenfunctions �ij so
that (with Kj(x) � Kt(x, yj)) one has ��ij (x) � cj�Kj (x), x � B(z,
cr) for an appropriate constant c.

Results
Euclidean Domains. We first present the case of Euclidean do-
mains. Although our results in this setting follow from the more
general results for manifolds discussed in the next section, the
case of Euclidean domains is of independent interest, and the
exposition of the theorem is simpler.

We consider the heat equation in �, a finite volume domain
in �d, with either Dirichlet or Neumann boundary conditions:
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��� �
�

�t�u�x, t� � 0

u��� � 0
or � � � �

�

� t� u�x , t� � 0

�vu ��� � 0

Here, v is the outer normal on ��. Independently of the
boundary conditions, we will denote by � the Laplacian on �.
For the purpose of this paper, in both the Dirichlet and
Neumann case, we restrict our study to domains where the
spectrum is discrete and the corresponding heat kernel can be
written as

Kt
��z, w� � �

j�0

	


�j�z��j�w�e��jt, [0.1]

where the {�j} form an orthonormal basis of eigenfunctions of
�, with eigenvalues 0 � �0 � � � � � �j � . . . . We also require that
the following Weyl’s estimate holds, i.e., there is a constant
CWeyl,� such that for any T � 0

#
 j : �j � T� � CWeyl,� T
d⁄2���. [0.2]

(This condition is always satisfied in the Dirichlet case, where in
fact CWeyl,� can be chosen independent of �.) It should however
be noted that these conditions are not always true and the
Neumann case is especially problematic (16, 17).

Theorem 1. Embedding via Eigenfunctions, for Euclidean Domains. Let
� be a domain in �d satisfying all the conditions above, rescaled
so that ��� � 1. There are constants c1, . . ., c6 � 0 that depend only
on d and CWeyl,�, such that the following hold. For any z � �, let
Rz � dist (z, ��). Then there exist i1, . . ., id and constants c6 Rz

d/2 �
�1 � �1 (z), . . . , �d � �d(z) � 1 such that

(a) the map

� : Bc1Rz
�z�3 �d [0.3]

x3 ��1�i1
�x�, . . . , �d�id

�x�� [0.4]

satisfies, for any x1, x2 � B (z, c1 Rz),

c2

Rz
�x1 � x2� � ���x1� � ��x2�� �

c3

Rz
�x1 � x2�; [0.5]

(b) the associated eigenvalues satisfy

c4Rz
�2 � �i1

, . . . , �id
� c5Rz

�2.

Remark 1. The dependence on the constant CWeyl,� is only
needed in the Neumann case.

Manifolds with C � Metric. The results above can be extended to
certain classes of manifolds. To formulate a result corresponding
to Theorem 1, we must first carefully define the manifold
analogue of dist (z, ��). Let M be a smooth, d-dimensional
compact manifold, possibly with boundary. Suppose we are given
a metric tensor g on M is C � for some � � 0. For any z0 � M,
let (U, u) be a coordinate chart such that z0 � U and

(i) gil (u(z0)) � 	il;
(ii) for any x � U, and any 
, � � �d,

cmin�g��
��d
2 � �

i, j�1

d

gij�u�x��
 i
 j �
i, j�1

d

gij�u�x��
 iv j

� cmax�g��
��d�v��d. [0.6]

We let rM (z0) � sup{r � 0 : Br (u(z0)) � u(U)}. Observe that,
when g is at least C 2, rM can be taken to be the inradius, with local
coordinate chart given by the exponential map at z. We denote
by �g���1 the maximum over all i, j of the � � 1-Hölder norm of
gij in the chart (U, u). The natural volume measure d� on the
manifold is given, in any local chart, by �det g; conditions 0.6
guarantee that detg is uniformly bounded below from 0. Let �M

be the Laplace Beltrami operator on M In a local chart, we have

�M f�x� � �
1

	det g
�

i, j�1

� j� 	det g gij�u�x��� i f ��u�x�� , [0.7]

where (gij) is the inverse of gij. Conditions 0.6 are the usual
uniform ellipticity conditions for the operator 0.7. With Dirichlet
or Neumann boundary conditions, �M is self-adjoint on L2 (M,
�). We will assume that the spectrum is discrete, denote by 0 �
�0 � � � � � �j � its eigenvalues and by {�j} the corresponding
orthonormal basis of eigenfunctions, and write Eqs. 0.1 and 0.2
with � replaced by M.

Theorem 2. Let (M, g), z � M and (U, u) be as above. Also, assume
�M� � 1. There are constants c1, . . . , c6 � 0, depending on d, cmin,
cmax, �g���1, � � 1, and CWeyl,M, such that the following hold. Let
Rz � rM (z). Then there exist i1, . . . , id and constants c6Rz

d/2 � �1 �
�1 (z), . . . , �d � �d (z) � 1 such that

(a) the map

� : Bc1Rz
�z�3 �d [0.8]

x3 ��1�i1
�x�, . . . , �d�id

�x�� [0.9]

such that for any x1, x2 � B (z, c1 Rz)

c2

Rz
dM�x1, x2� � ���x1� � ��x2�� �

c3

Rz
dM�x1, x2�. [0.10]

(b) the associated eigenvalues satisfy

c4Rz
�2 � �i1

, . . . , �id
� c5Rz

�2.

Remark. In both Theorem 1 and Theorem 2, the constants �j are
given by

�j � 
 BcRz
�z�

�ij
�z��2dz��

�1⁄2

,

where c is some fixed constant, depending on d, cmin, cmax, �g���1,
� � 1, and CWeyl.

Remark 2. The constant CWeyl,M is only needed in the Neumann
case.

Remark 3. Most of the proof is done on one local chart
containing z which we choose (one which contains a large
enough ball around z). An inspection of the proof shows that we
use only the norm �g���1 of the g restricted to this chart. In
particular, the theorem holds also for Rz � rM (z).

Remark 4. When rescaling Theorem 2, it is important to note
that if f is a Hölder function with � f �C ��1 � A and fr (z) � f(r�1

z), then � fr �C ��1 � Ar��1. Since we will have r � 1, fr satisfies a
better Hölder estimate then f, i.e., � fr �C ��1 � Ar��1 � A � � f �C ��1.

Remark 5. We do not know, in both Theorem 1 and Theorem
2, whether it is possible to choose eigenfunctions such that �1 �
. . . � �d.

Another result is true. One may replace the d chosen eigen-
functions above by d chosen heat kernels, i.e., {Kt(z, yi)}i�1,. . .,d.
In fact, such heat kernels arise naturally in the main steps of the
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proofs of Theorem 1 and Theorem 2. This leads to an embedding
map with even stronger guarantees:

Theorem 3. Heat Triangulation Theorem. Let (M, g), z � M and (U,
u) be as above, where we now allow �M� � 	
. Let Rz � min{1,
rM(z)}. Let p1, . . . , pd be d linearly independent directions. There
are constants c1, . . . , c6 � 0, depending on d, cmin, cmax, �g���1, �
� 1, and the smallest and largest eigenvalues of the Gramian matrix
(pi, pj)i,j�1,. . .,d, such that the following holds. Let yi be so that yi �
z is in the direction pi, with c4Rz � dM ( yi, z) � c5Rz for each i �
1, . . . , d and let tz � c6Rz

2. The map � : Bc1Rz
(z)3 �d, defined by

x3 �Rz
dKtz

�x, y1��, . . . , Rz
dKtz

�x, yd�) [0.11]

satisfies, for any x1, x2 � Bc1Rz
(z),

c2

Rz
dM�x1, x2� � ���x1� � ��x2�� �

c3

Rz
dM�x1, x2�.

This holds for the manifold and Euclidean case alike and
depends only on estimates for the heat kernel and its gradient.

Remark 6. One may replace the (global) heat kernel above with
a local heat kernel, i.e., the heat kernel for the ball B (z, Rz) with
the metric induced by the manifold and Dirichlet boundary
conditions. In fact, this is a key idea in the proof of all of the
above theorems.

Remark 7. All theorems hold for more general boundary
condi-tions. This is especially true for the Heat Triangulation
Theorem, which does not even depend on the existence of a
spectral expansion for the heat kernel.

Example 1. It is a simple matter to verify this theorem for the
case where the manifold in �d. For example, if d � 2, Rz � 1, and
z � 0, y1 � (�1, 0) and y2 � (0, �1). Then if Kt (x, y) is the
Euclidean heat kernel,

x3 �K1�x, y1�, K1�x, y2��

is a (nice) biLipschitz map on B1/2 ((0, 0)). (The result for
arbitrary radii then follows from a scaling argument.) This is
because on can simply evaluate the heat kernel Kt (x, y) �
[1/(4
t)]e�(�x�y�2)/4t. In B1/2 ((0, 0)),

�K1�x, y1� �
1

2

e�1⁄4 �1, 0� and �K1�x, y2� �

1
2


e�1⁄4�0, 1�.

Notation. In what follows, we will write f (x) �c1,. . .,cn
g(x) if there

exists a constant C depending only on c1, . . . , cn, and not on f,
g, or x, such that f(x) � Cg (x) for all x (in a specified domain).
We will write f(x) �c1,. . .,cn

g(x) if both f(x) �c1,. . .,cn
g(x) and g(x)

�c1,. . .,cn
f(x). We will write a �C1

C2 b for a, b vectors, if ai �C1

C2 bi for
all i.

The Proofs
The proofs in the Euclidean and manifold case are similar. In this
section, we present the main steps of the proof. A full pre-
sentation is given in ref. 2. Some remarks about the manifold
case:

(a) As mentioned in Remark 3, we will often restrict to working
on a single (fixed) chart in local coordinates. When we
discuss moving in a direction p, we mean in the local
coordinates.

(b) Let us say a few words about how the dependence on �g���1
comes into play. Generally speaking, in all places except one
(which we will mention momentarily), the � � 1-Hölder
condition is used to get local bi-Lipschitz bounds on the
perturbation of the metric (resp. the ellipticity constants)
from the Euclidean metric (resp. the Laplacian). The place

where one really uses the Hölder condition is an estimate on
how much the gradient of a (global) eigenfunction changes
in a ball.

(c) We will use Brownian motion arguments (on the manifold).
To have existence and uniqueness, one needs smoothness
assumptions on the metric (say, C 2). Therefore, we will first
prove the theorem in the manifold case in the C 2 metric
category, and then use perturbation estimates to obtain the
result for gij � C �. To this end, we will often have dependence
on the C � norm of the coordinates of the gij even though we
will be (for a specific lemma or proposition) assuming the g
has C 2 entries.

(d) We will use estimates from ref. 18. The theorems in ref. 18
are stated only for the case of d � 3. Our theorems are true
also for the case d � 2 (and trivially, d � 1). This can beseen
indirectly by considering M̃ : � M � � and noting that the
eigenfunctions of M̃ and the heat kernel of M̃ both factor.

The idea of the proof of Theorem 1 and 2 is as follows. We start
by fixing a direction p1 at z. We would like to find an eigenfunc-
tion �i1 such that ��p1

�i1� Rz
�1 on Bc1Rz

(z). To achieve this, we
start by showing that the heat kernel has large gradient in an
annulus of inner and outer radius � Rz

�1 around y1 (y1 chosen
such that z is in this annulus, in direction p1). We then show that
the heat kernel and its gradient can be approximated on this
annulus by as the partial sum of 0.1 over eigenfunctions �� which
satisfy both � � Rz

�2 and Rz
�d/2 ����L2(Bc1Rz (z)) � 1. By the

pigeon-hole principle, at least one such eigenfunction, let it be
�i1, has a large partial derivative in the direction p1. We then
consider ��i1 and pick p2 ���i1 and by induction we select �i1,
. . . , �id, making sure that at each stage we can find �ik, not
previously chosen, satisfying ��pk

�ik� � Rz
�1 on Bc1Rz

(z). We finally
show that the � : � (�i1, . . . , �id) satisfies the desired properties.

Step 1. Estimates on the heat kernel and its gradient. Let K be
the Dirichlet or Neumann heat kernel on � or M, corresponding
to one of the Laplacian operators considered above associated
with g. We have the spectral expansion

Kt�x, y� � �
j�0

	


e��jt�j�x��j�y�.

When working on a manifold, we can assume in what follows
that we fix a local chart containing BRz

(z).

Assumption A.1. Let the constants 	0, 	1 � 0 depend on d, cmin, cmax,
�g���1, � � 1. We consider z, w � � satisfying (	1/2) Rz � t1/2 �
	1Rz and �z � w� � 	0Rz.

Proposition 4. Under Assumption A.1, let g � C �, 	0 sufficiently
small, and 	1 is sufficiently small depending on 	0. Then there are
constants C1, C2, C�1, C�2, C9 � 0, that depend on d, 	0, 	1, cmin, cmax,
�g���1, � � 1} and C�1, C�2, C9 dependent also on CWeyl, such that
the following hold:

(i) the heat kernel satisfies

Kt�z, w� � C1

C2 t
�d⁄2 ; [0.12]

(ii) if (1/2)	0 Rz � �z � w�, p is a unit vector in the direction of z �
w, and q is arbitrary unit vector, then

��Kt�z, w� � C�1

C�2 t
�d⁄2 Rz

t
and ��pKt�z , w� � � C�1

C�2 t
�d⁄2 Rz

t

[0.13]
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�qKt�z, w� � C�2�q,
z � w

�z � w�� t
�d⁄2 Rz

t

� C9 t

�d⁄2 Rz

t
, [0.14]

where C9 3 0 as 	1 3 0 (with 	0 fixed);

(iii) if in addition gij � C 2, (1/2)	0Rz � �z � w�, and q is as above,
then for s � t,

Ks�z, w� �C2
t
�d⁄2, ��Ks�z , w� � �C�2

t
�d⁄2 Rz

t

and ��qKs�z , w� � �C�2
t
�d⁄2 Rz

t
; [0.15]

(iv) C1, C2 both tend to a single function of {d, cmin, cmax, 	0,
CWeyl}, as 	1 tends to 0 with 	0 fixed;

(v) if g � C 2, then also C�1, C�2, C9 can be chosen independently of
CWeyl. Furthermore, the above estimates also hold for �M� � 	 
.

At this point we can side track and choose heat kernels {Kt

(�, yi)}i�1,. . .,d, with t � Rz
2, that provide a local coordinate chart

with the properties claimed in Theorem 3.
Proof of Theorem 3. We start with the case g � C 2. Let us

consider the Jacobian J̃ (x), for x � Bc1Rz
(z), of the map

�̃: � Rz
�dt	d/2�t/Rz

2��.

By 0.14 we have �J̃ij (x) � C�2�pi, (x�yj)/�x�yj�� Rz
�1� � C9Rz

�1, with
C�2 independent of CWeyl. As dictated by Proposition 4, by
choosing 	0, 	1 appropriately (and, correspondingly, c1 and c6),
we can make the constant C9 smaller than any chosen �, for all
entries, and for all x at distance no greater than c1 Rz from z,
where we use t � tz � c6 Rz

2 for �̃. Therefore, for c1 small enough
compared to c4 we can write RzJ̃ (x) � Gd 	 E(x), where Gd is
the Gramian matrix �pi, pj� (indepedent of x), and �Eij (x)� � �, for
x � Bc1Rz

(z). This implies that Rz
�1 (�min � Cd�) ��� � � J̃ (x)� � �

Rz
�1 (� max 	 Cd�) �� �, with Cd depending linearly on d, where

�max and �min are the largest and, respectively, smallest eigen-
values of Gd. At this point, we choose � small enough, so that the
above bounds imply that the Jacobian is essentially constant in
Bc1Rz

(z), and by integrating along a path from x2 to x2 in Bc1Rz
(z),

we obtain the Theorem (� and �̃ differ only by scalar multipli-
cation). We note that � � 1/d suffices. To get the result when g
is only C � we use perturbation techniques for the heat kernel (2).

We proceed towards the proof of Theorem 1 and 2. The
following steps aim at replacing appropriately chosen heat
kernels by a set of eigenfunctions, by extracting the ‘‘leading
terms’’in their spectral expansion.

Step 2. Heat kernel and eigenfunctions. Let AveR
z ( f ) � ( BR(z)

�f�2)1/2. We record the following (2):

Proposition 5. Assume gij � C �. There exists b1 � 1, that depends
on d, cmin, cmax, �g���1, � � 1 such that the following holds. For an
eigenfunction �j of �M, corresponding to the eigenvalue �j, and R �
Rz, the following estimates hold. For w � Bb1R (z) and x, y �
Bb1R (z),

��j�w�� � P1��jR2�AveR
z �� j�

���j�w�� � R�1P2��jR2�AveR
z �� j�

���j�x� � ��j�y��
�x � y���1 � R�1���1P3��jR2�AveR

z �� j�

with constants depending only on d, cmax, cmin, �gij���1, and P1 (x) �
(1 	 x)(1/2)	�, P2 (x) � (1 	 x)(3/2)	�, P3 (x) � (1 	 x)(5/2)	�, with
� the smallest integer larger than or equal to (d�2)/4.

We start by restricting our attention to eigenfunctions do not
have too high frequency. Let �L (A) � {�j : �j � At�1} and �H
(A�) � {�j : �j � A�t�1} � �L (A�)c.

A first connection between the heat kernel and eigenfunc-
tions is given by the following truncation Lemma.

Lemma 1. Assume g � C 2. Under Assumption A.1, for A � 1 large
enough and A� � 1 small enough, depending on 	0, 	1, C1, C2, C�1,
C�2 (as in Proposition 4), there exist constants C3, C4 (depending on
A, A� as well as {d, cmin, cmax, �g���1, � � 1}) such that

(i) The heat kernel is approximated by the truncated expansion

Kt�z, w� � C3

C4 �
j��L�A�

�j�z��j�w�e��jt.

(ii) If (1/2)	0 Rz � �z � w� and p is a unit vector parallel to z �
w, then

�wKt�z, �� � C3

C4 �
j��L�A���H�A��

�j�z��w�j���e��jt

�pKt�z, �� � C3

C4 �
j��L�A���H�A��

�j�z��p�j���e��jt.

(iii) C3, C4 both tend to 1 as A 3 
 and A� 3 0.

This lemma implies that in the heat kernel expansion, we do
not need to consider eigenfunctions corresponding to eigenval-
ues larger than At�1. However, in our search for eigenfunctions
with the desired properties, we need to restrict our attention
further, by discarding eigenfunctions that have too small a
gradient around z. As a proxy for gradient, we use local energy.
Recall AveR

z ( f ) � ( BR(z) �f�2)1/2, and let

�E�z, Rz, 	0, c0� :�
� j � ���� : Ave1
2 	0Rz

z
�� j� � c0� .

The truncation Lemma 1 can be strengthened into

Lemma 2. Assume g � C 2. Under Assumption A.1, for C3, C4 close
enough to 1 (as in Lemma 1), and c0 small enough (depending on
d, cmin, cmax, �g���1, � � 1, and CWeyl,M), there exist constants C5,
C6 (depending only on C3, C4, c0, and CWeyl,M) such that the heat
kernel satisfies

Kt�z, w� �C5

C6 �
�j��L�A���E�z,Rz,	0,c0�

� j�z�� j�w�e��jt

and if (1/2)	0Rz � �z � w�, then, if � :� �L (A) � �H (A�) � �E
(z, Rz, 	0, c0),

�pKt�z, w� �C5

C6 �
�j��

� j�z��p� j�w�e��jt.

C5, C6 tend to 1 as C3, C4 tend to 1 and c0 tends to 0.
Step 3. Choosing appropriate eigenfunctions.
The set of eigenfunctions with eigenvalues in � (as in Lemma

2) is well suited for our purposes, in view of:

Lemma 3. Assume g � C 2. Under Assumption A.1, for 	0 small
enough, there exists a constant C7 depending on {C1, C2, C�1, C�2, C5,
	1} and C8 depending on {	0, cmin, cmax, �g���1, � � 1} such that
the following holds. For any direction p there exist j � � :� �L (A)
��H (A�) ��E (z, Rz, 	0, c0) such that

��p�j�z�� �C7

C8Rz
�1 Ave1

2 	uRz

z
� j,

and moreover, if �z � z�� � b1Rz, where b1 is a constant that depends
on C7, C8, d, cmin, cmax, �g���1, � � 1, then
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��p�j�z��� �C7

C8 Rz
�1 Ave1

2 	0Rz

z
� j.

This lemma yields an eigenfunction that serves our purpose in
a given direction. From this point onwards we let, with abuse of
notation, �j(z�) � �Ave1

2
	0Rz

z
�j)�1 � �j(z�). To complete the proof

of the theorems, we need to cover d linearly independent
directions. Pick an arbitrary direction p1. By Lemma 3 we can
find j1 � �, (in particular j1 � t�1) such that ��pl

�jl
(z)� � c0Rz

�1.
Let p2 be a direction orthogonal to ��j1 (z). We apply again
Lemma 3, and find j2 � At�1 so that ��p2�j2 (z)� � c0Rz

�1. Note
that necessarily j2 � j1 and p2 is linearly independent of p1. In fact,
by choice of p2, �p2�j1 � 0. We proceed in this fashion. By
induction, once we have chosen j1, . . . , jk (k � d), and the
corresponding p1, . . . , pk, such that ��pl

�jl (z)� � c0Rz
�1, for l �

1, . . . , k, we pick pk	1 orthogonal to �{��jn}n�1,. . .,k� and apply
Lemma 3, that yields jk	1 such that ��pk	1

�jk	1
(z) � � c0Rz

�1.
We claim that the matrix Ak	1 :� (�pn

�jm)m,n�1,. . .,k	1 is lower
triangular and {p1, . . . , pk	1} is linearly independent. Lower-
triangularity of the matrix follows by induction and the choice of

pk	1. Assume a � �k	1 and ¥n�1
k	1 anpn � 0, then �¥n�1

k	1 anpn,
��jl

� � 0 for all l � 1, . . . , k 	 1, i.e., a solves the linear system
Ak	1 a � 0. But Ak	1 is lower triangular with all diagonal entries
non-zero, hence a � 0.

For l � k, we have ���jl, pk	1� � 0 and, by Lemma 3, ����jl,
pl�� � Rz

�1. Now let �k � (�j1, . . . , �jk) and � � �d. We start by
showing that ����z (w � z)� �d 1/Rz �w � z�. Indeed, suppose that
���k�z (w � z)� � c/Rz �w � z�, for all k � 1, . . . , d. For c small
enough, this will lead to a contradiction. Let w � z � ¥l alpl. We
have (using say Lemma 3)

���k�z�w � z�� � ��
l�k

al�pl
�k�z� � � �ak� � c �

l�k

�al�� 1
Rz

.

By induction, �ak� � ¥l�1
k cl �w � z�. For c small enough, �ai� � �w �

z�/d. This is a contradiction since �¥i aipi� � �w � z� and �pi� �
1. We also have, by Proposition 5,

����w � ���z� � ��z � w�
Rz

���1 1
Rz

. [0.16]

Finally, by ensuring �z � wi�/Rz is smaller than a universal
constant for i � 1, 2, we get from Eq. 0.16

���w1� � ��w2�� � 
�
0

1

���tw1	�1�t�w2
�w1 � w2�dt


� 
 �
0

1

��� �w1
� ��� � tw1	�1�t�w2

� �� �w1
��

� �w1 � w2�dt
 � �
0

1 1
Rz

�w1 � w2�dt

�
1
Rz

c0�w1 � w2� ,

which proves the lower bound 0.5. To prove the upper bound of
0.5, we observe that from Proposition 5 we have the upper bound
��pl

�il (z)�� AveRz

z (�il), and since �il is L2-normalized, the right
hand side can be as big as � Rz

�d/2. Therefore, we can choose �l
as in the statement of the theorem so as to satisfy the upper
bound 0.5. This completes the proof for the Euclidean case.

In the manifold case, we consider first the case g � C 2, and thus
let � � 1 � 1 in what follows. Let Rz be as in the theorem. We
take c1 � (1/2)	0 chosen so that
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Fig. 1. A non-simply connected domain in �2. The dark circle is the neigh-
borhood to be mapped, and grayscale intensity represents two (left and right)
eigenfunctions for the embedding. Each of them has about half an oscillation
in the neighborhood, and these two half-oscillations are in roughly orthog-
onal directions.

Fig. 2. Example of localization. When the entrance in the room is small enough, all of the eigenfunctions that Theorem 1 selects for mapping a neighborhood
of a point z in the small room need to be rescaled by a factor Rz

�d/2 to map a neighborhood of z to a ball of size � 1.
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�gil�x� � 	il� � �gil�x� � gil�z�� � �g���1�x � z���1 � �0

for all x � B2c1Rz
(z). For this g, the above is carried on in local

coordinates. It is then left to prove that the Euclidean distance
in the range of the coordinate map is equivalent to the geodesic
distance on the manifold. For all x, y � Bc1Rz

(z)

dM�x, y� � �
0

1 � x � y
�x � y��

�d

�1 � �g���1t��1�dt

� ��1�1 � �g���1��x � y�.

For the converse, let �: [0, 1] 3 M be the geodesic from x to y.
� is contained in B2dM(x,y) (x) on the manifold, whose image in the
local chart is contained in B2(1	�g���1)dM(x,y) (x). We have

dM�x, y� � �1 � �g���1��
�

��̇�t���d � �1 � �g���1��x � y�.

Finally, when g � C � we will need:

Lemma 4. Let J � 0 be given. If �g̃n
il � gil�L
(BR(z))3n 0 with �g̃n

il�C �

uniformly bounded, then for j � J

��j � �̃j,n�L

�BR�z��
3 n0,

����j � �̃j,n��L
�BR�z��3 n 0,

��j � �̃j,n�3 n0.

To conclude the proof of the theorem, let J � c5Rz
�2, depending

on d, (1/2)cmin, 2cmax, �g���1, � � 1. We may approximate g in C �

norm arbitrarily well by a C 2 (M) metric. By the above lemma,
and our main theorem for the case of C 2 metric, we obtain the
theorem for the C � case.

Examples
Example 2. Mapping with eigenfunctions, non simply-connected
domain. We consider the planar, non-simply connected domain
� in Fig. 1. We fix a point z � �, as in the figure, and display
two eigenfunctions whose existence is implied by Theorem 1.
Example 3. Localized eigenfunctions. In this example, we show that
the factors �1, . . . , �d in Theorem 1 and 2 may in fact be required
to be as small as Rz

d/2. We consider the “two-drums” domain
in Fig. 2, consisting of a unit-size square drum, connected by a
small aperture to a small square drum, with size �/N, where � is
the golden ratio. The with of the connecting aperture is 	�/N, for
small 	. For this domain, for small enough 	, and for z in the
smaller square, it can be shown that all possible eigenfunctions
that may get chosen in the theorem are localized in the smaller
square This is essentially a consequence of the fact that the
proper frequencies of the two drums, for 	 � 0, are all irrational
with respect to each other, and therefore eigenfunctions are
perfectly localized on each drum. For 	 small enough, a pertur-
bation argument shows that the eigenfunctions will be essentially
localized on each drum. But the eigenfunctions localized on the
small drum, being normalized to L2 norm, will have L
 norm as
large as Rz

�d/2, and therefore the lower bound for the �i’s is sharp.
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