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Abstract

We interpret several well-known algorithms for dimensionality reduction
of manifolds as kernel methods. Isomap, graph Laplacian eigenmap, and
locally linear embedding (LLE) all utilize local neighborhood informa-
tion to construct a global embedding of the manifold. We show how all
three algorithms can be described as kernel PCA on specially constructed
Gram matrices, and illustrate the similarities and differences between the
algorithms with representative examples.

1 Introduction

Recently, several different algorithms have been developed to perform dimensionality re-
duction of low-dimensional nonlinear manifolds embedded in a high dimensional space.
Isomap [11] was originally proposed as a generalization of multidimensional scaling
(MDS) [4]. An alternative method known as locally linear embedding (LLE) [8] was de-
veloped that solved a consecutive pair of linear least square optimizations. More recently,
another method for dimensionality reduction of manifolds has been described in terms of
the spectral decomposition of graph Laplacians [2]. Although all three algorithms, Isomap,
graph Laplacian eigenmaps, and LLE have quite different motivations and derivations, they
all can perform dimensionality reduction on nonlinear manifolds as shown in Fig. 1.� � � �

Figure 1: The two-dimensional embeddings resulting from Isomap (B), Laplacian eigen-
map (C), and LLE (D) from 600 points sampled from the S-curve manifold (A). �	��

nearest neighborhoods were used for computing the embeddings.

All three algorithms share a common characteristic in that they first induce a local neigh-
borhood structure on the data, and then use this local structure to globally map the manifold



to a lower dimensional space. This local neighborhood relationship is typically defined us-
ing nearest neighbors in Euclidean space and can be described by a graph ��
�������� , where
the nodes � represent different data points, and the edges � represent neighborhood rela-
tions among the points. However, the way these different algorithms use this neighborhood
structure to find a global embedding is quite different. In this work, we interpret the dif-
ferent algorithms as kernel methods. Specifically, we will relate them to the kernel PCA
(KPCA) algorithm [10].

Regarded in this context, Isomap, graph Laplacians, and LLE all share a similar strategy.
They construct a kernel matrix over the finite domain of the training data that preserves
some aspect of the manifold structure from the input space to a feature space. Diagonaliza-
tion of this kernel matrix then gives rise to an embedding that captures the low-dimensional
structure of the manifold.

In the following we will first fix our notation and provide a short review of kernel PCA
(Sec. 2). We then in turn show how Isomap (Sec. 3), graph Laplacian eigenmaps (Sec. 4)
and LLE (Sec. 5) can be interpreted in the context of KPCA. We conclude with a discussion
of the similarities and differences between the methods.

2 Review of Kernel PCA

Suppose we are given a nonempty set � and a positive definite kernel � . By the latter, we
mean a real-valued function on ����� with the property that there exists a map �������! 
into a dot product space  such that for all "#��"%$'&(� , we have )*"+�,"-$*./�0�1
*"#��"2$3� .1 In
kernel methods, � can be viewed as a nonlinear similarity measure.

Given data "546�8787978��"2:;&<� which we assume to be in a vector space, kernel PCA com-
putes the principal components of the points �'
="149�>�9787879�?�'
="2:@� . Since  may be infinite-
dimensional, the PCA problem needs to be transformed into a problem that can be solved
in terms of the kernel � . To this end, we consider the covariance matrix in  ,A �B� CD :E F G 4 �'
*" F �H�'
*" F �,I�� (1)

where �'
*" F � I denotes the linear form mapping J to )K�'
*" F �L�,J+. . To diagonalize
A

even if is infinite-dimensional, we first observe that all solutions toA JM�(NOJ (2)

with NQP�SR must lie in the span of � -images of the training data (as can be seen by
substituting (1) and dividing by N ). Thus, we may expand the solution J asJM� :E F G 41T F �'
=" F �>� (3)

thereby reducing the problem to that of finding the T F . The latter can be shown to take the
form D NOUV�W�MU�� (4)
where UX�Y
 T 4 �8797879� T : � I and � FBZ �X�5
=" F �," Z � . Absorbing the D factor into the eigen-
value N , one can moreover show that the [ -th feature extractor takes the form)=J%\]�?�'
*"%�,.�� C^ N \ :E F G 4#T \ F �5
=" F �,"-�L7 (5)

1Note that this is sometimes called a positive semidefinite kernel. In the kernel literature, positive
definite is more common, with the term strictly positive definite being used for the case where the
associated kernel matrix is full rank. We use the same terminology for matrices.



This is derived by computing the dot product between a test point �'
*"%� and the [ -th eigen-
vector in feature space; the 4_ `La factor ensures that )*J \ �,J \ .�� C .
Below we will make use of the following observation: The [ -th feature values extracted by
KPCA on the training example "%b is proportional to the expansion coefficients T \ b . This
can be seen as follows: Substituting "c�d"%b in (5), we get)=J%\]�?�'
=" b ��.�� C^ N \ 
�� T \e� b � C^ N \ 
fNg\ T \e� b � ^ N \ T \ b 7 (6)

Finally, we should mention one modification. In (1), we have implicitly assumed that the
data in the feature space have zero mean. In general, we cannot assume this, and therefore
we need to subtract the mean 
 Cih D �-j F �'
*" F � from all points. This leads to a slightly
different eigenvalue problem, where we diagonalize� $ �k
=lnmpoioiI+�q�r
=l@mpoioiI+� (7)

(with o'� DMs 4�t�u 
 C �879787L� C � I ) rather than � .

3 Isomap

As in multidimensional scaling (MDS), Isomap first constructs a matrix of pairwise dis-
tances between the different data points [11]. However, instead of directly using Euclidean
distance in the high-dimensional space, Isomap constructs a symmetric adjacency graph
using criteria such as symmetric nearest neighborhoods or v -ball neighborhoods. It then
weights each of the edges in this graph by the Euclidean distance between neighboring
points (a variant called C-Isomap also normalizes these weights [5]). Now Dijkstra’s algo-
rithm is used to compute the shortest path among edges in the neighborhood graph to define
the total distance between pairs of points. Finally, MDS is applied to this shortest path dis-
tance matrix and the embedding is given by the coefficients of the smallest eigenvectors of
this matrix. As pointed out in [12], one can interpret metric multidimensional scaling as
kernel PCA (with the main difference being that kernel PCA also provides an embedding
for test points, whereas MDS only embeds the training points). In a similar fashion, one
can take the distances used in Isomap and consider the following “kernel”:�xwzy={�|~}H���Vm C� 
�lnmpo�oiI��,��
�lnmpo�oiI#�L� (8)

where � is the squared distance matrix, and o�� D�s 4,tHu 
 C �9787978� C � I is the uniform vector
of unit length. This will center � wzy={�|~}H� ; but there is no theoretical guarantee that it will
be positive definite. However, in the continuum limit for a smooth manifold, the geodesic
distance between points on the manifold will be proportional to Euclidean distance in the
low-dimensional parameter space of the manifold [6]. It is known that �5
="#��" $ ����m��L"xm" $ �>� is conditionally positive definite for R����(� � . In the continuum limit, 
,m���� will
thus be conditionally positive definite and � wzy={�|~}H� will be positive definite (see pp. 49 and
51 in [9]; see also p. 440 for an example of kernel PCA using �5
="#��" $ ���km��>"/m�" $ �?� , i.e.,
with � FBZ ���>" F m�" Z �?� ).

Now recall (6); since the final embedding found by Isomap is given by the largest eigen-
vectors of (8) we see that using the projections given by the largest eigenvectors of KPCA
using ���>�q� :�� \ yields, up to scaling by

^ N \ , an identical solution. Shown in Fig. 2 are
the results of Isomap applied to the S-curve manifold, showing the resulting spectrum of��w�y*{H|~}�� and plots of the associated metric � .
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Figure 2: Left column shows the spectrum of ��w�y*{H|~}H� on a linear (A) and on a log-scale
(B). Middle column compares distances between data vectors in feature space versus their
distances in the original input space on a global (C) and local (up to mean radius of neigh-
bors)(D) scale. Contour plots of distance from a point (marked by x) on the boundary (E)
and in the center (F) of the manifold with the induced metric.

4 Graph Laplacian

The graph Laplacian eigenmap algorithm [2] also incorporates directed or undirected graph
structure describing the local neighborhood relations between data points. As in Isomap,
these neighbor relations can be defined in terms of symmetric nearest neighbors or a small
distance criterion. The neighborhood relations are summarized by the adjacency matrix¤

where
¤ FBZ¦¥ R if the § th and ¨ th data points are neighbors ( §/©0¨ ), assumed to be

symmetric, otherwise
¤ FBZ �(R . The non-zero weights in

¤
can be chosen from ª�RO� C6« , or

according to
¤ F¬Z �(o s�­ ®�¯fs-®9°8­ ± tHuH² ± (a Gaussian kernel) where ³ is an adjustable parameter.

The generalized graph Laplacian ´ is defined in terms of the adjacency matrix
¤

as:´ F¬Z �¬�¶µ;· F � ¸º¹+§~�»¨e�m ¤ F¬Z �¼¸º¹+§~©»¨e�RO� ½¿¾�À]Á9Â�Ã�¸�Ä,Á¿� (9)

where · F � j ZHÅ1F ¤ F¬Z is the degree of the § th vertex. The normalized graph Laplacian Æ
is a symmetric matrix related to ´ by ÆX�¶Ç s�È± ´ÉÇ s�È± with the diagonal matrix Ç FBZ �Ê F¬Z · F . We assume that the graph is connected, so that ´ will have a single zero eigenvalue
associated with the uniform vector o .
Belkin and Niyogi [2] motivate the role of the graph Laplacian for dimensionality reduction
by showing that a plausible cost for a one-dimensional embedding of the nodes of the graphË �e�kÌ�!Í is given by: Î�Ï ´ Î � C� EÐF*Ñ Z 
 Ë F m Ë Z � u ¤ F¬Z (10)

which also shows that ´ is positive definite. Minimizing the quadratic form (10) involves
finding the eigenvectors with the smallest eigenvalues of either the graph Laplacian ´ or Æ ,
depending upon the constraints used in the optimization.



4.1 Diffusion kernel

The graph Laplacian is closely related to a description of diffusion on the graph [7]. As a
continuous time dynamical system, the evolution of a diffusing field on the graph is given
by the differential equation: Ò Ë 
*Ó,�Ò Ó �km�´ Ë 
*Ó,� (11)

The solution to this equation is related to the matrix exponential of ´ , otherwise known as
the Green’s function or heat kernel:��Ô���ÁLÕ×Ö#
,m�´�Ó,�~� E \�Ø \ Ø I\ o s ` a Ô (12)

where Ø \ and N \ are the eigenvectors and eigenvalues of ´ . In terms of the heat kernel, the
generic solution to (11) is given by

Ë 
*Ó,���k��Ô Ë 
=Re� . Thus, the eigenvectors of ´ with the
smallest eigenvalues correspond to the most slowly decaying modes under diffusion, and
the uniform vector corresponding to zero eigenvalue is the stationary distribution. The heat
kernel can be related to the covariance of the time evolved field [7]:) Ë 
=Ó,� Ë 
*Ó,�qI~.Ù� ��Ô?) Ë 
�Re� Ë 
=R��qIÚ.q��Ô (13)) Ê Ë 
=Ó,� Ê Ë 
*Ó,�qI~.Ù� � Ô ) Ë 
�Re� Ë 
=R��qIÚ.q� Ô mpo�oiI (14)

Assuming the statistics of the initial condition are independent, ) Ë 
=Re� Ë 
�Re� I .É�Ûl , we can
integrate the covariance over all time to obtain the positive definite matrix:�xÜc�ÞÝ»ßà ) Ê Ë 
=Ó,� Ê Ë 
=Ó,�qI~. · Ó~�ÞÝrßà á E \�Ø \ Ø I\ o s u ` a Ô mpo�oiI-â · Ó~� C� ´ � (15)

where ´ � is the pseudo-inverse of the graph Laplacian, known as the discrete Green’s
function [3].

We can relate � Ü to a metric distance by considering ´ FBZ as the transition rate from state¨ to state § in a continuous-time Markov chain. The properties of this Markov chain are
given by the fundamental matrix [1]:ã � Ý ßà ä ÁLÕ×Ö1
,m�´�Ó,��mpo�oiI1å · Ó��W´ � � (16)

where ÁLÕ×Ö#
,m�´�Ó,� F¬Z gives the probability of being in state § starting from state ¨ after time Ó .
From this fundamental matrix we can derive the commute time æ F¬Z which is the expected
time for the random process to travel from node ¨ to reach node § and then return:æ FBZ�ç ´ �FºF-è ´ �ZKZ mp´ �F¬Z m�´ �Z�F (17)

The commute time satisfies the triangle inequality, so it can be viewed as a proper metric
on the graph. Thus, from (17) we see that � Ü �(´ � can be regarded as a kernel associated
with a distance that is proportional to the commute time. Thus, the embedding constructed
by taking the smallest eigenvectors of the graph Laplacian is equivalent to performing ker-
nel PCA on the matrix ��Ü associated with the commute times of diffusion on the graph.
As in our analysis of the Isomap algorithm, kernel PCA on � Ü is also equivalent to mul-
tidimensional scaling of the graph commute times. The spectrum of � Ü and plots of the
induced commute time metric for the S-curve manifold are shown in Fig. 3.

5 LLE

The LLE algorithm [8] first constructs a weight matrix
¤

whose § th row contains the linear
coefficients that sum to unity and optimally reconstruct " F from its [ nearest neighbors.
Defining é �¬�k
�l@m ¤ �L
=l�m ¤ IÚ�
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Figure 3: Left column shows the spectrum of �öÜ on a linear (A) and on a log-scale (B).
Middle column compares distances between data vectors in feature space versus their dis-
tances in the original input space on a global (C) and local (up to mean radius of neigh-
bors)(D) scale. Contour plots of distance from a point (marked by x) on the boundary (E)
and in the center (F) of the manifold with the induced metric.

, which has a maximum eigenvalue N :�� ® , one can show that
é

’s smallest eigenvalue isR and the corresponding eigenvector is the uniform vector o . Since the other eigenvectors
are orthogonal to o , their coefficients sum to 0. In LLE, the coordinate values of the D -
dimensional eigenvectors D m · �9787978� D m C give an embedding of the D data points in ÷Éø .
If we define �ù�¬�k
fNO:�� ® lnm é �>� (18)

then by construction, � is a positive definite matrix, its leading eigenvector is o , and the
coordinates of the eigenvectors

� �8787978� · è C provide the LLE embedding. This straightfor-
ward connection was pointed out in [9, Exercise 14.17]. However, the link between kernel
PCA and LLE goes further than that. Equivalently, we can project out o , and then use the
eigenvectors

C �879787L� · of the resulting matrix as
�l@mpo�oiI��q�»
�l@mpo�oiI��>7 (19)

Note that this is identical to the centered kernel matrix (7) which is used in kernel PCA.

So far we thus know that the coordinates of the leading eigenvectors of kernel PCA per-
formed on � yield the LLE embedding. This, together with the considerations summarized
in (6), shows that the LLE embedding is equivalent to the KPCA projections up to a multi-
plication with

^ N \ . This corresponds to the whitening step which is performed in LLE in
order to fix the scaling, but not normally in kernel PCA, where the scaling is determined
by the variance of the data along the respective directions in  .

Note that there need (and probably will) not be an analytic form of a kernel � which gives
rise to the LLE kernel matrix � . Accordingly, there need not be a feature map � corre-
sponding to it which is defined on the whole input domain. Nevertheless, one can at least
give a feature map defined on the training points. To this end, write �ú�û��Ç�� I , with
an orthogonal matrix � (with rows � F ) and a diagonal matrix Ç with nonnegative entries.



Then the gram matrix is given by�5
*" F ��" Z ����
���Ç�� I � FBZ ��)�� F ��Ç�� Z .���ü ^ Ç�� F � ^ Ç�� Z¿ý 7 (20)

5.1 Graph operator interpretation

The symmetric, positive definite matrix
é

in LLE can also be regarded as an operator
acting on fields defined over a graph. In that regard, it acts similar to the square of the
graph Laplacian [2]. However, LLE differs from other spectral graph techniques in its
construction of

é
by explicitly minimizing j F¬Z é FBZ 
=" F%þ " Z � where the dot product of the

data is in the original input space. If we define a continuous time dynamics for fields over
the graph using the operator

é
: Ò Ë 
*Ó,�Ò Ó �km é Ë 
*Ó,� (21)

we see that the choice of
é

is equivalent to minimizing
Ë I�ÿ��ÿ Ô when the field

Ë
is initial-

ized with the coordinates of the original data points. In analogy with the graph Laplacian
embedding as the slowest decaying eigenmodes of the diffusion operator, the LLE embed-
ding is given by the slowest decaying eigenmodes of (21).
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Figure 4: Left column shows the spectrum of the pseudo-inverse � � on a linear (A) and
on a log-scale (B). Middle column compares distances between data vectors in feature
space versus their distances in the original input space on a global (C) and local (D) scale.
Contour plots of distance from a point on the boundary (E) and in the center (F) of the
manifold with the induced metric.

We can construct an alternative kernel for LLE that is analogous to the heat kernel for the
graph Laplacian by considering the Green’s function of

é
, �öÔ�� Á8Õ×Ö#
qm é Ó,� . Similar to

the diffusion kernels, this kernel is related to the covariance of the time evolved field under
(21). Integrating this covariance over time yields the pseudo-inverse kernel � � � é �
which is positive definite and centered. As noted before, performing kernel PCA on � � is
then equivalent to LLE up to scaling factors. The properties of � � when LLE is applied to
the S-curve data is shown in Fig. 4.



6 Discussion

We have seen that all three algorithms, Isomap, graph Laplacian eigenmaps, and LLE can
be interpreted as kernel PCA with different kernel matrices. The construction of a kernel
matrix is equivalent to mapping the data to points [#4i�9787978�=[-: in a Hilbert space so that� F¬Z ��)º[ F �=[ Z . is positive definite. For Isomap, the kernel matrix is related to the Dijkstra
shortest path distance between the points; for graph Laplacians, the kernel is related to
commute times; and for LLE, the kernel can be associated with a specially constructed
graph operator.

Note that the kernel matrix in all these algorithms is defined only on the training data.
Moreover, in contrast to traditional kernels such as the Gaussian kernel, the element � F¬Z
in the kernel matrix not only depends on the inputs " F and " Z , but also on all the other
training points. This can be seen in the figures where the induced feature distance defined
by the kernels does not depend simply on distance in the input space. However, for small
distances, there appears to be more of a direct relationship indicating the role of local
structure in constructing the kernel. The contour maps of the induced feature distance for
the graph Laplacian eigenmap and LLE are ellipsoidal in shape, reflecting the difference in
eigenvector normalization between the algorithms and kernel PCA.

For all three algorithms, the existence of a kernel formulation indicates that the algorithms
may be viewed as a warping of the input space into a feature space where the manifold is
flat. We are currently working to elucidate more of the geometrical properties of these types
of transformations. Finally, we would also like to thank Sam Roweis, Olivier Chapelle, and
Lawrence Saul for useful discussions.
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