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ABSTRACT

Seeking an index characterizing the best-determined mode of variability leads to a natural
generalization of principal-component analysis with an explicit metric characterizing the uncer-
tainties of the data. This formalism, which distinguishes between state-space patterns and pat-
terns of coefficients defining principal components, allows the more accurate data to exert a
greater influence on the definition of the indices than they do in conventional principal-compon-
ent analysis; in all other aspects, the new formalism is the same as the old. Within the context
of the simple example of Bretherton and collaborators, metric-based principal-component ana-
lysis is shown to be capable of finding correlated patterns of variability in two different data sets.

1. Introduction

This paper presents a generalization of prin-
cipal-component analysis (Pearson, 1901; Jolliffe,
1986) that accounts for uncertainties in the data.
This is particularly important in oceanography
and meteorology where the data characterize
spatio-temporal averages. For example, COADS
summaries (Woodruff et al,, 1987) provide sea-
surface temperatures in the form of monthly means
for 2° x 2° latitude-by-longitude cells. The number
of observations contributing to a particular mean
reflects the number of ships that happened to be
in the region that month. For a particular month,
one cell’s mean may be computed from hundreds
of observations, while others may be based on
only two or three, and there may be no observa-
tions at all for some cells. Another example might
be provided by meteorological analyses of heights
of 500 hPa pressure surfaces: the height is better
estimated over populated regions than over the
oceans where the observational network is sparse.
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Principal-component analysis involves estimating
covariances from such data. Clearly, covariances
between poorly sampled regions are less meaning-
ful than those between regions that have been well
observed throughout the analysis interval, so it is
desirable to discount their influence.

Traditional principal components are linear
combinations of the original variables, e.g., sea-
surface temperatures and/or 500 hPa heights,
which are uncorrelated within the sample and are
ordered by their efficiency at explaining the total
variance of the data. They can be determined
variationally by seeking the linear combination of
variables that has the greatest variance, subject to
the constraint that the coefficient vector has unit
length. Similarly, principal components that
account for uncertainties in the data can be found
by seeking the linear combination having the
greatest variance relative to the variance of its
error, ie. by maximizing a signal-to-noise ratio.
This variational problem leads to a generalized
eigenproblem involving two matrices, the first
being the usual sample covariance matrix of the
data and the second being a covariance matrix
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characterizing the uncertainties of the data. The
second matrix plays the role of a metric defining
what is meant by length of the coefficient vector.
If all variables are estimated with equal accuracy,
the second matrix becomes the identity, the length
becomes the usual Pythagorean length, and this
analysis reduces to the traditional principal-com-
ponent analysis. However, in the general case
where some variables are known with more accu-
racy than others, the resulting principal compon-
ents are defined to emphasize the better-observed
aspects of the data.

A distinguishing feature of metric-based prin-
cipal-component analysis is that there are two sets
of EOF-like patterns. The first are the patterns
computed as metric-based eigenvectors of the
sample covariance matrix. These are patterns of
coeflicients used in defining indices as linear com-
binations of the original variables. The second
patterns are obtained from the first by multiplying
by the metric, in this case by the error-covariance
matrix. The decomposition of the data into prin-
cipal components and EOFs becomes a decom-
position into products of indices and patterns of
the second type. Thus, it is appropriate to refer to
the patterns of the second type as state-space
patterns and to those of the first type as dual or
coefficient patterns.

The distinction between state-space patterns
and their duals is also encountered in the problem
of detecting global warming (Hasselmann, 1979;
Hasselmann, 1993; Thacker, 1996). For that prob-
lem the state-space pattern is suggested by the
difference between two model simulations (the
signal) and the adjoint pattern (the fingerprint) is
used to find a signal in observations. Because the
objective is to determine whether the signal is
sufficiently strong to reject a hypothesis of no
climatic change, the metric for that problem is
determined by natural variability. This should be
contrasted with the objective of this paper, which
is to analyze the natural variability exhibited by
data of varying reliability.

The organization of the paper is the following:
Section 2 defines a measure of uncertainty for an
arbitrary linear combination of variables and
derives metric-based principal components by
seeking the linear combination with the greatest
ratio of variability to uncertainty. Section 3 shows
how the metric-based principal-component ana-
lysis is related to an underlying metric-based
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singular-value decomposition of the data, and
Section 4 points out that the metric makes the
analysis invariant under changes in the units of
measurement. Section 5 re-examines the simple
example of Bretherton et al. (1992) and shows
that metric-based principal components are cap-
able of finding correlated patterns in two sets of
data. Section 6 discusses computational results for
data from model-based analyses of temperature at
25m depth in the tropical Pacific Ocean, and
Section 7 lists the conclusions.

2. Metric-based principal components

A collection of time series of values of climatic
variables such as temperature and pressure at
various locations can be represented as a series of
state vectors x(t;), one for each time t;, j=1,...,n.
Any linear combination

y(t;) =l x(t;) (1)

provides an index that characterizes some aspect
of the temporally varying climatic state. Tra-
ditional principal components are indices that are
constructed to be mutually uncorrelated over the
analysis interval and to have the property that the
first principal component is the index accounting
for the greatest fraction of total variance, the
second accounts for the greatest fraction of
remaining variance, etc. When the data are subject
to uncertainty, the principal components are also
subject to uncertainty. The problem addressed
here is that of defining a set of principal-compon-
ent-like indices that are defined by their ability to
account for the best-determined aspects of the
variability.

Just as the covariance between pairs of time
series can be characterized by the sample covari-
ance matrix

n

Z x(tj)x(tj)T7 (2)

j=1

A=

n—1
where, for simplicity, the variables are assumed to
be in the form of departures from mean values,
their uncertainties can be characterized by an
error-covariance matrix

B = (5x(1,)5x(1;)". 3)

For example, if the data are COADS monthly-
mean sea-surface temperatures, B might be estim-



586

ated from a Monte Carlo computation of the
distribution of covariances resulting from ran-
domly generated monthly-means consistent with
the standard errors of the data. If the data were
in the form of meteorological analyses, B could
be taken to be the same error-covariance matrix
as was used in optimally interpolating the data;
in that case, the errors can be expected to be
correlated, and B will not be diagonal. Because
no aspects of the data can be expected to be free
of uncertainty, B should not be singular.

Just as the sample variance of the index y(t;) =
a’x(t;) is given by:

P*>=a"Aa, 4)
its uncertainty is measured by
©Byy)=a"Ba 5)
Thus, the ratio
© aT Ao
2_
A= o B (6)

represents the variability of the index relative to
its uncertainty. The best-determined aspect of the
climatic state corresponds to the index y (defined
by the coefficient vector «) for which 12 is max-
imum. Requiring the derivative of A% with respect
to a to vanish results in the generalized
eigenproblem,

Ae, = 3B, (7)

for eigenvalues 47 and eigenvectors ;. The eigen-
vector a; corresponding to the largest eigenvalue
A, is the coefficient vector that defines the index
1 associated with the aspect of the climatic state
best determined by the data. The eigenvalue is the
ratio of the variance of the index to its error
variance.

If B were the identity matrix, (7) would be the
standard eigenproblem defining principal com-
ponents. In that case A2 would correspond to the
amount of total variance explained by the prin-
cipal component y,. In general, all variables are
not equally well determined, so B is not the
identity. Even then, the data can be represented
by variables that are equally well determined, e.g.,
by the principal components of B normalized to
have unit error variance. In terms of these vari-
ables the generalized eigenproblem (7) becomes
an ordinary, single-matrix, principal-component
eigenproblem with total variance referenced to
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a common level of uncertainty. Thus, the first
metric-based principal component is the index
that explains the largest fraction of the uncer-
tainty-referenced variance; the second is uncorrel-
ated with the first and explains the largest fraction
of the remainder, and so on.

The error-covariance matrix B serves as a metric
and enters into the normalization and ortho-
gonality of the eigenvectors. When they are nor-
malized so that

0‘.{3“1 =01, (8)

the variance of the index y, is the corresponding
eigenvalue, ie.,

of A, = A2. 9)

Note that (8) implies that indices have uncorrel-
ated errors and that each index has unit error
variance. Using (7), it is easy to see that the indices
themselves are mutually uncorrelated.

In standard principal-component analysis, the
eigenvectors of the sample covariance matrix (the
EOF’s) play two roles. First, they are vectors of
coefficients defining the principal components as
linear combinations of the state variables, and
second, they represent the patterns of variability
associated with the temporally varying principal
components. For metric-based principal compon-
ents, these two roles are played by two distinct
sets of vectors. The eigenvectors a; are the coeffi-
cient vectors defining the principal components
Y«, While the patterns of variability are the vectors

B, = B, (10)

The state-space patterns are bi-orthogonal to the
coefficient vectors,

Biay =6y (11)
their orthonormality condition is
EB-II}!: 5”- (12)

The variables can be decomposed into a series of
products of temporally varying indices and their
corresponding state-space patterns:

x(t) = 3 (e b (13)
This decomposition is a consequence of the metric-
based singular-value decomposition discussed in
Section 3 below. Another way of looking at (13)
is as a linear statistical model for the state vari-
ables; the indices are uncorrelated predictors and
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the patterns are Gauss—Markov weights (Thacker
and Lewandowicz, 1996).

3. Metric-based sin -value decomposition

Standard singular-value decomposition, i.e., the
decomposition of a matrix into a sum of rank-one
matrices formed as an outer product of basis
vectors for the rows and columns, is based on the
premise that the basis vectors are orthogonal with
an identity matrix as metric. This premise can be
generalized to allow for orthogonality relative to
any specified metric. Because metric-based singu-
lar-value decomposition is not well-known to met-
eorologists and oceanographers, it is presented
here first within a general context and then special-
ized to the case of a data matrix and an error
metric.

Metric-based singular-value decomposition of
the matrix M is defined by the pair of equations,

Mk = akCck, (14)
M'c, =oRr,, (15)

where the vectors r, span the row space of M, c,
span the column space, and o, are the metric-
based singular values of M. The positive, symmet-
ric matrices C and R are the metrics for the
column and row spaces, respectively. For standard
singular-value decomposition, C and R are taken
to be identity matrices. Because M can be rectan-
gular, the dimension of the row space might not
be the same as that of the column space; every
basis vector of the smaller space is paired with a
basis vector of the larger space and the unpaired
vectors from the larger space correspond to singu-
lar values that are zero.

Substituting eqs. (14) and (15) into each other
yields a pair of generalized eigenproblems,

M'C My, = 62Rr,, (16)
MR~'M"c, = 62Cc,, a7

which share the same eigenvalues. The matrices R
and C determine the orthonormality conditions
for the row and column spaces:

’{R"z = 51:,1’ (18)
e Cep = 8y, (19)

The matrix M can be decomposed into a sum
of rank-one matrices formed by outer products of
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the dual-basis vectors Rr; and Cc; of the row and
column spaces with corresponding singular values
as coefficients:

M=} 0,(Cc)(Rn.)". (20)
k

Using the orthonormality conditions (18) and
(19), it is easy to verify that this representation of
M satisfies the defining eqs. (14) and (15).

Note the similarity of the eigenproblems (16)
and (17) to those of canonical-correlation analysis
(Hotelling, 1936; Kendall et al., 1983; Graham
et al, 1987); M corresponds to the matrix of
covariances between two sets of data, while R and
C correspond to the within-set covariance matri-
ces. Thus, canonical-correlation analysis provides
an example of metric-based singular-value decom-
position. This might be contrasted with the
standard singular-value decomposition of the
cross-covariance matrix (Bretherton et al., 1992).

The metric-based principal-component analysis
of the sample covariance matrix discussed above
follows from the metric-based singular-value
decomposition of the data matrix D, which is
defined so that each row is the transpose of the
state vector for some particular time and each
column is a time series of one of the state variables.
The row-space metric is the error-covariance
matrix B, while the column-space metric is the
identity matrix multiplied by the adjusted length
of the time series C = (n — 1)I. Using these matrices
for M, R, and C, egs. (14) and (15) become

Day = Ay(n — Dy, (21)

D¢, = ), Boy. (22)
Anticipating the fact that the row-space basis
vectors are the generalized eigenvectors of the
sample covariance matrix, r; has been replaced
with a;. Because multiplying a, by D gives y,, the
vector containing time series of the kth index, the
column-space basis vector ¢, in (21) should be
proportional to y,. While the y, was normalized
so that yfy, =(n—1)A, ie., so that the variance
of the index was the eigenvalue A2, ¢, =y, /(n — 1)4;
is normalized so that cj (n — 1)Ic; = 1 to be consist-
ent with (19). Eq. (22) expresses the fact that the
state-space pattern f; is related to the correlation
between the index ¢; and the original variables.
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The two eigenvalue egs. (16) and (17) become

1
[ D" Doy = 17 By, (23)

n—

L pppre =i (24)
n—1
The matrix on the left-hand side of (23) is the
sample covariance matrix 4, so (23) is the same
as (7). The second eigenproblem can be solved for
the time series of the indices over the reanalysis
interval. Because there generally will be far fewer
months of available data than there will be vari-
ables characterizing the climatic state, this eigen-
problem should be much smaller and easier to
solve. Once it has been solved, the coeflicients
defining the indices can be computed using (22).
The generalized singular-value decomposition
(20) of the data matrix D is

D=} in—1)cu(Bu)" = ), vi B (25)
k k

This is simply the matrix representation of the

expansion in terms of patterns and time series

given in eq. (13).

4. The metric and units of measurement

Traditional principal components can depend
on the units in which the data are expressed. For
example, if some of the data are velocities and
others are pressures, the principal components
obtained when the data are expressed in meters
per second and hectopascals are not the same as
those for miles per hour and inches of mercury.
Total variance is not dimensionally homogeneous;
squared meters per second are added to squared
hectopascals. This is an example of the well-known
scaling problem of principal components. Another
example is provided by the difference between
principal components from the correlation matrix
and those from covariance matrix; in computing
the former, the former data are expressed in units
of their standard deviations, while for the latter,
the data are usually expressed in common units
of measurement.

Metric-based principal components, on the
other hand, are invariant under change of units.
To achieve this invariance, the coefficients should
transform covariantly, if the data transform con-
travariantly, i.e., the units of « should be reciproc-
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ally related to those of x, so that the expression
(1) for the index is dimensionally homogeneous.
Similarly, the generalized eigenvalue eq.(7) is
dimensionally homogeneous, with the eigenvalue
7% being dimensionless. (Contrast this to the
common convention of dimensionless coefficients
and eigenvalues with units of variance, which only
works when there is a single type of data.) State-
space patterns have the same units as the data,
the metric B guaranteeing dimensional homogen-
eity in eq.(10). In fact, all of the equations of
Sections 2 and 3 are dimensionally homogeneous.
Rescaling of the data necessarily results in a
rescaling of both the sample covariance matrix 4
and the error covariance matrix B, so the scaling
enters the formalism explicitly via the metric rather
than implicitly via the choice of units.

Although the focus here is on a metric that
allows variability to be measured with respect to
uncertainty, other metrics can be used to achieve
other goals. For example, if the metric is a dimen-
sional identity matrix, each element having the
same units as the corresponding element of the
covariance matrix, the results are numerically
equivalent to those of conventional covariance-
matrix principal-component analysis; however, the
principal components will be dimensionless, and
except for their units coefficient and state-space
patterns will be indistinguishable. Correlation-
matrix principal components, on the other hand,
correspond to a metric B with principal diagonal
the same as that of the sample covariance matrix
A and all other entries zero; their state-space
patterns are the eigenfunctions of the correla
tion matrix scaled by each variable’s standard-
deviation.

5. An example from Bretherton et al.

In discussing several techniques for identifying
correlated patterns in two sets of data, e.g., two
different fields, Bretherton et al. (1992) suggest a
simple “toy” problem. The data in each set were
composed of two parts, signal and noise. The
signals were prescribed patterns of spatial variabil-
ity ¢, and ¢, having the same temporal behavior
f(t), which was normalized to have unit variance.
In particular, the number of data in each set was
taken to be the same and ¢, was taken to be equal
in magnitude and opposite to sign to ¢,. The
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noise was characterized by the time-independent
covariance matrix ¥, which plays the same role
as the error-covariance matrix B.

One technique they examined for finding the
patterns ¢, and ¢, in the presence of noise was
combined principal-component analysis; the two
sets of data were combined and principal compon-
ents were computed for the sample covariance
matrix of the combined data. (Such computations
are generally not dimensionally homogeneous.)
They found that the first EOF differed from the
prescribed pattern. However, if metric-based prin-
cipal components were used, the state-space pat-
tern of the first index would have corresponded
exactly to the prescribed pattern.

When the record of observations is sufficiently
long, the signal and noise are uncorrelated and
the sample covariance matrix 4 can be separated

into contributions from signal and noise,
A=S8S+V. (26)

For this example, the contribution from the signal
is the rank-one matrix,

S =00, (27)
where
¢1)
d= . 28
<¢2 29
So, the eigenproblem (7) becomes,
Soy = (A2 — 1)Vay,. (29)

Because § is a rank-one matrix, it can have only
one non-zero eigenvalue. Thus, AZ=1 for all k
except k=1; ie., there is only a single index for
which the variability exceeds the uncertainty. The
corresponding (un-normalized) eigenvector is the
dual of the prescribed pattern,

a=V1o. (30)

By substituting (30) into (29) and using (27), it is
easy to verify that the corresponding eigenvalue
is

B=1+0"V 0. (31)
The corresponding state-space pattern is
pr=Vou; =0. (32)

Thus, the first state-space pattern is the same
as the pattern of the prescribed signal.
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6. Computational results for correlated,
scale-dependent, analysis errors

The 25 m-depth, monthly-mean temperature
field of the tropical Pacific Ocean for the
126-month period extending from July 1982
through December 1992, which was taken from a
reanalysis produced by National Meteorological
Center’s Ocean Analysis System (Ji et al.,, 1995),
was arbitrarily selected for testing metric-based
principal-component analysis. The object was to
determine how principal components based on an
analysis-error metric compare to conventional
principal components.

The statistical interpolation scheme used in the
reanalysis was much the same as that described
by Derber and Rosati (1989), i.e., the prior error-
covariance matrix is approximated as being pro-
portional to L?, where L is a matrix representation
of a local five-point averaging operator and where
the exponent p indicates the number of times the
averaging is repeated. Such an error-covariance
matrix is extremely convenient for data assimila-
tion, but it presents computational difficulties here.
Because the tropical 25 m temperature fields are
represented on a high-resolution grid, the matrices
A and B in the eigenproblem (7) are 4919 x 4919.
Not only is this eigenproblem large, most of the
eigenvalues are identically zero. It is much more
convenient to solve the much smaller eigenprob-
lem (24), for which the matrix DB DT is only
126 x 126. For computational convenience, a
sparse approximation to the inverse of their error-
covariance matrix was needed for computing the
matrix DB~'DT. Here, B was defined implicitly
via*

B~ 1=¢"2(I+ (b2V?)?), (33)

where the finite-difference Laplacian operator V>
is represented as S-point stencils, which varies
from point to point due to the irregularities of the
spherical grid. It was constructed to be symmetric
and to have Neumann boundary conditions. The
identity matrix I, which serves to guarantee that
B! is not singular, does not interfere with B
being a smoothing operator. The coefficient b
determines the extent of the smoothing. Although

* This expression can be regarded as a two-term
approximation to the power-series expansion of the
inverse of L? = (I + V?/4)7.
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we have not established a precise correspondence
between values of b and the e-folding scale of 4°
used by Ji et al. (1995), we have chosen b=
200 km based on computations indicating that
this error model should resemble theirs. This level
of smoothing would reduce all component wave-
lengths in the data that are shorter than 4° to less
than 1/50 their original amplitude. The amount of
smoothing is independent of the value of ¢, which
determines the overall level of errors. Although
the appropriate value of ¢ is unknown, an arbitrary
value can be prescribed; the eigenvalues repres-
enting variability with respect to uncertainty are
determined up to an unknown scale factor, which
is sufficient to study the relative importance of the
indices, and the corresponding patterns are
unaffected.

The state-space patterns were compared with
the EOF’s computed as eigenvectors of the sample
covariance matrix, and the two sets of patterns
were found to be qualitatively similar. For both
sets of patterns, the maxima were located in
regions of greatest variability. This was also the
case for state-space patterns based on the sample
correlation matrix; in that case the eigenvectors
of the correlation matrix had to be rescaled by
the local standard deviation to convert them to
state-space patterns with units of temperature.
And for all three sets, the patterns corresponding
to the largest eigenvalues varied on the largest
spatial scales, while those corresponding to the
smallest eigenvalues varied on the smallest scales.
Given 3 sets of maps of the first dozen patterns
for each of the three cases, it would be difficult to
identify which maps corresponded to which case.
They all resembled typical EOF maps, so there
was no point to present them here. In spite of this
general similarity, it is important to understand
that the sets of patterns did differ in details. A
single pattern in one set generally had features
found in several patterns in the other sets. Rather
than regarding a state-space pattern as a mode of
variability, it is better to think of it as the pattern
of covariance between the index and the original
variables, i.e., 4, f, = Aoy, = cov(x, y;).

Computations were also carried out using a
hypothetical error model for which errors were
much smaller along the well-sampled ship tracks
than for the poorly-observed grid cells.
Surprisingly, this 4th set of state-space patterns
was qualitatively similar to the other three sets.
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Only when the error variance of the poorly-
sampled cells was seven orders of magnitude
greater than that of the well-sampled was there
any indication of the ship tracks in the dominant
patterns. However, the coefficient patterns did
reveal the ship tracks clearly, i.e,, the indices were
constructed from the more reliable data. The
absence of ship-track signatures in the state-space
patterns is due to the correlations between temper-
atures of pairs of cells that are not too far apart:
the index must characterize them similarly.

The index time series for the four analyses were
also compared. Index-by-index comparison exhib-
ited somewhat larger differences than did the state-
space patterns, but again, it would be difficult to
discern which came from which analysis. Although
the seasonal cycle was clearly dominant in the
first indices of all three sets, and the ENSO signal
could be seen in the next few indices, the temporal
behavior of a particular index from one set gener-
ally appeared to be a linear combination of several
indices from the other sets. Clearly the indices
from one set characterize different aspects of the
variability than do those from another set.

A more important comparison was the ability
of the first few indices to explain the variability
exhibited by the reanalyses. This comparison was
made in two ways. First the eigenvalue spectra
were compared to determine what percentage of
the total variability was accounted for by the
individual indices, and then maps of temperature
fields based on the first few indices were examined
to see how well the fields were approximated.

In comparing the eigenvalue spectra, it is
important to keep in mind that the eigenvalues
have different meanings for each of the three cases.
For conventional covariance-matrix principal
components, it is a percentage of the total variance;
for correlation-matrix principal components, it is
the predictive ability of the indices expressed as
fraction of the total number of grid cells they can
replace; and for metric-based principal compon-
ents, it is total variance relative to error variance.
The first several conventional principal compon-
ents accounted for a greater fraction of their
spectral energy than did the same number of
components in the other two cases. To explain the
same fraction, slightly more correlation-matrix
principal components were needed, as might be
expected, because they give equal emphasis to
regions of low and high variability. Still more
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error-metric indices were required to account for
the same amount of variability. This can be
explained by the fact that the error-covariance
matrix corresponds to the greatest uncertainties
associated with the largest scales and the least
with the smallest scales*. Because there is more
emphasis on the smaller scales, more indices are
required. Of course, in all three cases, the complete
set of indices explained all of the variability.

In comparisons of maps of the temperature
fields reconstructed from the first few indices, the
results were similar. The greatest level of detail
attained with the fewest indices was attained using
conventional principal components, and the least,
for metric-based indices. It should be kept in mind,
however, that some of this detail is due to ana-
lysis errors.

The more important question, “Which indices
are best at explaining the variability of independ-
ent data?” was not addressed, because a much
longer reanalysis interval would be needed to
answer properly. Part of the record would be
needed for determining the coefficient vectors and
the state-space patterns, and another part would
be required for verification. Indices would have to
be computed from the verification data, using the
coefficient vectors determined from the training
set, and then products of indices and state-space
patterns would have to be summed for comparison
with the second part of the reanalysis.

7. Conclusions

The first conclusion of this paper is that seeking
indices characterizing the well-determined aspects
of climatic data leads to a natural extension of
the familiar principal-component analysis. The
error-covariance matrix characterizing the uncer-
tainty of the data appears in the formalism as an
explicit metric, which serves to measure variability
with respect to uncertainty caused by analysis
errors. The indices are mutually uncorrelated
linear combinations of the variables, which are
defined by their ability to explain total variability
relatve to uncertainty. The EOF’s of conventional
principal-component analysis are differentiated
into two different types of patterns, which are

* To see why, replace V with wavenumber in eq. (3).
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related via the metric: state-space patterns and
patterns of coefficients that define the indices.

The second conclusion is that metric-based prin-
cipal-component analysis follows from metric-
based singular-value decomposition of a data
matrix. Any matrix can be decomposed into a
sum of outer products of column- and row-space
basis vectors that are orthonormal with respect to
specified column- and row-space metrics. When
the rows and columns of the data matrix corre-
spond to variables and instances, the row-space
metric specifies how the different variables should
be measured, e.g., relative to their analysis errors,
and the column-space metric specifies the relative
importance of data at different times. Such a
formulation not only makes explicit how data of
different types should be compared, it also allows
computations to be dimensionally homogeneous
so that the results do not depend on the choice of
units for the variables. A related result is that
canonical-correlation analysis can be recognized
to follow from the singular-value decomposition
of the cross-covariance matrix for data in two
different sets with the two within-set covariance
matrices serving as metrics.

The third conclusion is that metric-based prin-
cipal-component analysis is capable of finding
correlated patterns of variability in two different
data sets. This was demonstrated within the con-
text of the simple example of Bretherton et al
(1992), where the patterns were prescribed, as
were the statistics of the background noise.
Because there is only one prescribed pattern, there
is only a single index for which the variability is
greater than the uncertainty. The state-space pat-
tern for that index was shown to be exactly the
same as the specified pattern.

The fourth conclusion, which is based on results
for a 126-month reanalysis of oceanic thermal
data, is that although metric-based principal com-
ponents are qualitatively similar to conventional
principal components, they place more emphasis
on the well-determined aspects of the data.
Because the uncertainty is greatest for the largest
scales, the largest scales account for a somewhat
greater percentage of the total variability than of
the well-observed variability.

The fifth conclusion is that sampling error
affects metric-based principal components in
exactly the same way as it affects conventional
principal components. To gauge the extent to
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which conclusions are specific to the sample, it is
necessary to have additional data that can be used
for verification.

A final comment is that metric-based principal
components might be preferred to conventional
principal components as predictors for statistical
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models of seasonal-to-interannual change, because
they should provide a characterization of the
observations that is less subject to analysis error.
For the potential of this method to be realized,
care should be taken when reanalyzing data to
provide accurate estimates of analysis errors.
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