Algorithm S1. Nonlinear Laplacian spectrum analysis (NLSA)

input : data array = of size m x S
lag window ¢
Gaussian width €
number of nearest neighbors b
number of Laplacian eigenfunctions [
output: array of spatial modes u in embedding space, of size n x [, where n = mgq
array of temporal modes v of size s X [, where s =5 —2¢g+ 1
vector of singular values o of size [
arrays of spatio-temporal patterns {1, ..., i"l}, each of size m X s

% m: physical space dimension

% n: embedding space dimension

% S: number of input samples

% s: number of samples for which temporal modes are computed

% because of embedding and the normalization by £ in Algorithm S2, s < S
% specifically, v(i,:) and #¥(:,) correspond to z(:,i + 2¢ — 1)

1 begin time-lagged embedding
% store embedding-space data in array X of size n x (s + 1)

2 for j<1:s5+1do
3 fori+ 1:qdo
4 21<—(l—1)*m+1
5 g —1%m
6 X (i1 :49,j) (1l :m,j+q—1)
7 end
8 end
9 end
10 begin Laplacian eigenfunctions
% eigenfunctions corresponding to the largest [ eigenvalues of P are stored in array ¢ of size s x [
% &(i,7) is the value of eigenfunction j evaluated at sample X (:, 1)
11 execute : algorithm S2 with inputs X, €, b
12 result : sparse transition probability matrix P of size s X s
vector p of size s storing the Riemannian measure
13 ¢ « eigenvectors(P, 1) % compute the leading [ eigenvectors of P
14 end

15 begin linear operator components and singular value decomposition
% the n x [ array A contains the operator components from [8] in the main text
16 for j<1:1do

17 fori<1:ndo

18 | A(i,j) < sum(X(i,2: s+ 1)« pu(1:s)xp(1:5,5)) % = is element-wise array multiplication
19 end

20 end

21 [, 0,v'] < svd(A) % v has size | x [
22 for k< 1:1do

23 fori<1:sdo

24 | v(i k) < sum(p(i, 1: 1) =0/ (1:1,k)) % * is element-wise array multiplication
25 end

26 end

27 return u, o, v

28 end

Algorithm continues on page 2.
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Algorithm continued from page 1.

begin projection to physical space

for

end
end

k< 1:1do

FEF(1:m,1:8) <0
for j < 1:sdo

q < min(q,s —j+1) % for proper normalization near the end of the time interval
for i« 1:¢ do
1 (@—1)*xm+1
lg < ixm
(1 :m,j) < %1 :m,j) +uliy :ig, k) x o(k) xv(j +i — 1,k)
end
TE(1:m,j) « 2% (1 :m,j)/q

end

return ¢
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Algorithm S2. Transition probability matrix in diffusion map, following Coifman and Lafon [1].

input : data array X of size n x (s + 1)
Gaussian width e
number of nearest neighbors b

output: sparse transition probability matrix P of size s X s
Riemannian measure, stored in vector p of size s

begin local velocity in embedding space for Gaussian width normalization
% local velocity stored in vector £ of size s
% norm returns the norm of an n-dimensional vector in embedding space
fori< 2tos+1do

| &(i—1) « norm(X(1:n,i) — X(1:n,i—1))
end
end

begin distances and indices of b nearest neighbors
% distances and indices are stored in arrays D and N of size s x b

for i < 1 to s do
for j < 1 to s do
| d(j) < norm(X(L:n,i+1)— X (1:n,j+1))
end
[D(i,1:b),N(i,1:b)] < partialSort(d, b)
% 0=D(i,1) < D(4,2) < --- < D(i,b) are the distances to the b nearest neighbors of sample &
% N (i,:) are the corresponding nearest-neighbor indices; i.e., D(i, ) = d(N(5))
end
end
begin sparse weight matrix W

% W has size s X s
W(:,:)«0 % initialize W to zero
fori< 1:sdo

for j < 1 tobdo

| WL N(,) < exp(=Di, )/ (e + £(3) + )

end
end
W <+ sym(W) % symmetrization is performed here
% sym(W)(i,5) = W(j,i) if W(4,5) = 0, otherwise sym(W)(i, j) = W (4, j)
% symmetrized W has at least b nonzero elements per row
end

Algorithm continues on page 4.
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Algorithm continued from page 3.

begin convert W to a transition probability matrix

end

for j < 1:sdo

| Q) sum(W(:, )

end

% @ is a vector of size s

% normalize the rows and columns of W by Q

fori< 1:sdo

for j < 1:sdo

| W, ) « W(i,5)/Q)/Q3)

end

end

% normalize the rows of W by the degree (connectivity) associated with W

fori« 1:sdo

| Qi) < sum(W (i, 1: s))

end
fori<1:sdo

| P(i,1:5) =W(i,1:5)/Q(i)

end

return P

w(l:s) <+ Q(1:s)/sum(Q(1:s))

return p

% Q(i) is the degree of sample i

% P is a transition probability matrix because sum(P(i,:)) =1

% p is a vector of size s with the property uP = pu




Movie S1. Spatio-temporal patterns ), &% of the upper 300 m temperature anomaly field (annual mean
subtracted at each gridpoint, color-coded in °C) evaluated using [9] and [1] for a 100-year portion of the data
set. (a) Raw data. (b) the PDO mode from SSA. (c—f) NLSA patterns using (c) the annual modes, k € {1,2}
(see Figs. 1 and 2); (d) the leading-low-frequency (PDO) mode, k = 3; the semi-annual modes, k € {6,7}; (d)
the leading two intermittent (Kuroshio) modes, k € {9,10}. The starting time of this animation is the same as
in Figure 2.

Movie S2. 1000-day trajectories for the zonal modes {x1, x4} in (a) the full model (Table S1), showing approx-

imate locations of the zonal and blocked states; (b—d) reduced models constructed by projection onto the NLSA
modes uy, from [9].
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