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The problem

In AI, information retrieval and data mining we get
Intrinsically Low m-dimensional data lying in high N-dimensional
space.
Recovering the initial dimensionality results

Smaller data sets
I Faster computations
I Reduce the space needed

More meaningful representations
. . . much more
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Non Linearity

PCA, MDS and their variations create linear embeddings of the data
For non-linear structures their linear embeddings fail.
IsoMAP, LLE and Laplacian eigenmaps partially solve this problem.
The heart of these approaches is some kind of non-linear method

IsoMAP, Adjacency Graph of "Neighbor nodes"-edges
LLE, Each node is expressed by a limited number of neighbor
nodes
In Laplacian Eigenmaps, Adjacency Graphs of "Neighbor
nodes"-edges
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Step 1. Construct the Graph

We construct the Adjacency Graph A putting (i , j) edges if xi , xj are
"close"
Close may mean:

ε-neighborhoods ||xi − xj ||2 < ε

n nearest neighbors
Combination of the above (at most n nearest neighbors with
||xi − xj ||2 < ε)
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Step 2. Choose the Weights

The edges have weights that can be
Simple-minded: 1 if connected 0 else

Heat Kernel: Wij = e−
||xi−xj ||

2

t

We note the with t =∞ we get the simple-minded approach
The second method includes more information in our model
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Step 3. The Laplacian eigenvalues

Let A be the Adjacency matrix and D the degree matrix of the graph
We introduce the Laplacian matrix L = A− D and we solve the
generalized eigenvector problem

Lf = λDf

We sort the eigenvectors according to their eigenvalues
0 = λ + 0 ≤ λ1 ≤ λ2 . . . λk−1 We leave out f0 and use the first m
eigenvectors for embedding in m-dimensional Euclidian space.

xi → (f1(i), . . . , fm(i)
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A quick overview

There are several efficient approximate techniques for finding the
nearest neighbors.
The algorithm consists of a few local computations and one
sparse eigenvalue problem.
It is a member of the IsoMap-LLE family of algorithms.
As LLE and IsoMap does not give good results for non-convex
manifolds.
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Our minimization problem for 1 Dimension

Let y = (y1, y2, . . . , yn)
T be our mapping.

We would like to minimize ∑
ij

(yi − yj)
2Wij

under appropriate constraints∑
ij(yi − yj)

2Wij =
∑

ij(y
2
i + y2

j − 2yiyj)Wij =∑
i y2

i Dii +
∑

j y2
j Djj − 2

∑
ij yiyjWij = 2yT Ly

So we need to find
argminyyT Ly
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Our Constraints

The constraint
yT Dy = 1

removes an arbitrary scaling factor in the embedding
argminyyT Ly , yT Dy = 1 is exactly the generalized eigenvalue problem
Ly = λDy
The additional constraint yT D1 = 0 the solution 1 with λ0 = 0
So the final problem is:

argminyy tLy , yT Dy = 1, yT D1 = 0

The general problem for m dimensions is similar and gives exactly the
first m smallest eigenvalues.
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Sum Up

So each eigenvector is a function from nodes to R in a way that "close
by" points are assigned "close by" values.

The eigenvalue of each eigenfunction gives a measure of how "close
by" are the values of close by points

By using the first m eigenfunctions for determining our m-dimensions
we have our solution.
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Continuous Manifolds

When we are using continuous spaces the Graph Laplacian becomes
the Laplace Beltrami Operator (More on this by Nakul.)

And our optimization problem is finding functions f that map the
manifold points to R, in a way that

∫
M || 5 f (x)||2 is minimum.

Intuitively minimizing the gradient minimizes the values assigned to
close by points.
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Heat Kernels

Continuous manifolds give the idea for the Heat Kernel

That is assigning weights Wij = e
||xi−xj ||

2

t

The heat function is a solution for the Laplace Beltrami Operator, and
as a result by assigning the weights according to it we get better
approximation of the "ideal" infinite points case.
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One more Swiss roll!
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Unfolding the Swiss roll - the parameters t,N

N=number of nearest neighbors, t the heat kernel parameter
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Understanding syntactic structure of words

Input:
300 most frequent words of Brown corpus
Information about the frequency of its left and right neighbors (600
Dimensional space.)

The algorithm run with N = 14, t =∞
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Understanding syntactic structure of Words

Three parts of the output. We can see verbs, prepositions, and
auxiliary and modal verbs are grouped.
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Discussion

Laplacian Eigenvalues is a part of the Isomap LLE family
They actually prove that LLE minimizes approximately the same
value
Many times we need to skip eigenvectors, as eigenvectors with
bigger eigenvalues give better results. However variations for
doing so exist.
Although all these algorithms give good results for convex
non-linear structures, they do not give much better results in other
cases.
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