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1. Introduction

This study explores the uncertainty of the circulation within the Gulf of
Mexico resulting from the uncertainty of the inflow through the Yucatan
Straits. It requires first to characterize the uncertainties of the inflow
and then to propagate them dynamically so that they manifest in the
circulation at later times. Here, the nature of the uncertainty of the
inflow is assumed to be similar to its simulated climatological variabil-
ity, and polynomial expansions for each simulated variable are used to
propagate this inflow uncertainty.

2. Characterizing the uncertainty of the Yucatan inflow

As our high-resolution HYCOM simulations of the Gulf’s circulation re-
quires open boundary conditions from a lower-resolution simulation of
a larger region, the flow specified at the southern open boundary pro-
vide a convenient proxy for the Yucatan inflow. Quantifying its uncer-
tainty requires deciding the nature and likelihood of possible deviations
from these boundary conditions.
• Assume possible deviations from default boundary conditions are

similar to deviations from a long-term mean of simulated boundary
flow.

•Decompose the deviations from long-term mean into spatiotemporal
modes using SVD,

• Scale modes by factor α to get boundary variability. (α = 1 below.)
• Assume first two modes, which account for 42% of variability are

sufficient to model boundary uncertainty.
• Add modes with Gaussian random amplitudes ξ1 and ξ2 to default

boundary conditions to quantify uncertain boundary conditions.

3. Propagating uncertainty with polynomial expansions

The uncertainty of any simulated output y is dynamically linked to the
boundary uncertainties. In principal its uncertainty can be described
quantatively by running the model for a large variety of boundary con-
ditions chosen randomly from the distribution of values for ξ1 and ξ2.
Here we explore a more efficient approach that uses a smaller num-
ber of model runs supplemented by inexpensive estimates of y at all
values of ξ1 and ξ2.
• Assume y can be well approximated by a sum of polynomials:

y(ξ1, ξ2) ≈
k1+k2≤K∑

k1,k2

yk1,k2
Pk1

(ξ1)Pk2
(ξ2) .

•Use Hermite polynomials, because they are orthogonal with Gaus-
sian weights.

•Orthogonality provides an expression for the expansion coefficients:

yk1,k2
=

1

Nk1
Nk2

∫ ∫
y(ξ1, ξ2)Pk1

(ξ1)p(ξ1)dξ1Pk2
(ξ2)p(ξ2) dξ2 .

•Nk account for the normalization convention and p(ξ) is the standard
Gaussian probability density.

4. Quadrature ensemble

The expansion coefficients for any quantity simulated by HYCOM can
be evaluated by Gauss-Hermite quadrature.∫ ∫

y(ξ1, ξ2)Pk1
(ξ1)p(ξ1)dξ1Pk2

(ξ2)p(ξ2)dξ2 ≈∑
q1

∑
q2

y(ξq1, ξq2)Pk1
(ξq1)wq1Pk2

(ξq2)wq2 .

• , (ξq1, ξq2) are quadrature points where values of y must be known.
•wq1 and wq2 are corresponding weights.
• The principal cost of evaluating the coefficients is that of the HYCOM

simulations needed to get values y at the quadrature points.
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Figure 1: Left: Circles enclose regions of 90%, 99%, . . ., 99.9999%
probability. Dots mark locations of 49 Gauss-Hermite quadrature
points, with red dots corresponding to relatively likely, blue less likely,
green unlikely, and magenta highly unlikely boundary conditions.
Right: Locations of the Loop Current and its eddies from 49 HYCOM
quadrature runs as indicated by 17 cm sea-surface-height contours.
The panels, from upper left to lower right, show the contours at 15,
150, 300, 450, 600, and 750 days after the boundary uncertainties
were initiated. The colors of the contours correspond to the colors of
the dots .

5. Uncertainty of the surface elevation field

After the ensemble of quadrature simulations has been run, it is simple
to evaluate the uncertainty of any variables that have been saved. In
particular, the orthogonality of the polynomials simplifies expectation
integrals:
• The mean of y is given by the constant term y0,0.
• The variance is given by the sum of squares of the other coefficients.
• The covariance with another variable z is given by the sum of prod-

ucts of their coefficients.
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Figure 2: Left: Mean (m) of the sea-surface-height field from the
polynomial chaos expansion at 15, 150, 300, 450, 600, and 750 days
after the boundary uncertainties were initiated. Right: Standard de-
viation (m) of the sea-surface-height field from the polynomial chaos
expansion at same days.
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Figure 3: Estimates of covariance (m2) of the surface elevation for
each grid cell with the surface elevation for the cell at the point (86◦E,
24.1◦N) marked by the white star.

6. Convergence of the polynomial expansion

As variance and standard deviation increase as more terms are re-
tained in the polynomial expansion, convergence can be examined by
comparing different levels of truncation. Figure 4 shows that going
from 5th to 6th degree polynomials contributes significantly less to the
standard deviation of surface elevation than does going from 4th to
5th.
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Figure 4: Incremental contribution to standard deviation (cm) of sur-
face elevation at day 750. Left: contribution of the 6 5th-degree terms
relative to the total contributed by the 21 terms of degree less than
6. Right: contribution of the 7 6th-degree terms relative to the total
contributed by the 28 terms of degree less than 7.

7. Emulation

The polynomial expansions provide inexpensive alternatives to the
simulations for boundary inflows that were not in the quadrature en-
semble. For any value of the amplitudes ξ1 and ξ2, there is a polyno-
mial approximation for y. This approximation can be called emulation
in contrast to values for expensive model simulations.

• The emulated values for y can be regarded as lying on a polynomial
response surface.

• The more likely values of ξ1 and ξ2 determine the part of the surface
with the more likey values for y.

• Because the dynamics are nonlinear, the distribution of y is not
Gaussian.

• Sampling ξ1 and ξ2 to generate a histogram reveals its non-Gaussian
nature.
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Figure 5: Left: Surface elevation (cm) at (86◦E,24.1◦N) as a func-
tion of random variables ξ1 and ξ2. Note the compressed color scale
used to distinguish more likely from less likely responses: Contours
are at 10 cm intervals from -50 to 50 cm, and more extreme values
are represented with a compressed scale. The circles indicate that
the extreme values are highly unlikely. Right: Errors (m) of the poly-
nomial chaos expansion for sea-surface-height at (86◦E,24.1◦N). The
color of each rectangle indicates the difference between the HYCOM
simulation and its approximation by the polynomial chaos expansion at
each quadrature point, with white indicating errors larger than 20 cm.
Bottom: Kernel density estimates for surface elevation (m) at the point
(86◦E, 24.1◦N) derived from histograms generated using polynomial
chaos expansion corresponding to 50,000 random boundary condi-
tions. Ticks along the bottom indicate values for the 49 HYCOM sim-
ulations. Red curves are kernel density estimates, and black curves
are Gaussian densities with means and standard deviations from the
polynomial expansions.

8. Conclusion

Polynomial expansion provide a relatively inexpensive way to explore
the consequences of uncertainties in a model’s inputs. The approach
taken here illustrates the need for quantifying the uncertainties of the
inputs. In particular, because the expense increases geometrically
with the number of uncertain inputs to be examined, it is important to
focus on only the few that are the most important. In this regard, the
method has similarities to Kalman filtering as applied to oceanographic
and meteorological models. And like Kalman filtering, polynomial ex-
pansions offer the possibility of updating prior estimates of input un-
certainties by exploiting observational data, although that aspects has
not been explored here.
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