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Abstract

One of the central problems in machine learning and pattern recog-
nition is to develop appropriate representations for complex data. We
consider the problem of constructing a representation for data lying
on a low dimensional manifold embedded in a high dimensional space.
Drawing on the correspondence between the graph Laplacian, the
Laplace Beltrami operator on the manifold, and the connections to
the heat equation, we propose a geometrically motivated algorithm
for representing the high dimensional data. The algorithm provides a
computationally efficient approach to non-linear dimensionality reduc-
tion that has locality preserving properties and a natural connection
to clustering. Some potential applications and illustrative examples
are discussed.

1 Introduction

In many areas of artificial intelligence, information retrieval and data mining,
one is often confronted with intrinsically low dimensional data lying in a very
high dimensional space. Consider, for example, gray scale images of an object
taken under fixed lighting conditions with a moving camera. Each such image
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would typically be represented by a brightness value at each pixel. If there
were n® pixels in all (corresponding to an n x n image), then each image
yields a data point in R™". However, the intrinsic dimensionality of the space
of all images of the same object is the number of degrees of freedom of the
camera. In this case, the space under consideration has the natural structure
of a low dimensional manifold embedded in R™.

Recently, there has been some renewed interest (Tenenbaum et al, 2000;
Roweis and Saul, 2000) in the problem of developing low dimensional rep-
resentations when data arises from sampling a probability distribution on a
manifold. In this paper, we present a geometrically motivated algorithm and
an accompanying framework of analysis for this problem.

The general problem of dimensionality reduction has a long history. Clas-
sical approaches include Principal Components Analysis and Multidimen-
sional Scaling. Various methods that generate nonlinear maps have also
been considered. Most of them, such as self-organizing maps and other neu-
ral network based approaches, e.g., see Haykin (1999), set up a nonlinear
optimization problem whose solution is typically obtained by gradient de-
scent that is only guaranteed to produce a local optimum — global optima
are difficult to attain by efficient means. Note however, that the recent ap-
proach of generalizing the PCA through kernel based techniques (Schoelkopf
et al, 1998) does not have this shortcoming. Most of these methods do not
explicitly consider the structure of the manifold on which the data may pos-
sibly reside.

In this paper, we explore an approach that builds a graph incorporating
neighborhood information of the data set. Using the notion of the Lapla-
cian of the graph, we then compute a low dimensional representation of the
data set that optimally preserves local neighborhood information in a certain
sense. The representation map generated by the algorithm may be viewed
as a discrete approximation to a continuous map that naturally arises from
the geometry of the manifold.

It is worthwhile to highlight several aspects of the algorithm and the
framework of analysis presented here.

1. The core algorithm is very simple. It has a few local computations and
one sparse eigenvalue problem. The solution reflects the intrinsic geo-
metric structure of the manifold. It does, however, require a search for
neighboring points in a high dimensional space. We note that there are



several efficient approximate techniques for finding nearest neighbors,

e.g. see Indyk (2000).

. The justification for the algorithm comes from the role of the Laplace
Beltrami operator in providing an optimal embedding for the manifold.
The manifold is approximated by the adjacency graph computed from
the data points. The Laplace Beltrami operator is approximated by
the weighted Laplacian of the adjacency graph with weights chosen
appropriately. The key role of the Laplace Beltrami operator in the heat
equation enables us to use the heat kernel to choose the weight decay
function in a in a principled manner. Thus, the embedding maps for
the data approximate the Eigenmaps of the Laplace Beltrami operator
which are maps intrinsically defined on the entire manifold.

. The framework of analysis presented here makes explicit use of these
connections to interpret dimensionality reduction algorithms in a geo-
metric fashion. In addition to the algorithms presented in this paper,
we are also able to reinterpret the recently proposed Locally Linear

Embedding (LLE) algorithm of Roweis and Saul (2000) within this

framework.

The graph Laplacian has been widely used for different clustering and
partition problems (e.g., Shi and Malik, 2000, Simon, 1991, Ng et al
2002). On the other hand while the connections between the Laplace
Beltrami operator and the graph Laplacian are well known to geome-
ters and specialists in spectral graph theory (see Chung, 1997; Chung,
Grigoryan and Yau, 1997 ) so far we are not aware of any application
to dimensionality reduction or data representation.

We note, however, recent work on using diffusion kernels on graphs and
other discrete structures, Kondor and Lafferty (2002).

. The locality preserving character of the Laplacian Eigenmap algorithm
makes it relatively insensitive to outliers and noise. It is also not prone
to “short circuiting” as only the local distances are used.

We show that, in fact, by trying to preserve local information in the
embedding, the algorithm implicitly emphasizes the natural clusters in
the data. Close connections to spectral clustering algorithms developed
in learning and computer vision (in particular, the approach of Shi and



Malik, 1997) then become very clear. In this sense, dimensionality
reduction and clustering are two sides of the same coin and we explore
this connection in some detail. In contrast, global methods like that
in Tenenbaum et al, 2000, do not show any tendency to cluster as an
attempt is made to preserve all pairwise geodesic distances between
points.

However not all data sets necessarily have meaningful clusters. Other
methods methods such as PCA or Isomap might be more appropriate
in that case. We will demonstate however that at least in one example
of such a data set ( the “swiss roll”), our method produces reasonable
results.

5. Since much of the discussion of Seung and Lee, 2000, Roweis and Saul,
2000, and Tenenbaum et al, 2000 is motivated by the role that non-
linear dimensionality reduction may possibly play in human perception
and learning, it is worthwhile to consider the implication of the pre-
vious remark in this context. The biological perceptual apparatus is
confronted with high dimensional stimuli from which it must recover
low dimensional structure. If the approach to recovering such low-
dimensional structure is inherently local (for example, as in the algo-
rithm proposed here), then a natural clustering will emerge and may
serve as the basis for the emergence of categories in biological percep-
tion.

6. Since our approach is based on the intrinsic geometric structure of
the manifold, it exhibits stability with respect to the embedding. As
long as the embedding is isometric, the representation will not change.
In the example with the moving camera, different resolutions of the
camera (i.e., different choices of n in the n x n image grid) should
lead to embeddings of the same underlying manifold into spaces of very
different dimension. Our algorithm will produce similar representations
independently of the resolution.

1.1 The Problem of Dimensionality Reduction

The generic problem of dimensionality reduction is the following. Given a
set X1, ... ,X of k points in R’ find a set of points yy,... ,yz in R™ (m < 1)



such that y; “represents” x;.

In this paper, we consider the special case where x1,... ,Xx; € M and M
is a manifold embedded in R

We now consider an algorithm to construct representative y;’s for this
special case. The sense in which such a representation is optimal will become
clear later in this paper.

2 The Algorithm

Given k points Xy, ... ,X; in R’, we construct a weighted graph with k£ nodes,
one for each point, and a set of edges connecting neighboring points. The
embedding map is now provided by computing the eigenvectors of the graph
Laplacian. The algorithmic procedure is formally stated below.

1. Step 1 [Constructing the Adjacency Graph]. We put an edge between
nodes ¢ and j if x; and x; are “close”. There are two variations:

(a) e-neighborhoods. [parameter ¢ € R] Nodes 7 and j are connected
by an edge if ||x; —x;||* < € where the norm is the usual Euclidean
norm in R

Advantages: geometrically motivated, the relationship is naturally
symmetric.

Disadvantages: often leads to graphs with several connected com-
ponents, difficult to choose e.

(b) n nearest neighbors. [parameter n € N| Nodes ¢ and j are con-
nected by an edge if ¢ is among n nearest neighbors of 7 or j is
among n nearest neighbors of 7. Note that this relation is sym-
metric.

Advantages: easier to choose, does not tend to lead to discon-
nected graphs.

Disadvantages: less geometrically intuitive.

2. Step 2.! [Choosing the weights]. Here, as well, we have two variations
for weighting the edges:

'In a computer implementation of the algorithm steps one and two are
executed simultaneously.



(a) Heat kernel. [parameter ¢ € R]. If nodes ¢ and j are connected,
put
I =, 11
I/VZ»‘ = e t
otherwise put W;; = 0. The justification for this choice of weights
will be provided later.

(b) Simple-minded. [No parameters (t = oco|. W;; = 1 if vertices ¢
and j are connected by an edge and W;; = 0 if vertices ¢ and j are
not connected by an edge.

A simplification which avoids the necessity of choosing ¢.

3. Step 3. [Eigenmaps| Assume the graph G, constructed above, is con-
nected, otherwise proceed with Step 3 for each connected component.

Compute eigenvalues and eigenvectors for the generalized eigenvector
problem:

Lf = \Df (1)

where D is diagonal weight matrix, its entries are column (or row, since
W is symmetric) sums of W, Dy; = 37, Wj;. L = D—W is the Laplacian
matrix. Laplacian is a symmetric, positive semidefinite matrix which
can be thought of as an operator on functions defined on vertices of .

Let fy,... ,fx_1 be the solutions of equation 1, ordered according to
their eigenvalues,

Lfo — )\on0

Lfl — )\1Df1

Lty = e Dy
0=2X <A <+ < Ay
We leave out the eigenvector f; corresponding to eigenvalue 0 and use

the next m eigenvectors for embedding in m-dimensional Euclidean
space.

x; — (f1(2),...,f.(2))



3 Justification

3.1 Optimal Embeddings

Let us first show that the embedding provided by the Laplacian Eigenmap
algorithm preserves local information optimally in a certain sense.

The following section is based on the standard spectral graph theory. See
Chung (1997) for a comprehensive reference.

Recall that given a data set we construct a weighted graph G = (V| F)
with edges connecting nearby points to each other. For the purposes of this
discussion, assume the graph is connected. Consider the problem of mapping
the weighted graph G to a line so that connected points stay as close together
as possible. Let y = (y1,%2,... ,¥n)? be such a map. A reasonable criterion
for choosing a “good” map is to minimize the following objective function

>y — )Wy

]
under appropriate constraints. The objective function with our choice of
weights W;; incurs a heavy penalty if neighboring points x; and x; are
mapped far apart. Therefore, minimizing it is an attempt to ensure that

if x; and x; are “close” then y; and y; are close as well.
It turns out that for any y, we have

1
5 20—y Wiy =y Ly (2)
2y

where as before, . = D — W. To see this, notice that W;; is symmetric and
D“' = Z]‘ VVM Thus

Dy — i) Wiy = (i + ) — 2yiy) Wy =
i 0j
S uiDi+ Y uiD;; — 23 yay, Wi = 2y" Ly
i J ¥
Note that this calculation also shows that L is positive semidefinite.
Therefore, the minimization problem reduces to finding

argminy’! Ly

y
yITDy=1



The constraint y” Dy = 1 removes an arbitrary scaling factor in the embed-
ding. Matrix D provides a natural measure on the vertices of the graph.
The bigger the value D;; (corresponding to the tth vertex) is, the more “im-
portant” is that vertex. It follows from equation 2 that L is a positive
semidefinite matrix and the vector y that minimizes the objective function
is given by the minimum eigenvalue solution to the generalized eigenvalue
problem

Ly = \Dy

Let 1 be the constant function taking 1 at each vertex. It is easy to see that
1 is an eigenvector with eigenvalue 0. If the graph is connected, 1 is the
only eigenvector for A = 0. To eliminate this trivial solution which collapses
all vertices of (G onto the real number 1, we put an additional constraint of
orthogonality and look for

argmin y! Ly

yTDyzl
yID1=0

Thus, the solution is now given by the eigenvector with the smallest non-
zero eigenvalue. The condition y7 D1 = 0 can be interpreted as removing a
translation invariance in y.

Now consider the more general problem of embedding the graph into m-
dimensional Euclidean space. The embedding is given by the k x m matrix
Y = [y1y2...¥m] where the ith row provides the embedding coordinates of
the ¢th vertex. Similarly we need to minimize

oIy —yVIPWy = r(YTLY)
.3
where y(©) = [y1(:),... ,¥m(¢)]T is the m-dimensional representation of the
1th vertex. This reduces to finding

argmin tr(YTLY)

YTDY=1I

For the one-dimensional embedding problem, the constraint prevents col-

lapse onto a point. For the m-dimensional embedding problem, the con-
straint presented above prevents collapse onto a subspace of dimension less
than m — 1 (m if, as in one-dimensional case, we require orthogonality to
the constant vector). Standard methods show that the solution is provided

by the matrix of eigenvectors corresponding to the lowest eigenvalues of the
generalized eigenvalue problem Ly = ADy.



3.2 The Laplace Beltrami Operator

The Laplacian of a graph is analogous to the Laplace Beltrami operator on
manifolds. In this section we provide a justification for why the eigenfunc-
tions of the Laplace Beltrami operator have properties desirable for embed-
ding.

Let M be a smooth, compact, m-dimensional Riemannian manifold. If
the manifold is embedded in R’ the Riemannian structure (metric tensor) on
the manifold is induced by the standard Riemannian structure on R'.

As we did with the graph, we are looking here for a map from the manifold
to the real line such that points close together on the manifold get mapped
close together on the line. Let f be such a map. Assume that f: M — R is
twice differentiable.

Consider two neighboring points x,z € M. They are mapped to f(x)
and f(z) respectively. We first show that

|[/(z) = F(x)] < distm(x, 2) [V F(x)|| + o(distm(x, 2)) (3)

The gradient V f(x) is a vector in the tangent space T'M,, such that
given another vector v € TM,, df(v) = (Vf(z),Vv)m.

Let [ = distm(x,z). Let ¢(t) be the geodesic curve parameterized by
length connecting x = ¢(0) and z = ¢(I). Then

f(2) = 00+ [ )i = 109 + [ (91(ela)). 0y
Now by Schwartz Inequality,

(Vf(e()), (1)) < IV LI IO = IV fel)]]
Since ¢(t) is parameterized by length, we have ||¢(t)]| = 1. We also
have ||V f(e(1)]| = IVf(x)|| + O(t) (by Taylor’s approximation). Finally, by
integrating we have

|[F(z) = F(x)| < LIV F(x)]] + o(])

where both O and o are used in the infinitesimal sense.
If M is isometrically embedded in R’ then distap(x,2) = ||x — z||p: +
o(||x — z||g:) and

[F(z) = FG)| < [IVI)| Iz = x][ + o ([lz = x]))

9



Thus we see that if |V f|| provides us with an estimate of how far apart
f maps nearby points.

We therefore look for a map that best preserves locality on average by
trying to find

argmin [ [V /()] (1)

||f||L2(M):1 M

where the integral is taken with respect to the standard measure on a Rieman-

nian manifold. Note that minimizing [ ||V f(z)]|* corresponds to minimizing
M

Lf = %E” (fi — f;)*W;; on a graph. Here f is a function on vertices and f;
is the value of f on the :th node of the graph.

It turns out that minimizing the objective function of eq. 4 reduces to
finding eigenfunctions of the Laplace Beltrami operator £. Recall that

def

Lf = —divV(f)

where div is the divergence of the vector field. It follows from the Stokes’
theorem that —div and V are formally adjoint operators, i.e. if f is a function

and X is a vector field then [, (X, Vf) = — [,,div(X)f. Thus

J = [ e

We see that £ is positive semidefinite. f that minimizes [, ||V f]|* has to
be an eigenfunction of £. The spectrum of £ on a compact manifold M
is known to be discrete (e.g., Rosenberg, 1997). Let the eigenvalues (in
increasing order) be 0 = A\g < Ay < Ay < ... and let f; be the eigenfunction
corresponding to eigenvalue X;. It is easily seen that fy is the constant
function that maps the entire manifold to a single point. To avoid this
eventuality, we require (just as in the graph setting) that the embedding
map [ be orthogonal to fy. It immediately follows that f; is the optimal
embedding map. Following the arguments of the previous section, we see
that

X — (fl(x)7 ce 7fm(X))

provides the optimal m-dimensional embedding.

10



3.3 Heat Kernels and the Choice of Weight Matrix

The Laplace Beltrami operator on differentiable functions on a manifold M
is intimately related to the heat flow. Let f : M — R be the initial heat
distribution, u(x,t) be the heat distribution at time ¢ (u(z,0) = f(x)). The
heat equation is the partial differential equation (% + L)u = 0. The solution
is given by wu(z,t) = [y Hi(z,y)f(y), where H, is the heat kernel — the
Green’s function for this partial differential equation. Therefore,

d
= - =— | H
£ty = Lol == (5 [ e ]) o)
It turns out that in an appropriate coordinate system (exponential, which

to the first order coincides with the local coordinate system given by a tangent
plane in RY) H; is approximately the Gaussian.

2
_ ==yl

Hy(z,y) = (4x1) %™ (¢(z,y) + O(1))

where ¢(z,y) is a smooth function with ¢(z,2) = 1. Therefore when z and
y are close and ¢ is small

2
lz—yl
It

Hy(z,y) ~ (4nt)"%e”

See Rosenberg (1997) for more details.
Notice that as ¢ tends to 0, the heat kernel H;(z,y) becomes increasingly
localized and tends to Dirac’s é-function, i.e., %inng Hi(z,y)f(y) = f(z).

Therefore, for small ¢ from the definition of the derivative we have

1 _m N
Li) ~ 7 [f@) ~ (an) % [ 5 py)ay]
If x4,...,x; are data points on M, the last expression can be approximated
by
1 1 m =0
Lfxi) 2 |f(xi) = Z@r)™2 >, o7 f(xy)

*j
0<%y —x;|I<e

The coefficient 1 is global and will not affect the eigenvectors of the discrete
Laplacian. Since the inherent dimensionality of M may be unknown, we

11



m
2

put a = %(47?75)_ . It is interesting to note that since the Laplacian of the

Il = 112
constant function is zero, it immediately follows that é = > e

and
-1

2
kil

o = E e 4t

0<lle; ;1<
This observation leads to several possible approximation schemes for the
manifold Laplacian. In order to ensure that the approximation matrix is
positive semidefinite, we compute the graph Laplacian with the following
weights:

1
Wiy =4 ¢ ifxi=xi]<e

0 otherwise

4 Connections to Spectral Clustering

The approach to dimensionality reduction considered in this paper utilizes
maps provided by the eigenvectors of the graph Laplacian and eigenfunc-
tions of Laplace Beltrami operator on the manifold. Interestingly, this so-
lution may also be interpreted in the framework of clustering and has very
close ties to spectrally based clustering techniques such as those used for im-
age segmentation (Shi, Malik, 1997), load balancing (Hendrickson, Leland,
1993), and circuit design (Hadley et al, 1992). A closely related algorithm
for clustering has been recently proposed in Ng, et al, 2002. The approach
considered there uses a graph which is globally connected with exponentially
decaying weights. The decay parameter then becomes very important. In
many high dimensional problems the minimum and the maximum distances
between points are fairly close in which case the weight matrix will be essen-
tially non-sparse for any rate of decay.

Here we briefly outline the ideas of spectral clustering It is often of interest
to cluster a set of n objects into a finite number of clusters. Thus, given a set
of n objects (visual, perceptual, linguistic or otherwise), one may introduce
a matrix of pair wise similarities between the n objects. It is then possible
to formulate a general graph-theoretic framework for clustering as follows.
Let G = (V,F) be a weighted graph, W is the matrix of weights, where

12



the vertices are numbered arbitrarily. The weight W;; associated with the
edge e;; is the similarity between v; and v;. We assume that the matrix of
pairwise similarities is symmetric and the corresponding undirected graph is
connected.?

Let us consider clustering the objects into two classes. Therefore, we
wish to divide V' into two disjoint subsets A, B, AU B = V, so that the
“flow” between A and B is minimized. The “flow” is a measure of similarity
between the two clusters and the simplest definition of the “flow” or “cut”
between A and B is the total weight of the edges that have to be removed
to make A and B disjoint.

cut(A,B) = > W(u,v)

uEAvEB

Trying to minimize the cut(A, B) will favor cutting off weakly connected
outliers which tends to lead to poor partitioning quality. To avoid that
problem a measure on the set of vertices is introduced. The weight of a
vertex is its “importance” relative to other vertices.

vol(A) = Z W (u,v)

u€A VeV

where W (u,v) is the weight on the edge between u and v.
Shi and Malik (1997), define the normalized cut

Neut(A, B) = cut(4, B) (Voll(A) * voltB))

The problem, as formulated by Shi and Malik (1997), is to minimize Ncut
over all partitions of the vertex set V.?

2If the graph is not connected, there are many algorithms for finding its
connected components.

3A similar and, perhaps, more geometrically motivated quantity is the
Cheeger constant

t(A, A
he = min cut(4, 4) =

AcV min(vol(A), vol((A)))

where A is the complement of A in V. See Chung (1997) for further reference.
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It turns out the the combinatorial optimization problem as stated is N P-
hard.* However, if we allow relaxation of the indicator functions to real
values, the problem reduces to minimizing the Laplacian of the graph, which
can be easily computed in polynomial time with arbitrary precision.

Recall that
XTLX = Z(JZZ — J}]‘)Zwij
,J

Let, as above, A, B be disjoint subsets of V, AU B =V, and a = vol(A),

b = vol(B). Put
{ voll(A) ifV,e A
T; =

voll(B) if V € B
We have
1 1
x'Lx =3 (w0 — z;) wi; = > (= + —)cut(A, B)
ij Vieavien @ b
Also
T 2 1 1 1 1
X DX:Zl’idii: Z d“—l- Z 5 :—ZUOZ(A)+—ZUOZ(B):—_|__
i viea @ V.eB b a b a b
Thus Ty
x! [x 1 1
T cut(A,B)(E + Z) = Ncut(A, B)

Notice that xT D1 = 0, where 1 is a column vector of ones.

The relaxed problem is to minimize éx under the condition that x” D1 =

0. Put y = D'?x. D is invertible, assummg (& has no isolated vertices. Then

x"Lx y'D-'?LD" %y
xTDx yly

where x L D'/?1.
The matrix L = D=2 D~'/? is the so-called normalized graph Lapla-
cian. L is symmetrlc positive semidefinite. Notice that D'/?1 is an eigen-

vector for I with eigenvalue 0, which is the smallest eigenvalue of L. Thus
min LY ;
yJ_D1/21 yT

is achieved when y is an eigenvector corresponding to the second

*A proof due to Papadimitrou can be found in Shi and Malik (1997).
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smallest eigenvalue of L. Of course, zero can be a multiple eigenvalue which
happens if and only if G has more than one connected component.

Remark: The central observation to be made here is that the process
of dimensionality reduction that preserves locality yields the same solution
as clustering. It is worthwhile to compare the global algorithm presented
in Tenenbaum et al, 2000 with the local algorithms suggested here and in
Roweis and Saul, 2000. One approach to non-linear dimensionality reduc-
tion as exemplified by Tenenbaum et al attempts to faithfully approximate all
geodesic distances on the manifold. This may be viewed as a global strategy.
In contrast, the local approach presented here (as well as that presented in
Roweis and Saul, 2000) attempts only to approximate or preserve neighbor-
hood information. This, as we see from the preceding discussion may also be
interpreted as imposing a soft clustering of the data (which may be converted
to a hard clustering by a variety of heuristic techniques). In this sense the
local approach to dimensionality reduction imposes a natural clustering of
the data.

5 Analysis of Locally Linear Embedding Algorithm

We provide a brief analysis of the Locally Linear Embedding (LLE) algorithm
recently proposed by Roweis and Saul, 2000, and exhibit its connection to
the Laplacian.

Here is a brief description of their algorithm. As before, one is given a
data set xi,...,x; in a high-dimensional space R\. The goal is to find a
low-dimensional representation yq,...,yr € R™, m < k.

1. Step 1. [Discovering the Adjacency Information] For each x; find
the its n nearest neighbors in the dataset, x;,,...,%;,. Alternatively
Xi,y ... ,X;, could be data points contained in an e-ball around x;.

2. Step 2. [Constructing the Approximation Matrix] Let W;; be such that
> Wiix;, equals to the orthogonal projection of x; onto the affine linear
span of x;,’s. In other words, one chooses W;; by minimizing

{ n
2 i = D0 Wi, ||?
i=1 7=1

15



under the condition that 3~ W;; = 1 for each . Assume that W;;’s are
well-determined. If it is not, as it happens for example in the case when
n > k + 1, the authors propose a heuristic which we will not analyze
here.

3. Step 3. [Computing the Embedding] Compute the embedding by taking
eigenvectors corresponding to the k& lowest eigenvalues of the matrix

E=({I-W)T1-W)
Notice that F is a symmetric positive semidefinite matrix.

E can be thought of as an operator acting on functions defined on the
data points. We will now provide an argument that under certain conditions

1

Eigenvectors of %L’Z, of course, coincide with the eigenvectors of £. We
develop this argument over several steps.

Step 1:
Let us fix a data point x;. We now show that

(1= W], % =y 3 Wil — 3 H x: = x:)

where f is a function on the manifold (and therefore defined on the data
points), H is the Hessian of f at x;. To simplify the analysis, the neighboring
points (x;,’s) are assumed to lie on a locally linear patch on the manifold
around Xx;.

Consider now a coordinate system in the tangent plane centered at o = x;.
Let v; = x;, — x;. Since the difference of two points can be regarded as a
vector with the origin at the second point, we see that v;’s are vectors in the
tangent plane originating at o. Let a; = W;;. Since x; belongs to the affine
span of its neighbors and by construction of the matrix W, we have

OZXZ':ZOzJ'V]‘
J

16



where
Z aj = 1

If f is a smooth function, its second-order Taylor approximation can be
written as

[(v) = f(0) VTV + S(THY) + of[v]])

Here Vf = (3 I aaf )T is the gradient and H is the Hessian, H;; = %
T x;0x;

(both evaluated at o). Therefore

[(1 = W)f]; Z a;f(v;)
and using the Taylor approximation for f(v;) we have
=~ il (vi) & f(0) = Y f(o) = Y avI VS — S anvTHy,
J J J J
Since Y- a; =1 and )~ a;v; = o, we see that the first three terms disappear

and |
— Zajf(vj) ~ —3 ZajvaHVJ
j

Step 2:
Now note that if \/a; vi form an orthonormal basis (which, of course, is not
usually the case) then

S WyvliHv; =tr(H)=Lf
J

More generally, we observe to that if x is a random vector, such that its
distribution is uniform on every sphere centered at x; (which is true, for ex-
ample, for any locally uniform measure on the manifold) then the expectation
E(vIHv) is proportional to trH.

Indeed if eq,... ,e, form an orthonormal basis for H corresponding to
the eigenvalues Ay, ..., A,, then using the Spectral theorem,
E( THV E)\ v, eZ

17



But since E(v,e;)? is independent of i, put E(v,e;)? = r and the above
expression reduces to

E(VTHV) = T(Z Ai)=rte(H)=rLf

Step 3:
Putting steps 1 and 2 together, we see that

(I-WHT(I-W)f~ %L’Qf

LLE attempts to minimize fT (I —W)T (I —W)f which reduces to finding
the eigenfunctions of (/—W)T(I—W) which in turn can now be interpreted as
trying to find the eigenfunctions of the iterated Laplacian £2. Eigenfunctions
of L2 coincide with those of L.

6 Examples

We now briefly consider several possible applications of the algorithmic frame-
work developed in this paper. We begin with a simple synthetic example of a
“swiss roll” considered in Tenenbaum et al , 2000, and Roweis and Saul, 2000.
We then consider a toy example from vision with vertical and horizontal bars
in a “visual field”. We conclude with some low dimensional representations
constructed from naturally occurring data sets in the domains of speech and
language respectively.

We do not yet know of a principled way to choose the heat kernel pa-
rameter ¢t. However, we conduct experiments on the “swiss roll” data set to
demonstrate the effect of ¢ and number of nearest neighbors N on the low
dimensional representation. It is clear that for very large values of N it is
critical to choose t correctly. It seems that choosing a smaller ¢ tends to
improve the quality of the representation for bigger but still relatively small
N. For small values of N the results do not seem to significantly depend on
L.

In the rest of our experiments, we use the simplest version of the algo-
rithm, W;; € {0,1} or ¢t = co which seems to work well in practice and does
not involve a choice of a real-valued parameter.
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6.1 A Synthetic “swiss roll”

The data set of 2000 points chosen at random from the “swiss roll” is shown
in fig. 1. The “swiss roll” is a flat two dimensional submanifold of R?. Two
dimensional representations of the “swiss roll” for different values of param-
eters N and ¢ are shown in fig. 2. Note that { = oo corresponds to the case
when the weights are set to 1. Unlike Isomap, our algorithm does not at-
tempt to isometrically embed the “swiss roll” into R?. However, it manages
to unroll the “swiss roll” thereby preserving the locality on the manifold,
although not the distances. We observe that for small values of N we ob-
tain virtually identical representations for different ¢’'s. However, when N
becomes bigger, smaller values of ¢ seemingly lead to better representations.

It is worthwhile to point out that an isometric embedding preserving
global distances such as that attempted by Isomap is theoretically possible
only when the surface is flat, i.e., the curvature tensor is zero, which is the
case with the “swiss roll”. However a classical result due to Gauss shows
that even for a 2-dimensional sphere (or any part of a sphere) no distance
preserving map into the plane can exist.

6.2 A Toy Vision Example

Consider binary images of vertical and horizontal bars located at arbitrary
points in the visual field. Each image contains exactly one horizontal or
vertical bar at a random location in the image plane. In principal, we may
consider each image to be represented as a function

f:10,1] x [0,1] — {0,1}

where f(x) = 0 means the point x € [0,1] x [0,1] is white and f(x) = 1
means the point is black. Let v(z,y) be the image of a vertical bar. Then
all images of vertical bars may be obtained from wv(z,y) by the following
transformation:

vt($7y) = ’U(Ll? - t17y - t?)
The space of all images of vertical bars is a two dimensional manifold.
Similarly, the space of all horizontal bars is a two dimensional manifold

as well. Each of these manifolds i1s embedded in the space of functions
(L*(]0,1] x [0,1])). Notice that while these manifolds do not intersect, they
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come quite close to each other. In practice it is usually impossible to tell
whether the intersection of two classes is empty or not.

To discretize the problem, we consider a 40 x 40 grid for each image.
Thus each image may be represented as a 1600 dimensional binary vector.
We choose 1000 images (500 containing vertical bars and 500 containing
horizontal bars) at random. The parameter N is chosen to be 14 and t = occ.

In fig. 3 the left panel shows a horizontal and vertical bar to give the reader
a sense of the scale of the image. The middle panel is a two dimensional
representation of the set of all images using the Laplacian eigenmaps. Notice
that while the local graph is connected, the two dimensional representation
shows two well defined components. The right panel shows the result of
a principal components analysis using the first two principal directions to
represent the data.

6.3 A Linguistic Example

An experiment was conducted with the 300 most frequent words in the Brown
corpus — a collection of texts containing about a million words (not distinct)
available in electronic format. Fach word is represented as a vector in a 600
dimensional space using information about the frequency of its left and right
neighbors (computed from the corpus). More precisely, let the 300 words be
wy through wsgg. Then the representation of w; is a 600 dimensional vector v;
(say) where the first three hundred dimensions of v; characterize left neighbor
relations and the next three hundred characterize right neighbor relations.
Thus v;(j) — the jth component (j < 300) of v; is the number of times
the sequence w;w; occurs in the corpus (referred to as the bigram count).
Similarly, v;(7 4+ 300) is the the count of the number of times the sequence
w;w; occurs in the corpus.

Thus there are 300 vectors in R%%. Of course, we do not claim that there
is a natural low dimensional manifold structure on these vectors. Never-
theless, it is useful for practical applications to construct low dimensional
representations of this data. For example, the well known LSI (Latent Se-
mantic Indexing) approach uses Principal Components Analysis to represent
the documents in a vector space model for purposes of search and informa-
tion retrieval. Applying the Laplacian eigenmap with N = 14;¢{ = oo to
the data yields a low dimensional representation shown in figs. 4 and 5 re-
spectively. Note that words belonging to similar syntactic categories seem to
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cluster together highlighting further the connections between clustering and
dimensionality reduction as discussed in this paper.

6.4 Speech

We turn finally to an example from human speech. It has long been recog-
nized that while the speech signal is high dimensional, the distinctive pho-
netic dimensions are few. An important open question in the field is to de-
velop a low dimensional representation of the speech signal that is correlated
with phonetic content.

In this example, we consider the low dimensional representations that
arise by applying the Laplacian eigenmap algorithm to a sentence of speech
sampled at 16kHz. A short time Fourier transform (with a 30 millisecond
window) was computed from the speech signal at 5 millisecond intervals.
This yielded a vector of Fourier coefficients for every 30ms chunk of the
speech signal. There were 685 such vectors in all As a standard practice
in speech recognition, the data was represented by the logarithm of these
Fourier coefficients. Each vector contained 256 logs of Fourier coefficients.
As before we choose N = 14;t = oo. Furthermore, each vector was labeled
according to the identity of the phonetic segment it belonged to. These
labels are not utilized by the Laplacian Eigenmap algorithm which finds a
low dimensional representation for the data. Shown in fig. 6, are the speech
data points plotted in the two dimensional Laplacian representation. The two
“spokes” correspond predominantly to fricatives and closures respectively.
The central portion corresponds mostly to periodic sounds like vowels, nasals,
and semivowels. A natural clustering into the broad classes is obtained and
fig. reffig:phonemesome shows three different regions of the representation
space. Note the phonetic homogeneity of the data points that lie in each
of these regions. Points mapped to the same region in the representation
space share similar phonetic features though points with the same label may
originate from different occurrences of the same phoneme.

7 Conclusions

In this paper we introduced a coherent framework for dimensionality reduc-
tion for the case where data resides on a low dimensional manifold embedded
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in a higher dimensional space. A number of questions remain to be answered.

1. Our approach utilizes the properties of Laplace Beltrami operator to
construct invariant embedding maps for the manifold. While such maps
have some demonstrable locality preserving properties they do not in
general provide an isometric embedding. The celebrated Nash’s embed-
ding theorem (Nash, 1954) guarantees that an n-dimensional manifold
admits an isometric C'! embedding into a 2n + 1 dimensional Euclidean
space®. However it remains unclear whether such an embedding is eas-
ily computable by a discrete algorithm. Furthermore, there are usually
many possible isometric embeddings of a given manifold. For example,
any knot in R?is an isometric embedding of a circle. However when the
embedded manifold is isometric to a domain in R* the canonical em-
bedding is given by the exponential map. In that case Isomap provides
an embedding and guarantees convergence (Bernstein et al, 2000). In
general it is not clear how to discriminate between “good” and “bad”
isometric embeddings. It would therefore be interesting to formulate
more precisely what properties of an embedding make 1t desirable for
pattern recognition and data representation problems.

2. We have not given any consideration to other geometric invariants of
the manifold that may be potentially estimated from data. For exam-
ple, it is unclear how to reliably estimate even such a simple invariant
as the intrinsic dimensionality of the manifold.

3. There are further issues pertaining to our framework that need to be
sorted out. First, we have implicitly assumed a uniform probability dis-
tribution on the manifold according to which the data points have been
sampled. Second, it remains unclear how the algorithm behaves when
the manifold in question has a boundary. Third, appropriate choices
for N (or €) and ¢ and their effect on the behavior of the embeddings
need to better understood. Fourth, the convergence of the finite sample
estimates of the embedding maps need to be addressed.

4. Finally, and most intriguingly, while the notion of manifold structure in
natural data is a very appealing one, we do not really know how often

5The C' condition is essential. If the embedding has to be infinitely dif-
ferentiable, the required dimension is much higher (Nash, 1956).
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and in which particular empirical contexts, the manifold properties are
crucial to account for the phenomena at hand. Vastly more systematic
studies of the specific problems in different application domains would
be need to be conducted to shed light on this question.
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Figure 1: 2000 random data points on the “swiss roll”.
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Figure 2: Two-dimensional representations of the “swiss roll” data, for dif-
ferent values of the number of nearest neighbors N and the heat kernel pa-

rameter t. t = oo corresponds to the discrete weights.

25



X

[y

O‘
@

8
(0] .
6| & +
£
10 41E +
2le
L
s -
.
-21§ +
30 \\
_4 K
0 20 40 s -4
-5 0 5 -2 o 2
x 107°

Figure 3: The left panel shows a horizontal and a vertical bar. The middle
panel is a two dimensional representation of the set of all images using the
Laplacian eigenmaps. The right panel shows the result of a principal compo-
nents analysis using the first two principal directions to represent the data.
Blue dots correspond to images of vertical bars and red '+’ signs correspond
to images of horizontal bars.
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Figure 4: 300 most frequent words of the Brown corpus represented in the
spectral domain.

26



Fa:

o.028 - B I i dian-t
o.0135F  crelt . cowa B
o.027s |- ‘be 4 con + tota
g o.013 | iat E
A . was
0.027 - * Jupon 0.0125 saw 7
looik nder o
~get lo.oras - Talong 4 ao
o.0z65 - sake E oc.0az| 4
. v * during *SAN would
o.026 - E . ar c.011s |- Cmiant
.do from | | rnever
c.0255 - E adhan or o.01a - 1
.help. become —o0.012 9 Sibetween 7
ge toward o.0105 | MY should 4
o.o2s | . know - C owin
< among must
o.01 |- E
©-o=as - T . does
o.000s |- were 4
o.c1zs E
o.02a . put 5
B = S B 6015 0016 0017 cois - 5 S 1o
> 107 > 107

Figure 5: Fragments labelled by arrows, from left to right. The first is
exclusively infinitives of verbs, the second contains prepositions and the third
mostly modal and auxiliary verbs. We see that syntactic structure is well-
preserved.
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Figure 6: 685 speech data points plotted in the two dimensional Laplacian
spectral representation.
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Figure 7: A blowup of the three selected regions (1,2,3) left to right. Notice
the phonetic homogeneity of the chosen regions. The data points correspond-
ing to the same region have similar phonetic identity though they may (and
do) arise from occurrences of the same phoneme at different points in the ut-
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terance. The symbol “sh” stands for the fricative in the word she; “aa”,”ao”
stand for vowels in the words dark and all respectively; “kecl”,”dcl”,”gcl”
stand for closures preceding the stop consonants “k”,”d”,”g” respectively.

“h#” stands for silence.
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