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ABSTRACT

The problem of determining the (eastern boundary) basic stratification and the buoyancy-driven circulation
of the oceans is addressed. A global integral constraint relating the interior stratification and the air-sea heat
fluxes is derived, based on the condition that the total mass of water of given density is constant in a steady
state ocean. This constraint is then applied to two simple analytic models: The first is a continuous nonlinear
diffusive model of the lower mid-depth and bottom circulation below the influence of the wind-driven circulation.
It shows the tendency of the vertical density profile to look like an exponential profile in the presence of mixing.
The integral constraint is used to relate the stratification and circulation of the bottom and mid-depth waters
to the air-sea heat fluxes at the surface, where the deep densities outcrop. The second model is a layered one
of the wind-driven circulation, mid-depth, and bottom water. The eastern boundary stratification of the model
is determined from the air-sea heat fluxes, using the integral constraint and a parameterization of the mixing
processes in layer models. A two gyre mid-depth circulation is found, driven by the cross-isopycnal diffusive
velocities and affected by the variations in the depth of the main thermocline above it. The bottom circulation
in both models is similar to that of the Stommel~Arons model.

Air-sea heat fluxes affect the deep buoyancy-driven flows not by direct cooling or heating, but through the
formation of water masses that sink and spread in the deep ocean. Thermal boundary conditions for the interior
thermocline problem seem to require specification of the air-sea heat fluxes in addition to the specification of
the density distribution at the base of the Ekman layer. Cross-isopycnal mixing processes ar¢ a crucial part of
the dynamics, although numerically small. Together with the air-sea heat fluxes, they determine the basic
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vertical stratification of the wind-driven and deep circulations.

1. Introduction

Theories of the oceanic general circulation are aimed
at explaining the time-mean density and velocity fields
in terms of the forcing by wind stress and heat fluxes
at the upper surface of the ocean. However, the problem
posed this way is very complicated, and researchers
have usually tried to simplify the boundary conditions
as well as the dynamics as much as possible. Among
the first things to be sacrificed were the details of the
thermodynamical processes. These simplifications al-
lowed significant progress to be made, but also revealed
several gaps in the theories that did not explicitly in-
clude the thermodynamics as part of the physics. These
gaps hint that the density-changing processes, although
weak in the ocean’s interior, may nevertheless be a
crucial part of the physics of the general circulation.

In this paper we try to explore several areas of the
theoretical study of the oceanic general circulation in
which some understanding may be gained by including
the physics of the density changing processes.

In thermocline theories, air-sea heat fluxes were
usually not considered explicitly, and one specified the
density at the base of the mixed layer in order to ac-
count for the effect of these fluxes. The role of diffusion

© 1986 American Meteorological Society

in classical thermocline theories also seems to be un-
clear: In some similarity solutions (Needler, 1967) the
diffusion contributed a constant deep upwelling of no
major dynamical importance, while ideal fluid ther-
mocline theories (Welander, 1971) had at least as much
success in explaining the structure of the thermocline
as the diffusive ones. (Reviews of these efforts and ear-
lier ones can be found in Veronis, 1969, 1981.)

This seeming unimportance of the diffusion, and its
being smaller than the advection terms in the density
equation, had led to two recent theories of the wind-
driven thermocline circulation (Rhines and Young,
1982a; Luyten et al., 1983), which are both density
conserving. These models were able to reproduce the
horizontal variations in the depth of the thermocline
and to demonstrate the importance of several physical
processes, but had to specify the basic vertical density
stratification on the eastern boundary (in addition to
the outcrop positions). In particular, the thickness of
the lower layers in the ventilated thermocline model
has to be specified on the eastern boundary, and the
thickness of the upper layers vanishes there. When
more physics is added to allow nonzero thickness for
these layers on the eastern boundary (Pedlosky, 1983),
the stratification must still be specified there.
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We show here that however small the diffusion is,
it is still a crucial part of the thermocline dynamics,
and has to be included in the physics in order to de-
termine the basic stratification. Air-sea heat fluxes
must also be considered, and specifying the surface
density does not account for their full effect on the
interior circulation.

The physical principle guiding us throughout this
investigation is simple: Air-sea interaction may result
in a net production of water of some density type that
sinks and spreads in the ocean interior. To keep the
total mass of this density type constant, interior mixing
must act to change the density of this water to other
density ranges. The mixing effects are assumed to de-
pend on the density stratification, so that the condition
of constant mass of water of given density can be used
to link the air-sea heat fluxes to the interior stratifi-
cation!

The mid-depth circulation below the main thermo-
cline is not very well understood observationally (see
Reid, 1981, for a review), nor theoretically. It is prob-
ably not primarily wind driven like the upper circu-
lation, but buoyancy driven by the mixing processes.
We try below to construct a theory for this water range,
in which the driving force is the diffusive vertical ve-
locity, and both wind and air-sea heat fluxes have in-
direct but important effects.

Finally, we note that the only model existing for the
bottom water circulation is one for the vertically inte-
grated transport (Stommel, 1958; Stommel and Arons,
1959a,b), driven by a uniform upwelling at the top of
the bottom water. Air-sea interaction enters only im-
plicitly as a source of bottom water that replaces the
upwelling water. By explicitly considering the air-sea
fluxes and using the condition of constant mass of water
of given density, we are able to develop a simple dif-
fusive, continuous, nonlinear model of the bottom and
lower mid-depth circulation, and to relate its stratifi-
cation to the air-sea fluxes.

The development in the rest of this paper is as fol-
lows. In section 2 we derive an integral constraint re-
lating the air-sea fluxes to the interior stratification.
This constraint is based on the condition of constant
total mass of water of given density in a steady state
ocean. In section 3 the constraint is applied to a con-
tinuous nonlinear diffusive model of the deep circu-
lation below the influence of the wind driven circula-
tion. The basic stratification of the model tends to Jook
like an exponential profile, but the small deviations
from exponential are crucial to the dynamics.

In section 4, which is independent of section 3, a
three layer diffusive model of the deep, mid-depth and
upper ocean is examined. The upper layer is a wind-
driven two-gyre ventilated thermocline, and the lower
layers are driven by diffusive cross-interfacial velocities.
Air-sea heat fluxes are specified as part of the thermal
boundary conditions of the model, and the stratifica-
tion on the eastern boundary is calculated in terms of
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these fluxes using the constraint from section 2. A two
gyre mid-depth circulation is found, while the bottom
circulation is similar to that of the Stommel-Arons
model.

2. Derivation of a constraint on the basic stratification

In this section we derive an integral relation between
the air-sea fluxes of heat and fresh water and the in-
terior stratification, in the presence of small scale mix-
ing. The relation is based on the condition that the
total mass of water of given density is constant in a
steady state ocean. Before going into the details of the
derivation, it is useful to examine the physics behind
it, and in particular to see what “net production”
means. .

There are two processes acting to change the density
of a given water particle in the ocean—air-sea ex-
changes that affect the surface water and small scale
mixing in the ocean interior. Consider now the sche-
matic, zonally averaged picture in Fig. 1, and concen-
trate on the water between two isopycnals p; and p;.

We first examine the effects of the air-sea fluxes.
Suppose that the density surface p, outcrops where the
ocean is losing heat to the atmosphere. As a result,
some mass of water of density p < p, is cooled per unit
time, and its density becomes p; < p < p,. (We are not
interested now in the question of whether this water
sinks or is advected horizontally to an area where the
surface density is larger than p,, but only in the density
change itself.) Water of density p, < p < p, is also
exposed to the atmosphere, and suppose it also loses
heat to the atmosphere, but less than the water in the
density range just smaller than p,. As a result, a mass
of water of density p; < p < p, is cooled and its density
becomes p > p,. However, this time less water is in-
volved in the process, because the mass of water whose
density is changed is proportional to the heat loss ex-
perienced by this water. In the situation described here
there is more water entering the density range p, < p
< pj than Jeaving it, and therefore there is a net pro-
duction of water of this density per unit time. Air-sea

5000m:
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FIG. 1. A schematic north-south vertical section showing the pro-
duction of water of density between p, and p, by air-sea heat fluxes,
and dissipation of this water type by interior mixing.
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heat fluxes act in this case as a source of water of density
between p, and p,.

Next, consider the effects of small scale mixing, The
mixing processes act to change the density of water
particles, and therefore force cross-isopycnal velocities.
These velocities depend on the interior stratification
through the density equation U-Vp = V(AVp). Con-
sider again the schematic picture in Fig. 1. Suppose
that the interior stratification is such that there is net
upwelling across the p, surface. This means that the
mixing processes act to reduce the density of some mass
of water heavier than p, and this mass upwells to the
density range between p; and p,. If there is also up-
welling across the p, surface, but of larger magnitude,
then more water leaves the density range p, < p < p>
than enters it, and the interior mixing acts as a sink of
this water type.

In a steady state the sinks and sources of any density
type must balance to give no net production. This con-
straint of zero net production relates the air-sea fluxes
to the interior stratification.

Two derivations of the constraint are given below.
The first is more heuristic, the net production by each
of the possible processes is derived separately, while
ignoring the effects of the others. The second derivation
is more formal, and includes all of the processes to-
gether, including the effects of seasonal variability of
the air-sea interaction.

Small scale processes are modeled throughout this
paper in the simplest possible way, with a constant
eddy-diffusivity coefficient in the density equation. Still,
the procedures and physical principles we use do not
depend on the particular parameterization chosen, and
can be used with any other parameterization relating
the small scale mixing to the mean fields. Given such
a parameterization one can derive the constraint pre-
sented in this section, and then use it to find the effects
of the mixing processes on the general circulation, as
shown in the following sections. It is not clear to what
extent the more specific results of the models developed
below depend on the parameterization used.

a. An intuitive derivation

In this subsection, the expressions for the net pro-
duction of water of given density by interior mixing,
by air-sea heat fluxes, and by evaporation and precip-
itation are derived separately. This derivation should
give an intuitive understanding of the physics involved,
and will allow interpretation of the more formal results
later in b.

1) PRODUCTION OF WATER OF GIVEN DENSITY BY
INTERIOR DIFFUSION

Ignoring air-sea fluxes, see Fig. 2. The mass flux
across an isopycnal surface p is, for a Boussinesq fluid,
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FIG. 2. A perspective view of surface elements of two isopycnal
surfaces, showing the local cross-isopycnal mass fluxes [F(x, y, p)]
and the local production [M(x, y, p)] of water of density (p, p + dp)
by the mixing processes.

the component of the velocity normal to a density sur-
face, multiplied by a reference density po:

2.1)

where n is a unit vector perpendicular to a surface of
constant density. Using n = —Vp/|Vp|, and the density
equation

F(x, y, p) = poU -+ n,

U-Vp = up, + vpy, + wp, = \V?,  (22)
we find o
F(x, y, p) = —\poV2p/|Vpl,
and for almost horizontal density surfaces,
~ —ApPoPzz/ p:- (2.3)

The mass of water within the density range (p, p
+ dp) that is produced per unit area, per unit time is
the difference between the mass flux across the p-den-
sity surface and the p + dp surface,

Mdiff(x, Vs p)dp = F(x, y,p+ dp) - F(x, Y p);

so that
Mdiff(x’ Y p) = aF(x7 Y, p)/ap' (2'4)

Using 8{ }/9z = (3z/9p)'d{ }/dp, the cross-iso-
pycnal mass flux (2.1) can be written in (x, y, p) co-
ordinates instead of (x, y, z) coordinates:

F(x, y, p) =~ ~Npopz/p:

i} 1
= ~A\pp — (2.5
and we finally have
& 1
M = —A R S
dlﬂ'(x9 Vs P) Lo apz {az/ap} >
or in the (x, y, z) coordinate system:
3 (V%
Mi -x’ s = —A a_ {-—}
= (1/p2)84—NpoV?0/|Vpl}
~ Moo/ p:)d-{1np.}. 2.6)
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2) PRODUCTION OF WATER OF GIVEN DENSITY BY
AIR-SEA HEAT FLUXES

Ignoring salinity variations of the surface water and
.effects of evaporation-precipitation, assuming p = po
— a(T — Ty), see Fig. 3. Suppose that an amount of
heat H(p)dp is lost per unit time to the atmosphere by
surface water of density p all over the basin. As a result,
a volume dv, of water of (temperature, density) = (7,
p) is cooled per unit time, to (7" — d7T') and its density
becomes p + dp. The volume dv; can be found by
calculating the heat budget,
dvpC,T + H(p)dp = dvi(p + dp)C,T — dT). (2.7)
At the same time, a volume dv, of (p — dp)-water loses
an amount of heat H(p — dp)dp and becomes p-water.
The net production of p-water is Miearpuxes(0)dp = p(dv,
— dv,). Substituting the values of dv, and dv,

Mhcarnures(0) = (@t/ Cp)0H(p)/dp. (2.8)

3) PRODUCTION OF WATER OF GIVEN DENSITY BY
EVAPORATION-PRECIPITATION

Ignoring temperature variations of the surface water
and effects of air-sea heat fluxes, assuming p = py+ B(S
— So), see Fig. 4. Let the evaporation—precipitation as
a function of the surface water density be Q(p). This
means that all over the basin, a volume Q(p)dp of fresh
water is added per unit time to surface water of density
p. As a result, a volume dv, of water of (salinity, density)
= (S, p) is joined by a volume Q(p)dp of fresh water,
and becomes a volume 2V, of (S — dS, p — dp)-water.

The volume elements dv,, £V, can be found by
calculating the mass and salt balances,

avipS = &V (p — dp)(S — dS), (2.9)
dvip = &Vi(p — dp) + Qlp)dp. (2.10)

At the same time, a volume dv, of (p + dp, S + dS)-
water is joined by a volume Q(p + dp)dp of fresh water,
and becomes a volume &YV, of (p, S)-water. The net
production of water of density p is

Mfresh wnter(p)dp = p(“/CVZ - dvl)-

H(g)ﬂp

dv, dvp
prdp P
T-dT T

salt:

mass:

2.11)

H(p-dp)dp

OCEAN SURFACE

p-dp
T+dT

FIG. 3. A schematic north-south vertical section through an out-
cropping region, showing the air-sea heat fluxes and the resulting
cross-isopycnal mass fluxes.
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FIG. 4. As in Fig. 3 but with fresh water fluxes
forcing the cross-isopycnal fluxes.

By substituting the values of dv,, £V, we have
Miesh waedp) = 2Q(p) + BSIQ(p)/dp
= 0{BSQp)}/3p + Qp). (2.12)

Because the total production of water of density p
should vanish, we can combine (2.6), (2.8) and (2.12)
into

58;) f f {XpoV?0/|Vpl}

= 3{BSQ}/dp + Qo) + 3{aH/C,}/p, (2.13)

where the double integral is over the entire area of a
density surface. The rhs of (2.13) is an expression for
the mass of water of density p which is produced by
the given air-sea fluxes of heat (H) and fresh water
(0). This expression does not change much when we
allow for seasonal variability in the air-sea interaction
[see (2.23)]. The water mass production by the air-sea
fluxes is balanced by the production by the mixing
processes which, for our choice of the parameterization
of the mixing processes, is given by the lhs. Equation
(2.13) can be integrated over p from the highest surface
density (pp) to p, to give

f f {=MoV2p/IVpl} + BSQ(p) + aH(p)/C,
- —f 0W)dp. (2.19)

Each of the terms on the lhs is a contribution to the
mass flux across the density surface p from one of the
processes described in subsections 1, 2 and 3. The
physical statement in (2.14) is that the total mass flux
across the isopycnal surface p (the lhs) is equal to the
flux of fresh water from the atmosphere into surface
water of density greater than p (rhs). A similar result
was discussed by Walin (1982) who considered the mass
and heat balances for a volume of fluid bounded by
an isothermal surface. He related the air—sea heat fluxes
to interior cross-isothermal diffusive fluxes, and used
this relation as an observational diagnostic tool to de-
duce the diffusive fluxes in the ocean interior.

b. A more formal derivation

We now want to see if and how the results of the
preceding heuristic derivation change when all the
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density-changing processes act together. We also allow
seasonal time variations in the air-sea interaction and
derive the time averaged constraint of zero net pro-
duction. The results turn out to be essentially the same
as in the previous subsection, and the reader may skip
this subsection on first reading.

The derivation is divided into three parts. We first
derive the density and continuity equations in the
presence of heat and fresh water sources. Then these
equations are written in density coordinates, and re-
lations are found between several quantities in (x, ,
z) coordinates and in (x, y, p) coordinates. Finally the
continuity equation is integrated over an isopycnal
surface and averaged in time to obtain the constraint
of zero net production of water of given density.

In this derivation, the air-sea heat and fresh water
fluxes are represented by distributed sources of heat
[#(x, y, z, )] and fresh water [Q(x, y, z, 1)]. (The sources
are different from zero only near the surface.)

The mass, heat, and salt budgets for a fixed volume
of Boussinesq fluid are:

0= —ff d*x{poU-n} + f ff &’x[Q(x, y, z, t)po),

(2.15)

a f f f &x{peC, T} = — f f @x{poC,TU -n}
+ ff f A3 #(x, v, z, Hpol

+ f ff d*x[Q(x, y, z, HpoC, T

+ heat diffusion,
6, ffj d3X{p0S}

= —ff d’x{poSU-n} + salt diffusion. (2.17)

(2.16)

Using these relations and the equation of state p = pg
— aT — Typ) + B(S — Sp), we obtain the incompressi-
bility equation

V-U=0Q(x,y, z 0, (2.18)
and the density equation
dp/dt = p,+U-Vp
= —BS(x, y, z, HQA(x, y, z, t)
= (a/C)Z(x, ¥, z, 1) + \V?p.  (2.19)

The gradient of the density field, represented in density
coordinates, is

Vo = (px, Py, p2) = (Po/h)2x, 2y, 1) (2.20)
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and its Laplacian,

a
v2p = (pO/h){zxx + zyy + (zx2 + zy2 + l) ;9; (pO/h)} >
(2.21)
where h = —py0z/dp. (2.22)

With these relations, we can rewrite the density
equation (2.19) as

dpldt = p = —BS@ — (@/CZ + Npo/h)

X {zxx +z,+(z2+z2+1) % (l—;lg)} , (2.19a)

while the continuity equation (2.18) in density coor-
dinates is

e + [k + 3(0h))],—consant + 5‘% (hi) = ha.

(2.18a)

For the constraint of no net production of water of
a given density, substitute (2.19a) in (2.18a), average
the continuity equation (2.18a) over time, and integrate
over the entire area of an isopycnal surface. Using the
periodicity to eliminate the term

It

and noting that the along-isopycnal transport (uh),

-+ (vh), vanishes when integrated over the entire density

surface, we have

3/dp f dt f f dxdy {\plzxx + 2,y
p=constant :

+ (2 + 2,2 + 1)d(po/h)/0p1}

— d/dp f dt fL=conmm dxdy {(a/Cr)h# (x,. ;t), p, D}
— 9/dp f dt f J; ot dxdy {BShQ(x, y, p,— H}

= f dr f f dxdyh@(x, y, p, ). (2.23)

To see that (2.23) is a generalization of (2.13), we
now derive the relation between the distributed sources
Qx, y, z, 1), Z(x, y, z, t), and the fluxes H(p), O(p)
that were used in the heuristic derivation in section 2a.

The total heat gained by the ocean during one year
in the derivation in section 2a was

(130 % | Ho)dp.
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In terms of the distributed sources it is

f dt f f f Z(x, ¥, z, Dpod>x.

(1 yr) X f H(p)dp

= f dt fff Z(x, v, z, Hpodxdydz

= [a [ [ [ #x 3, o, vocdixaveaziopdo

- | dp{ [a [ me .. t)dxdy}

= H(p) = (1 yn)™ f dt f f (—W)Z(x, y, z, )dxdy.
, (2.24)

Now,

The same applies for the mass sources (evaporation—
precipitation):

0w =y [ a [ [ e v, z oy,
(2.25)

With the identities (2.24) and (2.25), the similarity be-
tween (2.23) and the result derived in a more heuristic
way in section 2a is clearly seen.

3. A continuous model of the deep and mid-depth cir-
culation

In section 2 we have not considered explicitly the
dynamics of the circulation and the velocity field, but
only assumed implicitly the existence of a velocity field
connecting sources and sinks of a given density. In this
section, a continuous model of the deep and mid-depth
circulation below the influence of the wind-driven cir-
culation is described. The model is a simple application
of the constraint derived in the previous section: A
steady state density stratification is maintained by a
balance between the production of water by air-sea
heat fluxes and by interior small scale mixing.

Figure 5 is a schematic north-south vertical section,
showing to what part of the oceanic circulation the
model applies. The thermocline circulation (shown
vertically hatched) is probably mostly wind driven. The
upper mid-depth water (diagonally hatched) is probably
buoyancy driven, but is certainly influenced by the dis-
tortion of the isopycnals just above it by the thermo-
cline circulation. These two upper regions and the in-
teraction of the wind-driven circulation with the dif-
fusive processes are not considered here. They are part
of the model presented in section 4, which is indepen-
dent of this one. The lower mid-depth and the bottom
waters (unshaded in Fig. 5), where the isopycnals are
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FIG. 5. A north-south schematic vertical section, showing the re-
gions of outcropping, of the upper circulation (shaded), and of the
deeper circulation (unshaded) that is modeled in section 3.

nearly flat, are those addressed by the model in this
section.

The basic dynamics of the model are geostrophic,
hydrostatic and diffusive and it is nonlinear in the sense
that there is no linearization about some specified basic
stratification. Instead, the heating of the ocean by the
atmosphere is specified as a function of the density of
the surface water where the deep water outcrops (hor-
izontally hatched region in Fig. 5). Then the constraint
which was derived in section 2 is used to calculate the
stratification and the cross-isopycnal velocities in the
interior. Finally, the geostrophic equations are used to
calculate the deep horizontal velocity field.

We start by nondimensionalizing the equations, then
a perturbation expansion in powers of the nondimen-
sionalized diffusion coefficient is used to obtain the
solution. The equations are

Jeuw = —(1/po)py
f;kv = (l/pO)px
D: = —8p

Uyt v,+w,=0

Upx + Vp, + wp; = A*Vzp, (3.1
where fi = 29 sin(latitude) is the Coriolis parameter,
X, y, z and u, v, w are the (east, north, vertical) coor-
dinates and velocity components, and we also use the
notation 8 = dfy/dy; p, p and py are the pressure, density
and a constant reference density. The boundary con-
ditions are:

¢ The air-sea heat fluxes as function of the surface
density in areas where the deep and mid-depth
water outcrops are specified: H(p).

e No zonal flow into the eastern boundary: u(x,, y)
=0.

We introduce the scaling
x,y~L z~H
u,v~V, w~W=VHIL

p~B, p~P (3.2)
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and get the nondimensional equations

Ju=-p,
Jo=ps
D= —p
U+ v, +w,=0
upy + vp, + wp, = AV?, 3.3)
where
f=sin(y)/sin(45°); \ = \L/VH?* &= H/L
V2 = %0 + 9yy) + 8. P = poLfa(45°)V;
B = poLf,(45°)V/Hg. 3.9
Substituting reasonable values for the scales:
L=3000km; H=1km; V=01lcms;
M=1lcm?®s™ g=10cms™? 3.5)

we obtain A = 0.3, so that we can treat A\ as a small
parameter. Expanding the variables in a perturbation
series

u=uo+)\u1+)\2u2+--~, V= oo, (36)

the order-one equations are
fuo = —po,
ﬁ)O = DPox

Doz = —po
llox+voy+ W()z:O

Uopox + Vopoy + Wopoz = 0. 3.7

Because to this order there are no cross-isopycnal fluxes,
and because we are below the influence of the wind
driven circulation, there is no.forcing, and a solution
is:

Up =00 =wo =0, po=po(2), pPo=po(z). (3.8

To determine py(z), po(z) we must go to the O(\) equa-
tions and use the constraint from section 2. But before
doing this, a comment on the O(1) solution is needed.

It is clear that this solution of horizontal isopycnals
cannot hold everywhere, because we expect the deep
isopycnals to outcrop and to be influenced by the at-
mosphere in polar regions. Figure 5 shows schemati-
cally the large region (unshaded) in which the isopyc-
nals are almost horizontal, and the small polar region

- where they are supposed to outcrop (horizontally

hatched).
The O(M\) equations are
- SJuy = —Diy
ﬁ" 1 = Dix

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 16
Diz:= —m
Ui t+ Uiy + w, = 0
WiPoz = Pozz. (3-9)

The last equation can be written as

) = wi(po), (3.10)

F) 1
wy = wi(2) = poglPo; = — (azlapo

dpo
where p, is the order-one density field, and it is used
as the vertical coordinate instead of z.

We saw in section 2 that if the effects of evaporation—
precipitation in the outcropping region are ignored,
then the net mass flux across an isopycnal surface due
to air-sea heat exchanges and due to interior mixing
is zero. Because the outcropping region is small, we
assume that the total cross-isopycnal mass flux there
due to small scale mixing is small compared to the
cross-isopycnal fluxes integrated all over the density
surface in the larger part of the ocean, where our O(1)
solution is valid. (We also ignore the boundary mixing;
see comment in section 4.) These assumptions allow
us to write the constraint of zero net mass flux across
an isopycnal surface as ’

jf dxdyU-n ~ f f dxdyWiw,(z) = (a/C,)H(p),
3.11)
where H(p) is the heat flux from surface water of density

p to the atmosphere. Since w; is only a function of z,
(or equivalently of pg) we have

Waw, ~ (a/CyArea)H(p).  (3.12)

Using (3.10), we obtain an equation for the horizontally
uniform O(1) density stratification. In dimensional
form:

H(p), (3.13)

N 9_( 1 )_ a
* dp \9z/3p CpArea

and the solution for z(py) is (C; and C, are two inte-
gration constants):

o) = [

pl U4 a 1 —l
x { f do [(x*c,,x Area)H(p )] + cl} + G

(3.14)

‘The solution (3.14) for z(py) can be inverted to obtain

po(z). This procedure will be demonstrated by consid-
ering a specific heating function H(p), but first it is
possible to obtain the important O(\) and O(\?) cor-
rections to the velocity and density fields, and in par-
ticular the deviations from horizontally uniform strat-
ification and upwelling,

Knowing pg(z) from (3.14), and w,(po) from (3.12),
we can find w(z). From the O(A) equations we have
the other fields in terms of w,
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where G(z) is a function of z only. To determine G(z)
we have to reapply the constraint on the density field,
this time with the O(A\?) corrections to the cross-iso-
pycnal velocity and to the density field. But because
G, is only a small correction to the basic vertical strat-
ification, and we are interested in the horizontal de-
viations from this uniform state, we may ignore G,(z).

To find the dynamically important corrections to
the uniform upwelling w,, we consider the O(\?) den-
sity equation:

(10x + v10x + w13,)py + Wapo, = V2pl’
and we get w, in terms of the already known O(}) fields,
wy(x, ¥, 2) = (V2p; — Uy - Vpy)/poz.  (3.16)

An example with a specific heating function. The
zonally integrated heat fluxes from the ocean to the
atmosphere as a function of latitude, have the sche-
matic shape shown in Fig. 6a. Because surface density
is roughly monotonically increasing with latitude, we
can assume that the heat fluxes as a function of the
density of the surface water which is losing that heat,
have the shape shown in Fig. 6b. We are only interested
now in H(p) for the bottom and mid-depth densities,
so that a reasonable choice for that density range is the
one shown in Fig. 6c.

H(Latltude)

a

T L

865 60 4 20 50 40 éD 86N
Latitude

Hip)

e
e
6.0 28.0
e
27.0 27.5 28.0

FIG. 6. Schematic pictures of (a) zonally averaged air-sea heat
fluxes as function of latitude, (b) air-sea fluxes as function of the
surface density, and (c) the heating (as function of the surface density
in outcropping regions) used as forcing in the bottom and lower mid-
depth circulation model in section 3.

H(p)
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A convenient analytic form is chosen for this heating;

.H(p) = D[cos(p — P 7r) - exp(p — pb)]
Pb — Ps A

(ps, A and D are constants, p, is the bottom density)
and is substituted in the solutions derived before for
the density and velocity fields. Because w, is known
from (3.12) as an explicit function of the basic density
stratification p,, it is convenient to evaluate the solu-
tions (3.15) and (3.16) with p, as the vertical coordinate.
This is done by using dw/dz = {1/(8z/8p) }dw/py, With
9z/dp, taken from (3.14). The explicit analytic solutions
(3.15) and (3.16) in terms of the specific heating are
quite long expressions, and were found by using the
MACSYMA symbolic-manipulation computer pro-
gram (Mathlab Group MIT, 1983).

A few words should be said about the boundary con-
ditions for the density and vertical velocity profiles.
The constants C; and C, in (3.14) were chosen to satisfy
z(p = 1.027) = =2 km, z(p = 1.028) = —5 km. The
vertical velocity is zero at the bottom [by (3.12)] be-
cause the air-sea heat fluxes vanish for the highest sur-
face density, p,, which is also the density at the bottom
of the model (Fig. 6¢). If H(p) were not zero for p = py,
then a finite mass (o/C,)H(p}) of a single density p = py
would form at the surface. This would mean a com-
pletely homogeneous unstratified layer at the bottom
of our model, where the physics we use does not apply.

Figure 7 shows the solutions for the basic density
stratification po(z) and for the lowest order upwelling
velocity w,(z). Note that the solution for py(z) resembles
an exponential profile, which is (Munk, 1966) a solu-
tion of wp, = Ap,,, with constant upwelling w. But note
that w in our solution is a strongly varying function of
depth! The apparent insensitivity of the exponential
profile to variations in the vertical velocity is a result
of the smoothing effect of the vertical diffusion. Two
integrations are needed to solve the vertical density
balance wp, = Ap,. for p in terms of w, so that even a
relatively large variation in w(z) is smoothed and is
not seen in p(z). The tendency toward an exponential
density profile will still, of course, be present when A
is varying with depth. [If A = Ao f(z), we can write the
vertical density balance as {w(z)/f(2)}p, = Aop.z, and
p(z) would again tend to look like an exponential profile
for different forms of w(z) and f{z).] This insensitivity
is unfortunate when we want to calculate w(z) from
observations of p(z). It is probably unsafe to calculate
w(Zz) by substituting p(z) = exp(z/H) in wp, = Ap,, with
a constant A (Munk, 1966), or even with a more realistic
structure for A\(z) (Gargett, 1984). A very small devia-
tion of the actual density profile from an exponential
shape, perhaps even below the noise level, may lead to
a large change in the calculated structure of w(z).

The varniation in w,(z) is responsible for driving the
horizontal circulation in the solution showed here,
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FIG. 7. An example of the bottom and mid-depth circulation model
of section 3. The solution for the basic density profile py(z) (full line)
together with a matched exponential profile (crosses) and the vertical
velocity w,(z) for the same solution.

through the linear vorticity equation v = fw,. The
bottom water circulation, which occupies the upper
density range where H(p) is rapidly decreasing, is driven
poleward in the interior by an upward increasing w(z).
The mid-depth circulation in this example is driven
equatorward in the interior by an upward decreasing
upwelling, as determined by the structure of H(p) for
the mid-depth densities.

Figure 8a-c shows the deviations of the pressure,
density and upwelling from the horizontally uniform
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lowest order fields, at a depth of the bottom water cir-
culation. The density field has the expected gyre shape,
with the strongest signal at the northwest corner. This
shape is induced by the deep circulation itself, through
the distortion of the isopycnals by the velocity field.
Note that boundary currents are needed to close the
circulation and to connect the interior flows to the out-
cropping region.

4. The interaction of the wind driven circulation with
thermal processes

In this section some aspects of the interaction of the
wind driven circulation with the cross-isopycnal pro-
cesses are investigated using a simple layer model. We
demonstrate how the principle of no net production
of water of given density can be used to determine the
basic stratification (stratification on the eastern bound-
ary) of the wind driven circulation. We also discuss
the way the wind and buoyancy forcings combine to
determine the circulation of the mid-depth water just
below the main thermocline, and we try to obtain some
insight into the problem of formulating the right ther-
mal boundary conditions for the thermocline problem.

First, in section 4a, a parameterization of density
diffusion in layer models is derived, and then, in section
4b, a simple three-layer diffusive model of the wind
and thermohaline oceanic circulation is described. The
reader is advised to start by reading the model descrip-
tion in 4b, and to refer to 4a for the details of the
parameterization only when it is actually used in the
model.

a. A parameterization of density diffusion in layer
models

The parameterization we suggest here is based on
the similarity between layer models and density co-
ordinates, and is actually a finite difference approxi-

. (b ,’
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F1G. 8. Corrections to the horizontally uniform basic stratification, pressure field and upwelling velocity,
on a constant depth surface at a depth of the bottom circulation [all nondimensional, see (3.2), (3.4).]: (a)
p1 normalized by its maximum absolute value |p,}max = 0.132; (b) p;/f normalized by |p,/f |max = 0.267; and

(¢) w, normalized by |Walmax = 0.00513,
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mation to the equations in density coordinates. It en-
ables one to enjoy the mathematical simplification of
layers versus continuous stratification, while not ig-
noring the cross-isopycnal processes. The equations
reduce to the usual equations for an immiscible layer
model if the coeflicient of diffusion is set to zero. The
diffusive processes are modeled as before with a con-
stant eddy coefficient in the density equation.

In order to establish some necessary notation, con-
sider a continuously stratified ocean which is to be
modeled by a finite number of discrete layers of uni-
form density: Suppose we choose to represent the den-
sity range between the two densities p, and p, by the
nth layer. Then the density of this layer is p, = (p,
+ pp)/2, its thickness is A,(x, y) = z(x, ¥, po) — 2(x, ¥,
pp), where z is the height of a density surface, and we
define A,p to be the density range represented by this
layer: Anp = pa — ps.

With this notation we can now proceed to calculate
the velocity across an interface between two layers. In
continuous stratification, the cross-isopycnal velocity
in the direction normal to a constant density surface
is (U - m)n, where n is the unit vector normal to a density
surface: n = Vp/|Vpl|. Using the density equation (2.2),
we have:

1 1
U:n=—U-Vp=— V.
Vol Vol

If the density surfaces are horizontal or very nearly so,
then:

(.1)

n=k (U-nn=k\p,:/p, 4.2)

where k is a unit vector in the vertical (z) direction.
Writing this in density coordinates, we have

(U~n)nzk>\i( ! ) 4.3)

dp \3z/dp

Now, 9z/dp can be approximated for the nth layer

in a layer model by Az/Ap = h,/A,p and the derivative

wrt p of some quantity B evaluated at the interface
between the n, n + 1 layers, can be replaced by

3B/dp ~ (Bn+l — B)/(pns1 — pn)s 4.4)

where B, is the value of B in the #th layer. Combining
(4.3) and (4.4), the cross-interfacial velocity, w¥, is

Wi~ A(An+1p/hn+l - Anp/hn)/(Pn+l - pn) 4.5)

(this expression is all we need for the layer model pre-
sented in 4b).

The approximation in (4.2) is not necessary, and the
parameterization can be extended to nonhorizontal
isopycnals. It is also possible to extend the parameter-
ization to the case of outcropping layers, while avoiding
the singularity in A, p/h, where A, — 0 in the outcrop-
ping region.

As another example of the parameterization, we
briefly derive the gyre-scale potential vorticity equation
for layer models, including the diffusive effects. In a
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continuously stratified ocean, for planetary scale mo-
tions, small Rossby number and in the presence of
vertical diffusion, the potential vorticity equation is
(Pedlosky, 1979)

62
U-V(fp.) = (ud, + vd, + wa )X fp:) = A 5‘;:_2 (fp2).

(4.6)
In density coordinates this is
S Ao & (fp)
~ == — - 4.7
(udy + v3)) il B0 \1) (4.7)

where h = —pdz/dp.
For the nth layer h can be approximated by h
~ hu(pn/Anp) =~ h{po/Anp), and (4.7) becomes

f Xf {An-f-lp/hn-ﬂ - Anp/hn
+ e = =
(140 v"ay) hn hnz Pn+1 ~ Pn
_ Anp/hn - An—lp/hn—l} ) (48)
Pn — Pn—i

Note that when A = 0, (4.8) reduces to the usual po-
tential vorticity equation in layer models for this type
of motions.

b. The model

The three-layer model we use is shown schematically
in Fig. 9. The upper layer represents the wind-driven
circulation above the main thermocline (vertically
hatched in Fig. 5), and is driven by a wind curl that
forces a two-gyre circulation. The second layer repre-
sents the upper mid-depth water, below the main ther-
mocline and above about two kilometers depth (di-
agonally hatched in Fig. 5). This layer is buoyancy
driven, by the cross-isopycnal velocities due to the
mixing processes. The wind affects this circulation by
changing the local vertical stratification (and therefore
the local diffusive vertical velocities), through the
changes in the depth of the main thermocline. The air-
sea fluxes affect the circulation in this layer not by direct
cooling or heating, but through the production of water
that sinks and joins the mid-depth water. The bottom
layer represents the vertically integrated transport of
the lower mid-depth and bottom circulations (un-
shaded in Fig. 5), that were described in more details

JI
O T

5000m:
! Pole Equator

FIG. 9. The three layer model described in section 4.



690

in the continuous model of section 3. The circulation
in this layer is similar to that of the Stommel-Arons
model.

The deeper layers do not outcrop within the two
gyres, (this restnctlon is not necessary, and is made
only to keep the model as simple as possible) but it is
assumed that they do outcrop somewhere, and interact
with the atmosphere. This outcropping region is not
explicitly a part of the model; we only specify the air-
sea fluxes there as a function of the surface density,
and assume that the water produced by these fluxes is
carried toward the ocean interior. One can think of
the Norwegian Sea as an example of such a polar out-
cropping region, as shown by the broken lines in Fig.
9, but the outcropping region, where the production
of water types is taking place, is not necessarily north-
ward of the subpolar gyre. The outcrop may be in the
western boundary region or within the gyres, if we allow
outcropping there.

The model equations for the #th layer are [see (3.1)]

fun = (”I/Po)pny
fvn = (1/po)Dnx

Dnz = —&pPn

U + Vpy + Wy = 0. (4.9)

The boundary conditions are:

¢ The wind-forced Ekman pumping at the base of
the mixed layer is given: w.(x, y).

o The air-sea heat fluxes as function of the surface
density in the outcropping region is also assumed
known: H(p).

¢ No zonal flow into the eastern boundary u(x., y)
= Q.

Vertical diffusion is permitted, and we will use the pa-
rameterization derived in section 4a to calculate the
small cross-interfacial velocities resulting from this dif-
fusion.

To solve for the layer thicknesses and velocities, an
approach similar to that of section 3 is used. Assume
that the diffusive effects are small, so that to lowest
order density is conserved, and the two deeper layers
are motionless. (By assumption, the wind-driven cir-
culation is confined to the upper layer, and the other
layers are driven only by the cross-isopycnal velocities.)
. With these assumptions the upper layer is a one-
layer ventilated thermocline, (Luyten etal., 1983) with
thickness given by

h(x, y) = (DoX(x, y) + H*)'? (4.10)

where
2 fZ 'Xe
DoX(x, y) = — —— f Wdx', y)dx',
By Jx

v = glpy — p1)/po; Hy = hi(x., y) = constant. (4.11)
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For the second and third layers:
hox, y) = (H, + H;) — hy(x, y)
h3(x, y) = H3a (4~12)
where, again H, = h,(x,, y) = constant.

To find the basic stratification parameters H,, H,
and Hj, and the buoyancy driven circulation in the
deeper layers, we must consider the thermal boundary
conditions and the diffusive processes. Given the air-
sea heat fluxes as function of the density of the surface
water that is losing/gaining this heat, H(p), we first cal-
culate the net production of water of given density [see
@8)), _

M(p) = (a/C,)0H/dp.

The net production of water of the density ranges rep-
resented by layers 2 and 3 is

ontBnp/2 o putAnp/2 .
Mn, heat fluxes — f M(P)dp == H(p) s
on—&np/2 _ Cp pr—Anpf2

n=2 3. (4.13)

In terms of layers, M), heat fluxes 1S the mass of water of
density p, which enters the nth layer, per unit time,
after being formed at the surface.

Next, the net production/dissipation of water types
represented by the nth layer by the diffusive processes,
is found in terms of the stratification parameters H,,.
This production is simply equal to the difference be-
tween the total cross-isopycnal mass flux into and out
of the nth layer:

) Mn, diffusion — ff dXdy(W: - Wﬁ-ﬂ), (414)
where w¥ is the local velocity across the interface of

the n, n + 1 layers. Using the parameterization (4.5)
for w¥, we have,

A, Poet — Dnplhn
Mn, diffusion = A ff dxdy{ 10/ Pnt o/
Pn+1 — Pn
Anp/hn - An—lp/hn-l—l} (415)
Pn — Pn-1
and in particular,
M) gifusion = A f f dxdy
% {Aap/ha — Aop/hy  Dgp/hy — Anp/hl} 4.162)
pP3 — p2 P2~ M
Asp/hs — Asplh
M3, diffusion — A Jf dXdy{M} . (416b)
P3— P2 .

For the total mass of fluid represented by the nth
layer to remain constant, we must have

Mn, diffusion + Mn, heat fluxes — 0 (4 17)
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The production M, sgusion depends on the eastern
boundary stratification parameters through (4.15) and
(4.10-12), so that we can now write three equations
for the three unknowns H,, H, and H;:

H+H,+ Hy=H=5km
M2, diffusion + M2, heat fluxes — 0
(4.18)

and we can solve for the stratification in terms of the
air-sea fluxes as represented by the M,s. Before showing
a few examples with specific M,s, we calculate the
buoyancy-driven circulation in layers 2 and 3.

With H,, H, and H; now known, we can find the
local values of the vertical velocities across the inter-
faces, and then use

MS,diﬂ‘usion + M3, heat fluxes — 0,

Bhwvn = fwk —wiv), n=2,3 (4.19)
to find the horizontal velocities in these layers:
hovy =L (w3 = wh)
B
h3v3 = 'é" W? . (420)

A short comment on the role of western boundary
currents is relevant here. Much of the heat loss from
the ocean to the atmosphere probably occurs in the
western boundary currents of the wind-driven circu-
lation (Bunker, 1976), and this is considered implicitly
as part of the specified heat flux H(p). We did not,
however, consider the effect of boundary mixing
(Wunsch, 1970). If it is believed to be nonnegligible
(although the area involved is small), it can be incor-
porated into (4.17) by specifying M, voundary mixing (OT
calculating it by matching boundary currents to the
model), and then constraining the interior by

6.0

ELI TZIPERMAN

691

M, gifiusion + M, 7, heat fluxes 1 M, boundary mixing — 0,

instead of by (4.17).

Examples and discussion. In the following examples
we Specify M) neat fuxes A0A M3, peat uxes, and determine
the stratification parameters H,, H,, H;, and buoy-
ancy-driven circulation in layers 2 and 3. This is done
by integrating (4.16a, b) numerically for different values
of H,, until the values satisfying (4.18) are found. Three
different cases are examined, and the results are shown
in Figs. 10-12 and are summarized in Table 1.

Consider first the case shown in Fig. 10. The cir-
culation in the bottom layer (Fig. 10c) is basically the

- same as in the Stommel-Arons model, except that the

vertical velocity at the top of this layer is not uniform
and is determined as part of the solution instead of
being specified.

The circulation in layer 2 (Fig. 10b) shows some
interesting features. In this example M nea fuxes i ZETO,
so that the total upwelling across the interface between
layers 2, 3 is equal to the total upwelling across the
interface between layers 1, 2. Still, locally the difference
w¥ — w¥ does not vanish everywhere. The horizontal
variations in the depths of layers 1 and 2 (Fig. 10a)
induce variations in w¥ and w¥. These variations tend
to make the difference w¥ — w¥ positive under the
subpolar gyre, and negative under the subtropical gyre,
therefore driving the mid-depth circulation in the same
direction as that of the wind-driven circulation! Note
that we do not impose heating of layer 2 in the sub-
tropical gyre and cooling in the subpolar gyre, and that
there is no momentum transfer from the upper layer
to the middle one. The circulation in layer 2 is driven
only by the diffusive processes, and the only effect of
the upper wind-driven circulation on the second layer
is through the variations in the thickness of layer 1.

Unfortunately, it is not possibie to deduce the buoy-
ancy-driven corrections to the velocities in the upper
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FIG. 11. As in Fig. 10 with: M; = —1 Sv, M3 = 5 SV. |¥ylmas = 2.34 Sv,
1 5] max = 5.32 Sv.

layer because we do not know the diffusive corrections
to the vertical velocity at the top of this layer. It is not
clear how to model the diffusion between the upper
layer and the Fkman layer on top of it, but we can
increase the resolution of the wind driven circulation
by adding more layers, and then it will be possible to
find the diffusive effects on each of the layers except
for the uppermost one.

In the second example considered here (Fig. 11a—c)
M), heat fuxes = —1 Sv (abbreviation for 10° m? s7') so
that there is a net vortex compression in the middle
layer: [ [ (w§ — w§)dxdy < 0. This tends to induce a
southward flow in layer 2 [see (4.20)], but the structure
of the flow is still dominated by the variations in the
thickness of the upper layer. ,

In the last example (Fig. 12a-C) M5, neat fluxes = 11
Sv, so that there is a net vortex stretching in layer 2.
This enforces the northward flow under the wind-
driven subpolar gyre, and weakens the southward flow
under the subtropical gyre. The circulation in layer 2
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is still similar to the two-gyre wind driven circulation .
in layer 1.

The above examples demonstrate the physics of the
mid-depth circulation: It is driven by the cross-isopyc-
nal diffusive velocities, and is affected by the air-sea
heat fluxes through the formation of water masses, and
by the wind driven circulation that causes the variations
in the depth of the main thermocline. The two-gyre
mid-depth circulation seems to be quite robust to
changes in the amount of water injected into it from
the outcropping region. It is not clear how a more
realistic parameterization of the mixing processes will.
affect it. What we want to emphasize here, however, is
not the specific result of two-gyre mid-depth circula-
tion, but the mechanisms by which heat fluxes and
wind affect this circulation.

Perhaps the most important conclusion of this sec-
tion concerns the formulation of the correct thermal
boundary conditions for the thermocline problem: The
usual approach is to replace the physical boundary
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TABLE 1. Parameters used in the examples of section 4.

1

Ekman pumping: wx, y) = —10™ sin(7y/3000 km) cm s~
Densities and density ranges of the layers (see section 4a):

p1 = 1.02575 Ap = —0.00250
p2 = 1.02740 i Agp = —0.00080
p3 = 1.02786 3 Asp = —0.00012

Summary of the results: (1 Sv = 10° m?s7'.)

MZ. heat-fluxes M3, heat-fluxes Hl H2 H3
(Sv) (Sv) (m) (m) (m) See Figs.
0 5 770 950 3280 10a-c
-1 5 880 950 3170 lla-c
1 5 700 950 3350 12a-c

conditions of heat fluxes with a specification of the
density at the base of the mixed layer. It should be clear
from the model here, that the heat fluxes have another,
independent effect—the production of water masses.
Information on this formation (or equivalently, on the
air-sea heat fluxes) is necessary for the determination
of the basic stratification and the buoyancy driven
flows, and has to be specified as part of the thermal
boundary conditions. The only way to avoid having to
specify both surface density and heat fluxes is to include
the physics of the mixed layer within the model.

5. Conclusions

We have tried in this paper to examine the impor-
tance of the thermodynamical processes to the dynam-
ics of the general circulation. Two simple models were
presented and used to understand the role of interior
small scale mixing and of air-sea exchanges: A contin-
uvous model of the deep circulation and a three layer
model of the deep and wind-driven circulations.

The results seem to lead to two main conclusions.

1) The mixing processes are essential not only for
driving the deep thermohaline circulation, but also for
determining the basic vertical density stratification of
the wind driven circulation.

2) The air-sea heat fluxes affect the interior circu-
lation in two ways. They determine the surface density
(together with the surface circulation), and they pro-
duce masses of water of different densities which de-
termine the basic interior stratification together with
the mixing processes. As a result, one has to specify
the heat fluxes in addition to specifying the surface
density, as the thermal boundary conditions for the
thermocline problem. These boundary conditions ac-
count for the full effects of the heat fluxes on the interior
without explicitly considering the mixed layer physics,
and allow one to determine the basic stratification of
the circulation, as shown in the previous sections.

Recent studies (Rhines and Young, 1982b; see also
Pedlosky and Young, 1983) have demonstrated the
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importance of the small frictional dissipation due to
the mesoscale eddies to the dynamics of the wind driven
circulation. Together with the results here, it seems
that the physics of the general circulation, and of the
thermocline problem in particular, is more intricate
than anticipated from simple scaling arguments. Both
friction and mixing (diffusion) are small, but their ef-
fects are crucial. :
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