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Resolving Forces, Calculating Resultants 
Ref: Hibbeler § 2.4-2.6, Bedford & Fowler: Statics § 2.3-2.5 

 

Resolving forces refers to the process of finding two or more forces which, when combined, will 
produce a force with the same magnitude and direction as the original. The most common use of the 
process is finding the components of the original force in the Cartesian coordinate directions: x, y, and 
z. 

A resultant force is the force (magnitude and direction) obtained when two or more forces are 
combined (i.e., added as vectors). 

 

 

Breaking down a force into its Cartesian coordinate components (e.g., Fx, Fy) and using Cartesian 
components to determine the force and direction of a resultant force are common tasks when solving 
statics problems. These will be demonstrated here using a two-dimensional problem involving co-
planar forces. 

 

Example: Co-Planar Forces 
Two boys are playing by pulling on ropes connected to a hook in a rafter. The bigger one pulls on 
the rope with a force of 270 N (about 60 lbf) at an angle of 55° from horizontal. The smaller boy 
pulls with a force of 180 N (about 40 lbf) at an angle of 110° from horizontal. 

a. Which boy is exerting the greatest vertical force (downward) on the hook? 

b. What is the net force (magnitude and direction) on the hook – that is, calculate the 
resultant force. 
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Solution 
First, consider the 270 N force acting at 55° from horizontal. The x- and y-components of force are 
indicated schematically, as 
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Note: The angles in this 
figure have been indicated 
as coordinate direction 
angles. That is, each angle 
has been measured from the 
positive x axis. 
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The x- and y-components of the first force (270 N) can be calculated using a little trigonometry 
involving the included angle, 55°: 

N270
F

)55cos( 1x=° ,   or   ( ) )55cos(N270F 1x °=  

and 

N270
F

)55sin( 1y=° ,   or   ( ) )55sin(N270F 1y °= . 

MATLAB can be used to solve for Fx1 and Fy1 using its built-in sin() and cos() functions, but these 
functions assume that the angle will be expressed as radians, not degrees.  The factor pi/180 is used 
to convert the angle from degrees to radians.  Note that pi is a predefined variable in MATLAB. 

 

» F_x1 = 270 * cos( 55 * pi/180 ) 

 F_x1 = 

   154.8656 

» F_x1 = 270 * sin( 55 * pi/180 ) 

 F_x1 = 

   221.1711 

 

Your Turn 
Show that the x- and y-components of the second force (180 N acting at 
110° from the x-axis) are 61.5 N (-x direction) and 169 N (-y direction), 
respectively. Note that trigonometry relationships are based on the 
included angle of the triangle (20°, as shown at the right), not the 
coordinate angle (-110° from the x-axis). 

 

Answer, part a) 
The larger boy exerts the greatest vertical force (221 N) on the hook. The vertical 
force exerted by the smaller boy is only 169 N. 
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Solution, continued 
To determine the combined force on the hook, FR, first add the two y-components calculated above, 
to determine the combined y-directed force, FRy, on the hook: 
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» F_Ry = F_y1 + F_y2 

F_Ry = 

  390.3157 

The y-component of the resultant force is 390 N (directed down, or in the –y direction). Note that the 
direction has not been accounted for in this calculation. 

Then add the two x-components to determine the combined x-directed force, FRx, on the hook. Note 
that the two x-component forces are acting in opposite directions, so the combined x-directed force, 
FRx, is smaller than either of the components, and directed in the +x direction. 
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» F_Rx = F_x1 + ( -F_x2 ) 

F_Rx = 

   93.3020 

The minus sign was included before Fx2 because it is directed in the –x direction. The result is an x-
component of the resultant force of 93 N in the +x direction. 

Once the x- and y-components of the resultant force have been determined, the magnitude can be 
calculated using 

2
Ry

2
RxR FFF +=  

The MATLAB calculation uses the built-in square-root function sqrt(). 

» F_R  = sqrt( F_Rx ^ 2 + F_Ry ^ 2 ) 

F_R = 

  401.3124 



The angle of the resultant force can be calculated using any of three functions in MATLAB: 

 

Function Argument(s) Notes 
atan(abs(Fx / Fy)) one argument: abs(Fx / Fy) Returns the included angle 

atan2(Fy, Fx)  two arguments: Fx and Fy Returns the coordinate direction angle 

Angle value is always between 0 and π radians (0 and 
180°) 

A negative sign on the angle indicates a result in one of 
the lower quadrants of the Cartesian coordinate system 

cart2pol (Fx, Fy) two arguments: Fx and Fy Returns the positive angle from the positive x-axis to 
the vector 

Angle value always between 0 and 2π radians (0 and 
360°) 

An angle value greater than 180° (π radians) indicates 
a result in one of the lower quadrants of the Cartesian 
coordinate system 

 

The atan2() function is used here, and FRy is negative because it is acting in the –y 
direction. 

 

» F_Rx  =   93.302; 

» F_Ry  = -390.316; 

» theta   = 180/pi * atan2( F_Ry, F_Rx ) 

theta = 

  -76.5562 

 

Answer, part b) 
The net force (magnitude and direction) on the hook is now known: 

 FR = 401 N (about 90 lbf) acting at an angle 76.6° below the x-axis. 
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Annotated MATLAB Script Solution 

% Determine the x- and y-components of the two forces
% (270 N at -55°, and 180 N at -110°)
%
% Note: These trig. Calculations use the included angles
% (55° & 20°), with minus signs added to both y-component
% equations to indicate the forces act in the -y direction,
% and the F_x2 equation to show that this force acts in
% the -x direction.

% Calculate the x- and y- components of the first force (270 N)
F_x1 = 270 * cos( 55 * pi/180 );
F_y1 = -270 * sin( 55 * pi/180 );
fprintf('\nF_x1 = %8.3f N\t F_y1 = %+9.3f N\n',F_x1,F_y1);

% Calculate the x- and y- components of the first force (180 N)
F_x2 = -180 * sin( 20 * pi/180 );
F_y2 = -180 * cos( 20 * pi/180 );
fprintf('F_x2 = %7.3f N\t F_y2 = %9.3f N\n',F_x2,F_y2);

% Sum the y-components of the two forces to determine the
% y-component of the resultant force
F_Ry = F_y1 + F_y2;

% Sum the x-components of the two forces to determine the
% x-component of the resultant force
F_Rx = F_x1 + F_x2;
fprintf('F_Rx = %7.3f N\t F_Ry = %9.3f N\n\n',F_Rx,F_Ry);

% Calculate the magnitude of the resultant force
F_R = sqrt( F_Rx ^ 2 + F_Ry ^ 2 );
fprintf('F_R = %8.3f N\n',F_R);

% Calculate the angle of the resultant force
% (in degrees from the x-axis)
theta = atan2( F_Ry, F_Rx ) * 180/pi;
fprintf('theta = %7.3f N\n\n',theta);

 

 



Dot Products 
Ref: Hibbeler § 2.9, Bedford & Fowler: Statics § 2.5 

 

Taking the dot product of an arbitrary vector with a unit vector oriented along a coordinate direction 
yields the projection of the arbitrary vector along the coordinate axis. When this scalar (magnitude) is 
multiplied by a unit vector in the coordinate direction, the result is the vector component in that 
coordinate direction. This is one common use of the dot product. The other is finding the angle 
between two vectors. 

 

 

The dot product (or scalar product) can be calculated in two ways: 

•  In trigonometric terms, the equation for a dot product is written as 

)cos(BA θ=• BA  

Where θ is the angle between arbitrary vectors A and B. 

•  In matrix form, the equation is written 

zzyyxx BABABA ++=• BA  

MATLAB provides a dot product function, dot() to automatically perform the calculations required by 
the matrix form of the dot product. If you have two vectors written in matrix form, such as 

A = (1, 2, 3)

x

y

zB = (-1, -2, -1)

 
Then A•B is the projection of A onto B (a magnitude, or scalar). Using MATLAB, the dot product is 
calculated like this (bold letters have not been used for matrix names in MATLAB): 

» A = [ 1  2  3]; 

» B = [-1 -2 -1]; 

» dot(A,B) 

ans = 

    -8 

2 



To verify this result, we can do the math term by term… 

» x = 1;       y = 2;       z = 3;         % coordinate index definitions 

» A(x) * B(x) + A(y) * B(y) + A(z) * B(z) 

ans = 

    -8 

And we can use the trig. form of the dot product to find the angle between the two vectors. First, 
calculate the magnitude of the A and B vectors… 

» A_mag = sqrt( A(x)^2 + A(y)^2 + A(z)^2 ) 

A_mag = 

    3.7417 

» B_mag = sqrt( B(x)^2 + B(y)^2 + B(z)^2 ) 

B_mag = 

    2.4495 

Then find the angle between the vectors using MATLAB’s acos() function.  The factor 180/pi has been 
included to convert the angle to degrees. 

» theta = 180/pi * acos( dot(A,B)/( A_mag * B_mag ) ) 

theta = 

  150.7941 

Finally, you can use a 3-d scatter plot in MATLAB to help you visualize these vectors, to see if your 
computed results make sense. To create the 3-d scatter plot, you must define the x, y, and z 
coordinates of the endpoints of each vector. 

» X = [ 0   0;  1  -1];        Y = [ 0   0;  2  -2];        Z = [ 0   0;  3  -1]; 

Here, the top-left elements form the starting coordinates for the A vector: (0, 0, 0). The lower-left 
elements for the end coordinates for the A vector: (1, 2, 3). Similarly, the right columns in each matrix 
represent the starting (0, 0, 0) and ending (-1, -2, -1) coordinates of the B vector. 

To create the graph, issue the following statements to the MATLAB command window. 

 

 

 

» plot3(X,Y,Z, ’-o’)  % Creates plot 

» grid       % Draws gridlines 

» xlabel('x-axis')     % Labels x-axis 

» ylabel('y-axis')     % Labels y-axis 

» zlabel('z-axis')     % Labels z-axis 

» view(29,20);      % Rotates graph 

 

 

 



Note that the axes do not intercept at (0, 0, 0). Actually, the middle point on the plot is at (0, 0, 0).  The 
‘-o’ option in the plot3 function is a line specification that determines line type, and marker symbol of 
the plotted lines.  Here, the  ‘-‘ represents a solid line and the ‘o’ is used for circular marker symbols.  

The usefulness of the 3-d plot for visualization is the ability to rotate the graph to see how the plot 
looks from different angles. To rotate the plot, use the menu commands: Tools/Rotate 3D, then simply 
click inside the plot area, hold the left mouse button down, and drag the mouse pointer around the 
plot. The curve will respond to the location of the pointer. 

In the graph below, the plot has been rotated until the plane of the vectors is approximately parallel 
with the page. In this view, the calculated angle of 150° looks to be about right for these vectors. 

 
 



Annotated MATLAB Script Solution 

% Define the vectors
A = [ 1 2 3];
B = [-1 -2 -1];

% Take the dot product
dot(A,B)

% Check MATLAB's dot product operator by calculating the dot product
% explicitly...
x = 1; y = 2; z = 3; % coordinate index definitions

A(x) * B(x) + A(y) * B(y) + A(z) * B(z)

% To calculate the angle between the vectors, first need the magnitude
% of each vector.
A_mag = sqrt( A(x)^2 + A(y)^2 + A(z)^2 );
B_mag = sqrt( B(x)^2 + B(y)^2 + B(z)^2 );

% Then calculate the angle
theta = 180/pi * acos( dot(A,B)/( A_mag * B_mag ) );

% To visualize the vectors, create matrices describing the starting and
% ending coordinates of each vector.
X = [ 0 0

1 -1];

Y = [ 0 0
2 -2];

Z = [ 0 0
3 -1];

% Then create a 3-d Scatter Plot
plot3(X, Y, Z, '-o') % Creates plot
grid; % Draws gridlines
xlabel('\bf{x-axis}'); % Labels x-axis
ylabel('\bf{y-axis}'); % Labels y-axis
zlabel('\bf{z-axis}'); % Labels z-axis
view(29,20); % 3-D graph viewpoint specification

 

 

 

Example: Finding the Components of a Force Vector 
A force acts on a fixed pin with a magnitude of 270 N (about 60 lbf) at an angle of 55° from horizontal. 

a. Find the horizontal and vertical components of the force using dot products. 
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Solution 
To find the magnitude of the x-component of F, calculate the dot product of F and a unit vector in the 
x direction, ux. 

x
x u

)cos(FF xuF •
=θ=  

Note: Most texts do not show ux in the denominator of the last term of this series of equalities, since 
the magnitude of a unit vector is known to be one.  

» F = 270; 

» theta = 55 * pi/180;    % 55 deg converted to radians 

» F_x = F * cos( theta ) 

F_x = 

  154.8656 

Similarly, the vertical component of F is calculated as: 

 » F_y = F * cos( (90-55) * pi/180 ) 

F_y = 

  221.1711 

Alternatively, the F and ux vectors can be written in vector form. 

» F(1) = 270 * cos(55 * pi/180); 

» F(2) = 270 * cos( (90-55) * pi/180 ); 

» F(3) = 0; 

» u_x  = [ 1   0   0 ]; 

And the dot product can be used to calculate the horizontal component of F. 

» F_x = dot( F, u_x ) 

F_x = 

  154.8656 



Similarly, we can define a unit vector in the y-direction, and calculate the vertical component of the 
force. 

» u_y  = [ 0   1   0 ]; 

» F_y = dot( F, u_y ) 

F_y = 

  221.1711 

 

 

 



Equilibrium of a Particle, Free-Body Diagrams 
Ref: Hibbeler § 3.3, Bedford & Fowler: Statics § 3.2-3.3 

 

When a body is either not moving (zero velocity), or moving at a constant velocity (speed and 
direction), the sum of the external forces on the body is zero, and the body is said to be in equilibrium. 

0=∑F  

or, for two-dimensional equilibrium, 

∑
∑

=

=

0F

0F

y

x
 

The picture showing the external forces acting on the object is called a free-body diagram. A free-
body diagram is used to help solve problems both in statics and dynamics. 

 

 

Example: Forces on Traffic Light Suspension Cables 
Three traffic lights have been suspended between two poles at an intersection, as shown below. 
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Each of the three lights has a mass of 18 kg (approx. 40 lb). (Assume zero mass cables.) The tension 
in the cables has been adjusted such that the lights at points B and C are at the same height, and 
cable section AB is at an angle of 5° from horizontal. 

a. Determine the downward force at points B, C, and D due to the mass of the lights. 

b. Draw a free-body diagram at point B, and use it to find the vertical and horizontal components 
of force in cable AB. 

c. Repeat part b. for the other lights, determining the force components in each cable section, 
and the angle of each cable section (measured from the +x direction). 

 

Solution: Part a. 
The mass of each traffic light is being acted on by gravity, so the force is calculated as 

gmFy =  

In MATLAB, this calculation looks like this: 
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» m = 18;                 %Mass of light (kg) 

» g = 9.8;                 %Gravitational constant (m/s^2) 

» F_grav = -m * g 

F_grav = 

 -176.4000 

So the downward force exerted by each traffic light is 176.4 N. The minus sign has been included to 
show that the force is downward, i.e., in the –y direction. 

If the lights are not moving up or down, the cable must apply an equal but oppositely directed force on 
the light, since the vertical force components must sum to zero if the body is in equilibrium. 

 

Part b. – Free-Body Diagram for Light at B 

B

Fgrav  = -176.4 N

FAB

FBC

 
Since cable section BC is horizontal, there is no vertical component of force in cable section BC. So, 
all of the weight of the traffic light at B must be carried by cable AB, more specifically, by the vertical 
component of force in cable AB. 

» F_ABy = -F_grav 

F_ABy = 

  176.4000 

The horizontal component of force in cable AB can be determined using the specified angle (cable AB 
is 5° from horizontal, or 175° from +x). 

F_ABx = F_ABy / tan( 175 * pi/180) 

F_ABx = 

 -2016.3000 

The horizontal component is 2016 N (about 450 lbf) acting in the –x direction.  

The force acting in the direction of the cable has a magnitude of 2024 N. 

» F_AB  = sqrt( F_ABx ^ 2 + F_ABy ^ 2 ) 

F_AB = 

  2024.0000 

Finally, if the light at point B is not moving to the left or right, the sum of the horizontal forces acting on 
point B must be zero, so the horizontal component of force in section BC is +2016 N. Since there is 
no vertical component of force in section BC, this is also the total force on section BC at point B. 

» F_BCx = -F_ABx;   % Since the sum of the x-components of force is zero 

» F_BCy = 0; 

» F_BC  = sqrt( F_BCx ^ 2 + F_BCy ^ 2 ) 

F_BC = 

  2016.3000 



 

Part b. – Free-Body Diagram for Light at C 

CFBC = 2016.3 N

FCD

Fgrav  = -176.4 N
 

The free body diagram for the light at point C is constructed using the following concepts: 

•  If the light at point C is not moving left or right, then the horizontal component of force FCD 
must be +2016 N. 

•  If the light at point C is not moving up or down, then the vertical component of force FCD must 
be +176 N. 

This is essentially the same as the free-body diagram at point B, just flipped left to right. So the 
magnitude of force FCD is 2024 N, and acts at 5° from horizontal. This can be verified as follows: 

» F_CDx = -F_BCx 

F_CDx = 

  2016.3000 

» F_CDy = -F_grav 

F_CDy = 

  176.4000 

» F_CD  = sqrt( F_CDx ^ 2 + F_CDy ^ 2 ) 

F_CD = 

  2024.0000 

» theta_CD = atan(F_CDy/F_CDx) * 180/pi 

theta_CD = 

    5.0000 

Note: The value of FBC used in this section is –2016.3 N, as shown in the free-body diagram for point 
C. See the Annotated MATLAB Script Solution to see how this sign change is handled for the 
complete problem solution. 

 

Part b. – Free-Body Diagram for Light at D 

FCD = 2024 N
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The weight of the traffic light at point D exerts a downward force, Fgrav, of 176.4 N. In addition, force 
FCD, acting on point D, has a vertical component of 176.4 N, also acting downward. If the light at point 
D is not moving up or down, then these downward forces must be counterbalanced by the vertical 
component of force FDE. 



» F_DEy = -( F_grav + F_CDy ) 

F_DEy = 

  352.8000 

The horizontal component of force FDE must be equal to –FCD_x if the light at point D is to be 
stationary. 

F_DEx = 

  2016.3000 

Once the horizontal and vertical components are known, the angle (in degrees) of cable DE can be 
determined. 

» theta_DE = atan(F_DEy/F_DEx) * 180/pi 

theta_DE = 

    9.9250 

 



Annotated MATLAB Script Solution 

%Traffic Light Suspension Cable
%
% Part a.
m = 18; %Mass of light (kg)
g = 9.8; %Gravitational constant (m/s^2)
F_grav = -m * g; %Force exerted by traffic light
fprintf('Part a.\n')
fprintf('m = %8.1f kg\t\t g = %8.1f m/s^2\n',m,g);
fprintf('F_grav = %8.2f N\n\n',F_grav);

% Part b. - Light at Point B
F_ABy = -F_grav; %Vertical component of AB
F_ABx = F_ABy / tan( 175 * pi/180 ); %Horizontal component of AB
F_AB = sqrt( F_ABx ^ 2 + F_ABy ^ 2 ); %Magnitude of AB
fprintf('Part b. - Light at Point B\n')
fprintf('F_ABx = %+8.1f N\t\t F_ABy = %+8.1f N\n',F_ABx,F_ABy)
fprintf('F_AB = %+8.1f N\n\n',F_AB);

F_BCx = -F_ABx; %Horizontal component of BC
F_BCy = 0; %Vertical component of BC
F_BC = sqrt( F_BCx ^ 2 + F_BCy ^ 2 ); %Magnitude of BC
fprintf('F_BCx = %+8.1f N\t\t F_BCy = %+8.1f N\n',F_ABx,F_ABy)
fprintf('F_BC = %+8.1f N\n\n',F_BC);

% Part b. - Light at Point C
F_BCx = -F_BCx; %F_BC acting on point C is in the -x direction
F_CDx = -F_BCx; %Horizontal component of CD
F_CDy = -F_grav; %Vertical component of CD
F_CD = sqrt( F_CDx ^ 2 + F_CDy ^ 2 ); %Magnitude of CD
theta_CD = atan(F_CDy/F_CDx) * 180/pi; %Angle from horizontal force acts
fprintf('Part b. - Light at Point C\n')
fprintf('F_CDx = %+8.1f N\t\t F_CDy = %+8.1f N\n',F_CDx,F_CDy)
fprintf('F_CD = %+8.1f N\t\t theta_CD = %+8.3f deg\n\n',F_CD,theta_CD);

% Part b. - Light at Point D
F_CDx = -F_CDx; %F_CD acting on point d is in the -x direction
F_CDy = -F_CDy; %F_CD acting on point C is in the -y direction
F_DEy = -( F_grav + F_CDy ); %Vertical component of DE
F_DEx = -F_CDx; %Horizontal component of DE
F_DE = sqrt( F_DEx ^ 2 + F_DEy ^ 2 ); %Magnitude of DE
theta_DE = atan(F_DEy/F_DEx) * 180/pi; %Angle from horizontal force acts
fprintf('Part b. - Light at Point D\n')
fprintf('F_DEx = %+8.1f N\t\t F_DEy = %+8.1f N\n',F_DEx,F_DEy)
fprintf('F_DE = %+8.1f N\t\t theta_DE = %+8.3f deg\n\n',F_DE,theta_DE);

 



Cross Products and Moments of Force 
Ref: Hibbeler § 4.2-4.3, Bedford & Fowler: Statics § 2.6, 4.3 

 

In geometric terms, the cross product of two vectors, A and B, produces a new vector, C, with a 
direction perpendicular to the plane formed by A and B (according to right-hand rule) and a 
magnitude equal to the area of the parallelogram formed using A and B as adjacent sides. 

A

B

C

A

B

θ
A sin(θ)

Area = A B sin(θ)
 

The cross product is used to find the moment of force. An example of this will be shown after 
describing the basic mathematics of the cross product operation. 

 

 

The cross product (or vector product) can be calculated in two ways: 

•  In trigonometric terms, the equation for a dot product is written as 

CBA uBAC )sin(θ=×=  

Where θ is the angle between arbitrary vectors A and B, and uC is a unit vector in the direction of 
C (perpendicular to A and B, using right-hand rule). 

•  In matrix form, the equation is written in using components of vectors A and B, or as a 
determinant. Symbols i, j, and k represent unit vectors in the coordinate directions. 

( ) ( ) ( )

zyx

zyx

xyyxxzzxyzzy

BBB
AAA

BABABABABABA

kji

kjiBA

=

−+−−−=×

 

MATLAB provides a cross product function to automatically perform the calculations required by the 
matrix form of the dot product. If you have two vectors written in matrix form, such as 

4 



A = (1, 2, 3)

x

y

zB = (-1, -2, -1)

 
Then A×B can be calculated like this (bold letters have not been used for matrix names in MATLAB): 

» A = [1   2  3]; 

» B = [-1 -2 -1]; 

» A_x_B = cross(A,B)  %Uses MATLAB’s cross product function 

A_x_B = 

     4    -2     0 

To verify this result, we can do the math term by term… 

» x = 1;  y = 2;  z = 3;    %Coordinate index definitions 

» [  A(y)*B(z)-A(z)*B(y)     -(A(x)*B(z)-A(z)*B(x))     A(x)*B(y)-A(y)*B(x)  ] 

ans = 

     4    -2     0 

Or, we can use the trig. form of the cross product. First, we calculate the norm, or magnitude, of the A 
and B vectors using the norm function in MATLAB… 

» A_mag = norm(A) 

A_mag = 

    3.7417 

» B_mag = norm(B) 

B_mag = 

    2.4495 

Then find the angle between vectors A and B using MATLAB’s acos() function. 

» theta = 180/pi * acos(dot(A,B)/(A_mag * B_mag)) 

theta = 

  150.7941 

The magnitude of the C matrix can then be calculated… 



» C_mag = A_mag * B_mag * sin(theta * pi/180) 

C_mag = 

    4.4721 

The direction of C is perpendicular to the plane formed by A and B, and is found using the cross 
product. To obtain the direction cosines of C, divide the cross product of A and B by its magnitude. 

» cross(A,B)/norm(cross(A,B)) 

ans = 

    0.8944   -0.4472         0 

» alpha = acos(0.8944) * 180/pi  %from x+ 

alpha = 

   26.5685 

» beta  = acos(-0.4472) * 180/pi  %from y+ 

beta = 

  116.5642 

» gamma = atan(0) * 180/pi  %from z+ 

gamma = 

     0 

This is, of course, equivalent to 

» C = cross(A,B); 

» C/C_mag 

ans = 

    0.8944   -0.4472         0 

The vectors can be graphed to see how the cross product works. The plot on the left shows the 
original plot, with the axes oriented in the same way as the drawing on the second page. In the plot 
on the right the axes have been rotated to show that vector C is perpendicular to the plane formed by 
vectors A and B. 

x = [ 0  0 0;   y = [ 0  0 0;   z = [ 0  0 0; 
        1 -1 4];                       2 -2 2];           3 -1 0]; 

    
 

 



Annotated MATLAB Script Solution 

%Define the vectors
A = [1 2 3];
B = [-1 -2 -1];

%Take the cross product
A_x_B = cross(A,B);
fprintf('A x B = [ %1.4f %1.4f %1.4f]\n\n', A_x_B)

%Check MATLAB's cross product operator by calculating the cross product
explicitly...
x = 1; y = 2; z = 3; % Define coordinate index definitions
A_x_B_exp = [A(y)*B(z)-A(z)*B(y) -(A(x)*B(z)-A(z)*B(x)) A(x)*B(y)-A(y)*B(x)];
fprintf('A x B calculated explicitly= [ %1.4f %1.4f %1.4f]\n\n', A_x_B_exp)

%Use the trigonometric form of the cross product operator to find the
magnitude of the C vector.
% First, find the magnitude of the A & B vectors using the norm function.
A_mag = norm(A);
B_mag = norm(B);
fprintf('Magnitude of vector A = %1.4f \n', A_mag)
fprintf('Magnitude of vector B = %1.4f \n', B_mag)
% Then, find the angle between vectors A and B.
theta = 180/pi * acos(dot(A,B)/(A_mag * B_mag));
fprintf('Angle between vectors A and B = %1.4f deg\n', theta)
% Finally, solve for the magnitude of the C vector.
C_mag = A_mag * B_mag * sin(theta * pi/180);
fprintf('Magnitude of vector C = %1.4f \n\n', C_mag)

%Solve for the direction of the C vector
cross(A,B)/norm(cross(A,B)); % or C/C_mag where C = cross(A,B)

alpha = acos(0.8944) * 180/pi;
beta = acos(-0.4472) * 180/pi;
gamma = atan(0) * 180/pi;
fprintf('alpha = %1.4f deg from +x\n', alpha)
fprintf('beta = %1.4f deg from +y\n', beta)
fprintf('gamma = %1.4f deg from +x\n', gamma)



%Plot the A, B, and C Vectors
x = [ 0 0 0;

1 -1 4];

y = [ 0 0 0;
2 -2 2];

z = [ 0 0 0;
3 -1 0];

plot3(x,y,z,'-o','LineWidth',2,'MarkerSize',5);
set(gca,'FontSize',18)
grid;
xlabel('x-axis');
ylabel('y-axis');
zlabel('z-axis');
legend('C-blue','B-green', 'A-red',2);

 

 

 

Example: Find the Moment of a Force on a Line 
A force of F = 200 N acts on the edge of a hinged shelf, 0.40 m from the pivot point. 



200 N

0.4 m

xy

z

 
The 200 N force has the following components: 

 Fx = -40 N 

 Fy = 157 N 

 Fz = 118 N 

Only the y-component of F will tend to cause rotation on the hinges. What is the moment of the force 
about the line passing through the hinges (the x axis)? 

 

Solution Using the Cross Product 
We begin by defining the vector r which starts at the x axis (the line through the hinges) and connects 
to the point at which force F acts.  

200 N

xy

z

r
O

 
Since the shelf was 0.40 m wide, r has a magnitude of 0.40, is oriented in the +z direction, and can 
be written in component form as 

» r = [0 0 0.4]; 

» F = [-40 157 118]; 

The moment of force F about the point O is found using the cross product of r with F. 

» M_o  = cross(r,F) 

M_o = 

  -62.8000  -16.0000         0 

» M_mag = norm(M_o) 



M_mag = 

   64.8062 

However, the moment of force F about the x axis requires an additional dot product with a unit vector 
in the x-direction, and is found as 

» u_x = [1 0 0]; 

» M_L = dot(u_x, cross(r,F)) 

M_L = 

  -62.8000 

The minus sign indicates that the moment is directed in the –x direction. 

 

Solution Using Scalars 
The moment of force F about the x axis can also be determined by multiplying the y-component of F 
and the perpendicular distance between the point at which F acts and the x axis. 

 ML = Fy d 

Since the component of F in the y-direction is known (157 N), and the perpendicular distance is 0.4 
m, the moment can be calculated from these quantities. 

» d = 0.40; 

» M_L = F(2) * d 

M_L = 

   62.8000 

The direction must be determined using the right-hand rule, where the thumb indicates the direction 
when the fingers are curled around the x axis in the direction of the rotation caused by Fy. 

 

Annotated MATLAB Script Solution  

%Define the vectors
r = [0 0 0.4];
F = [-40 157 118];

%Take the cross product of r with F to get the moment about point 0 (the
origin);
M_o = cross(r,F);
M_mag = norm(M_o);
fprintf('M_o = r x F = [ %1.4f %1.4f %1.4f]\n', M_o)
fprintf('M_mag = |M_o| = %1.4f\n', M_mag)
%Note: This is not the solution to the stated question.
% The question asks for the moment about the x axes.
% That will be calculated next

%Declare a unit vector in the x-direction in order to calculate the moment
about the x axis.
u_x = [1 0 0];



%Calculate the moment about the x axis
M_L = dot(u_x, cross(r,F));
fprintf('Moment about the x axis = %1.4f\n', M_L)

%Check the results using scalar math
d = r(3);
M_L = F(2) * d;
fprintf('Moment about the x axis (with scalar math) = %1.4f\n', M_L)

 
 

 



Moment of a Couple 
Ref: Hibbeler § 4.6, Bedford & Fowler: Statics § 4.4 

 

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular 
distance, d. 

FB (= -FA)

d

FA

 
Since the forces are equal and oppositely directed, the resultant force is zero. But the displacement of 
the force couple (d) does create a couple moment. 

The moment, M, about some arbitrary point O can be calculated. 

d
FA

FB

O

rA
rB

 

( )ABAA

BBAA

FrFr
FrFrM
−×+×=

×+×=
 

If point O is placed on the line of action of one of the forces, say FB, then that force causes no rotation 
(or tendency toward rotation) and the calculation of the moment is simplified. 

FA
FBO

r

 

AFrM ×=  
This is a significant result: The couple moment, M, depends only on the position vector r between 
forces FA and FB. The couple moment does not have to be determined relative to the location of a 
point or an axis. 
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Example A: Moment from a Large Hand Wheel 
The stem on a valve has two hand wheels: a small wheel (30 cm diameter) used to spin the valve 
quickly as it is opened and closed, and a large wheel (80 cm diameter) that may be used to free a 
stuck valve, or seat the valve tightly when it is fully closed. 

30 cm

80 cm

 
If the operator can impose a force of 150 N on each side of the large wheel (a force couple), what 
moment is imposed on the valve stem? 

FA = 150 N

FB = 150 N

rA

rB

 
 

Solution 1 
As drawn, both the force and position vectors have x- and y-components. The vectors may be defined 
as: 

» F_A = [ 106.06 -106.06 0];   %Newtons 

» r_A = [ 28.284  28.284 0];   %centimeters 

» F_B = [-106.06  106.06 0]   %Newtons 

» r_B = [-28.284 -28.284 0];   %centimeters 

The moment of the couple can be calculated using the cross product operator on the Matrix toolbar. 

» M = cross(r_A,F_A) + cross(r_B,F_B);  %Newton centimeters 

» M = M/100     %Newton meters 

M = 

         0         0    -120.0000 

The result is a couple moment of 120 N⋅m directed in the –z direction (into the page). 

 

Solution 2 
Perhaps a more reasonable positioning of the axes for this problem might look like this: 



FA = 150 N

FB = 150 N
r

x

y

 
In this case, the vector definitions become: 

» F_A = [  0 -150 0];    %Newtons 

» r   = [ 80    0 0];     %centimeters 

Since the position vector r originates from the line of action of force FB, FB does not contribute to the 
moment. The moment is then calculated as 

» M = cross(r,F_A);    %Newton centimeters 

» M = M/100     %Newton meters 

M = 

     0     0   -120 

The result is, of course, the same no matter how the axes are situated. 

 

Solution 3: Using Scalars 
Finally, the problem can also be solved using a scalar formulation. The perpendicular distance 
between the forces is 80 cm. With axes established as in Solution 2, the moment can be calculated 
as 

» F = 150;      %Newtons 

» d = 80;      %centimeters 

» M= d * F;     %Newton centimeters 

» M = M/100     %Newton meters 

M = 

   120 

The direction must be determined using the right-hand rule. 



Annotated MATLAB Script Solution 

%Solution 1
%
%Define the vectors
F_A = [ 106.06 -106.06 0]; %Newtons
r_A = [ 28.284 28.284 0]; %centimeters
F_B = [-106.06 106.06 0]; %Newtons
r_B = [-28.284 -28.284 0]; %centimeters
%Compute the moment using MATLAB's cross product function
M = cross(r_A,F_A) + cross(r_B,F_B); %Newton centimeters
%Convert to Newton meters
M = M/100; %Newton meters
fprintf('The resulting couple moment is = [ %1.2f %1.2f %1.2f ] (Nm)\n', M)

%Solution 2
%
%Define the vectors
F_A = [ 0 -150 0]; %Newtons
r = [ 80 0 0]; %centimeters
%Compute the moment
M = cross(r,F_A); %Newton centimeters
%Convert to Newton meters
M = M/100; %Newton meters
fprintf('The resulting couple moment is = [ %1.2f %1.2f %1.2f ] (Nm)\n', M)

%Solution 3
%
%Define the applied force and the perpendicular distance between the forces
F = 150; %Newtons
d = 80; %centimeters
%Compute the moment
M= d * F; %Newton centimeters
%Convert to Newton meters
M = M/100; %Newton meters
fprintf('The resulting couple moment is = %1.2f (Nm)\n', M)
fprintf(' The direction must be determined using the right-hand rule.\n\n')

 

Example B: Moment from the Small Hand Wheel 
The moment resulting from applying the same forces to the smaller hand wheel can be determined 
using any of the three solution procedures outlined above. Solution 2 is shown here. 

FA = 150 N
FB = 150 N r

x
y

 
 

 



%Example B: Moment from the Small Hand Wheel
% The moment resulting from applying the same forces to the
% smaller hand wheel can be determined using any of the three
% solution procedures above. Solution 2 is shown here.
%
%Define the vectors
F_A = [ 0 -150 0]; %Newtons
r = [ 30 0 0]; %centimeters
%Compute the moments
M = cross(r,F_A); %Newton centimeters
%Convert to Newton meters
M = M/100; %Newton meters
fprintf('The resulting couple moment for the smaller wheel is = [ %1.2f …

%1.2f %1.2f ] (Nm)\n', M)

 



Reduction of a Simple Distributed Loading 
Ref: Hibbeler § 4.10, Bedford & Fowler: Statics § 7.3 

 

Loads are often not applied to specific points, but are distributed across a region. Design calculations 
can be simplified by finding a single equivalent force acting at a point; this is called reduction of a 
distributed loading. For loads distributed across a single direction (beam loading, for example) we 
need to find the both the magnitude of the equivalent force, and the position at which the equivalent 
force acts. 

 

Example 1: Load Distribution Expressed as a Function of Position, x 
The load on a beam is distributed as shown below: 

p(x) = b0 + b1 x + b2 x2 + b3 x3 + b4 x4

 
where b0 through b4 are coefficients obtained by fitting a polynomial to data values (see Example 2). 
The x values range from 0.05 to 0.85 meters. The pressure is expressed in Pa. The values of the 
coefficients are tabulated below. 

 b x10-4 
b0 0.107 
b1 -1.68 
b2 11.9 
b3 -19.9 
b4 9.59 

 

The data represent the pressure on the floor beneath a pile of 12-foot 2x4’s, so y = 12 feet or 3.66 m. 

Determine: 

a) the two-dimensional loading function, w(x) 

b) the magnitude and position of the equivalent force. 

 

Solution 1 
The two-dimensional loading function is obtained from the pressure function using the length of the 
boards, y = 3.66 m. 

( )( )66.3xbxbxbxbb

y)x(p)x(w
4

4
3

3
2

210 ++++=

=
 

The units on w are Pa.m. 

The magnitude of the resultant force is obtained by integration. 
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∫=
L

R dx)x(wF  

To perform this integration we first need to create an m-file for the loading function, w(x,y,b), and save 
it in the MATLAB search path.  We then use the MATLAB quad() function to carry out the integration 
on the new function.   

Note: For a full explanation of the quad() function type “help quad” at the command prompt. 

function w = LoadingFunction(x, y, b)
%Saved as LoadingFunction.m in the MATLAB search path.

%Pressure Function (Pa)
p = b(1) + b(2).*x + b(3).*x.^2 + b(4).*x.^3 + b(5).*x.^4;

%Loading Function (Pa m)
w = p .* y;

 

» y = 3.66;         % meters 

» b = [ 1.07E3      -1.68E4      1.19E5      -1.99E5     9.59E4 ];  

» F_R = quad('LoadingFunction', 0.05, 0.85, [ ], [ ], y, b)  %Newtons  

F_R = 

  6237 

 

The location at which the resultant force acts is found by calculating the centroid of the area defined 
by w(x).  We again need to create a new function to calculate the 1st moment of w(x,y,b). 

function FM = FirstMoment(x, y, b)
%Saved as FirstMoment.m in the MATLAB search path.

%Pressure Function (Pa)
p = b(1) + b(2).*x + b(3).*x.^2 + b(4).*x.^3 + b(5).*x.^4;

%Loading Function (Pa m)
w = p .* y;

FM = w .* x;

 

» x_loc = quad('MeanForce', 0.05, 0.85, [ ], [ ], y, b)  ./  F_R %meters 

x_loc = 

    0.4927 

 

Example 2: Tabulated Load Distribution 
The function used in Example 1 was obtained by polynomial regression of a set of data values, 
representing the pressure acting on the floor beneath a pile of 2x4 (inch, or 50x100 mm) lumber. 



1

3
4

7

9

12

8

4

2

 
 

Using the density of wood (approximately 700 kg/m3) and the lumber dimensions, the pressure 
exerted by the wood on the floor at the bottom of each stack of lumber was calculated (see table). 
The reported x value represents the position of the center of each column of boards. 

x (m) p (Pa) 
0.05 343 
0.15 1029 
0.25 1372 
0.35 2401 
0.45 3087 
0.55 4116 
0.65 2744 
0.75 1372 
0.85 686 

 

Use the tabulated pressure, position data to estimate the magnitude and position of the equivalent 
force. 

 

Solution 2 
w values can be calculated from pressure values, as before: 

ypw ⋅=  

 

» x = [ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85];   %meters 

» p = [  343 1029 1372 2401 3087 4116 2744 1372  686]; %Pascals 

» w = p .* y       %N/m 

w = 

  1.0e+004 * 

  Columns 1 through 9 

    0.1255    0.3766    0.5022    0.8788    1.1298    1.5065    1.0043    0.5022    0.2511 

 

 

 



The integral for force is approximated as a summation: 

∑
=

∆≈
N

1i
iR xwF  

where ∆x is the width of a stack (0.10 m) and N is the number of stacks (9). 

» delta_x = 0.10;       %meters 

» F_R = sum(w .* delta_x)     %Newtons 

F_R = 

  6277 

Similarly, the centroid is approximated as follows: 

» x_loc = sum(x .* w .* delta_x) / F_R    %meters 

x_loc = 

    0.4900 

 

Annotated MATLAB Script Solution 

function w = LoadingFunction(x, y, b)
%Saved as LoadingFunction.m in the MATLAB search path.

%Pressure Function (Pa)
p = b(1) + b(2).*x + b(3).*x.^2 + b(4).*x.^3 + b(5).*x.^4;

%Loading Function (Pa m)
w = p .* y;

 

function mean = FirstMoment(x, y, b)
%Saved as FirstMoment.m in the MATLAB search path.

%Pressure Function (Pa)
p = b(1) + b(2).*x + b(3).*x.^2 + b(4).*x.^3 + b(5).*x.^4;

%Loading Function (Pa m)
w = p .* y;

mean = w .* x;



%Length of Boards (meters)
y = 3.66;

%Coefficients obtained by fitting a polynomial to data values
b = [ 1.07E3 -1.68E4 1.19E5 -1.99E5 9.59E4 ];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solution 1 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%The magnitude of the resultant force is calculated.
F_R = quad('LoadingFunction',0.05,0.85,[],[], y, b);
fprintf('\nThe magnitude of the resultant force is = %1.0f N\n', F_R)

%The location of the resultant force is calculated.
x_loc = quad(' FirstMoment',0.05,0.85,[],[], y, b) ./ F_R;
fprintf('The location of the resultant force is = %1.2f m\n', x_loc)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solution 2 Using Tabulated Data %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x = [ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85]; %meters
p = [ 343 1029 1372 2401 3087 4116 2744 1372 686]; %Pa

%Calculate w values from pressure values using the length of the boards.
w = p .* y;

%Calculate the magnitude of the resultant force (the use
% of a summation instead of an integration
% makes this an approximate result).
delta_x = 0.10; % meters
F_R = sum(w .* delta_x);
fprintf('\nThe approximated magnitude of the resultant force is = %1.0f N\n', F_R)

%Calculate the location of the resultant force
x_loc = sum(x .* w .* delta_x) / F_R;
fprintf('The approximated location of the resultant force is = %1.2f m\n', x_loc)



 
 

 

A Final Note 
Both of these solutions are approximations. The second method approximates the integrals using 
summations, while the first method approximates the solution because the polynomial regression is a 
“best fit” but not a perfect fit to the data. In the graph shown here, the circles represent the tabulated 
values in Example 2, while the pressures predicted by the polynomial are indicated by the line. 
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Equilibrium of a Rigid Body 
Ref: Hibbeler § 5.1-5.3, Bedford & Fowler: Statics § 5.1-5.2 

 

When forces are applied to rigid bodies, the conditions of equilibrium can be used to determine any 
unknown forces, and the reactions at the supports. 

 

Example 1: Spring Support 
A force, F, is applied to the end of a bar to stretch a spring until the bar is horizontal. If the spring 
constant is k = 600 N/m and the unstretched length of the spring assembly (spring and connecting 
links) is 75 mm, and ignoring the mass of the bar, determine: 

a) the magnitude of the applied force, F, and 

b) the reactions at point A. 

 

x

y

F
150 mm

16 mm

90°
28°

120 mm

A

 
 

Solution 
First, a free-body diagram is drawn. 
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x

y

F
150 mm

16 mm

90°
28°

120 mm

A

Fspring

Ax

Ay

 
We have assumed that the reactions at A will include both x and y components, and will calculate the 
actual values of Ax and Ay as part of the solution process. 

First, a little trigonometry is required to obtain the extended length of the spring assembly. 

» deg2rad = pi /180;     %Conversion factor from degrees to radians 

» L_ext = 120 / cos( 28 * deg2rad )       %mm 

L_ext = 

  135.9084 

Then, we can calculate the actual extension of the spring… 

» L_unstretched = 75;    %mm 

» L_stretch = L_ext - L_unstretched    %mm 

L_stretch = 

   60.9084 

…and the spring force, Fspring. 

» k_spring = 600;    %N/m 

» F_spring = k_spring * L_stretch / 1000  %Newtons 

F_spring = 

   36.5450 

Next, we calculate the x and y components of the spring force, using the angle from the positive x 
axis (not just 28°) so that the direction of the force is accounted for.  

» alpha = (180 - 28) * deg2rad;   %angle from +x axis 

» Fsp_x = F_spring * cos(alpha)   %Newtons  

Fsp_x = 

  -32.2674 



» Fsp_y = F_spring * sin(alpha)   %Newtons 

Fsp_y = 

   17.1569 

At equilibrium the sum of the moments at A must be zero. We can use this to solve for the applied 
force, F. 

» F = -(abs(Fsp_x) * 16 + Fsp_y * 120) / 150 %Newtons  

F = 

  -17.1673 

Note: The absolute value function was used on Fsp_x since the direction of rotation was accounted for 
as the equilibrium equation was written. Here, counter-clockwise rotation was assumed positive. 

The equilibrium relationships for the x and y components of force can be used to determine the 
reactions at A. First, x-component equilibrium requires that the sum of the x components of force be 
zero. This relationship is used to solve for Ax. 

» A_x = -Fsp_x     %Newtons 

A_x = 

   32.2674 

Finally, the equilibrium relationship for the sum of the y components of force is used to calculate Ay. 

» A_y = -Fsp_y – F    %Newtons 

A_y = 

    0.0105 

 



Annotated MATLAB Script Solution  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Spring Support Problem %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Create conversion factor from degrees to radians
deg2rad = pi /180;

%Find the total extended lngth of the spring assembly.
L_ext = 120 / cos( 28 * deg2rad ); %mm
fprintf('\nTotal extended length = %1.0f mm\n', L_ext)

%Calculate the spring's extension.
L_unstretched = 75; %mm
L_stretch = L_ext - L_unstretched; %mm
fprintf('Spring''s extension = %1.0f mm\n\n', L_stretch)

%Calculate spring force.
k_spring = 600; %N/m
F_spring = k_spring * L_stretch / 1000; %Newtons
fprintf('Spring force = %1.1f N\n\n', F_spring)

%Find x and y components of spring force.
alpha = (180 - 28) * deg2rad; %angle from +x axis
Fsp_x = F_spring * cos(alpha); %Newtons
Fsp_y = F_spring * sin(alpha); %Newtons
fprintf('x-component of spring force = %1.1f N', Fsp_x)
fprintf('\t<= acting in -x direction\n')
fprintf('y-component of spring force = %1.1f N\n\n', Fsp_y)

%Use the sum of the moments about A to find applied force F
%We know => 16 |Fsp_x| + 120 Fsp_y+ 150 F = 0
%Solving for F
F = -(abs(Fsp_x) * 16 + Fsp_y * 120) / 150; %Newtons
fprintf('Applied force = %1.1f N', F)
fprintf('\t<= acting to cause clockwise rotation\n\n')

%Use x and y component force balences to solve for the reactions at A
%We know => A_x + Fsp_x = 0
%Solving for A_x
A_x = -Fsp_x; %Newtons
fprintf('A_x = %1.1f N', A_x)
fprintf('\t<= acting in +x direction\n')

%We know => A_y + Fsp_y +F = 0
%Solving for A_y
A_y = -Fsp_y - F; %Newtons
fprintf('A_y = %1.1f N\n', A_y)

 



Dry Friction 
Ref: Hibbeler § 8.2, Bedford & Fowler: Statics § 9.1 

 

To move a heavy crate, such as the one illustrated in the example below, you have to push on it. If 
you push hard enough to overcome friction, the crate will slide along the floor. But there is the danger 
that the crate will tip, especially if you push too high on the side of the crate. To better understand the 
calculations involved with this dry friction problem, and to see how you can check for tipping, we will 
solve the “sliding a crate” problem for several cases, varying the push height between 0.2 and 1 m, 
and the magnitude of the pushing force between 100 and 120 N. 

 

Example: Pushing a Crate 
A force, P, is applied to the side of a crate at height yP from the floor. The crate mass is 35 kg, and is 
0.5 m wide and 1.0 m in height. The coefficient of static friction is 0.32. For each of the test cases 
tabulated below, determine: 

a) the magnitude of the friction force, F, 

b) the magnitude of the resultant normal force, NC, and 

c) the distance, x, (measured from the origin indicated in the illustration below) at which the 
resultant normal force acts. 

Once these results have been calculated, check for tipping and/or slipping. 
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Test Cases P yP 
1 100 N 0.2 m 
2 100 N 0.4 m 
3 100 N 0.8 m 
4 100 N 1.0 m 
5 120 N 0.2 m 
6 120 N 0.4 m 
7 120 N 0.8 m 
8 120 N 1.0 m 
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Solution, Case 1 
First, a free-body diagram is drawn. 
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To start the solution in MATLAB we begin by assigning the values given in the problem statement to 
variables. 

» %Data from the problem statement... 

» % for specific case: 

» Case = '1'; 

» P = 100;      %Newtons 

» y_p = 0.2;      %meters 

» 

» % for all cases: 

» M = 35;      %kg 

» x_crit = 0.25;      %meters 

» mu_s = 0.32; 

» g = 9.807;      %meters/s^2 

 

Then we calculate the weight of the crate. 

» W = -M * g      %Newtons 

W = 

 -343.2450 



Next, we use the equilibrium condition that the sum of the forces in the x direction must be zero. (This 
condition holds if the crate is not sliding or tipping.) 

» % P + F = 0  so... 

» F= -P       %Newtons 

F = 

  -100 

Then, we use the equilibrium relationship for the y-components of force to determine the resultant 
normal force, NC. 

» % W + N_c = 0     so... 

» N_c = -W      %Newtons 

N_c = 

  343.2450 

The last equilibrium relationship, that the sum of the moments about O must be zero, can be used to 
determine the location at which NC acts, called x in the illustration above. 

» % -P * y_p + N_c * x = 0     so... 

» x = P * y_p / N_c     %meters 

x = 

    0.0583 

At this point the equilibrium calculations are complete. We can solve for Fmax, the maximum force that 
can be applied before overcoming friction. If the frictional force, F, exceeds Fmax, then the crate would 
slip. (As it begins to slip, the equilibrium relationships are no longer valid.) 

» if (abs(F) > F_max) 

   fprintf(['Case ', Case, ' is slipping\n']) 

else 

   fprintf(['Case ', Case, ' is NOT slipping\n']) 

end 

 

Case 1 is NOT slipping 

Note: The absolute value function was used on F since both the magnitude and direction of F (the 
minus sign) were determined using the equilibrium relationship. Only the magnitude is used to test for 
slippage. 

Finally, we can check for tipping by testing to see if the calculated x is beyond the edge of the crate 
(xcrit). 

» if (x > x_crit) 

   fprintf(['Case ', Case, ' is tipping\n']) 

else 

   fprintf(['Case ', Case, ' is NOT tipping\n']) 

end 

 

Case 1 is NOT tipping 



Note: The if statements are certainly not required here – the test could be performed by inspection – 
but it is convenient to let MATLAB do the checking for each of the eight cases. 

From these tests we can see that a push of 100 N applied at a height of 0.2 m will not cause the crate 
to tip, but it will not cause the crate to move (slip), either. 

 

Solution, Case 2 
The only change between Case 1 and Case 2 is the height at which the push is applied. In Case 2 
yP = 0.4 m. This value is change at the beginning of the MATLAB script, and the script is simply re-
executed to calculate the values for Case 2. The complete, annotated script solution for Case 2 is 
shown below. 

 

Annotated MATLAB Script Solution – Case 2 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pushing a Crate Problem – Case 2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Data from the problem statement...
% for specific case:
Case = '1';
P = 100; %Newtons
y_p = 0.4; %meters

% for all cases:
M = 35; %kg
x_crit = 0.25; %meters
mu_s = 0.32;
g = 9.807; %meters/s^2

%Calculate the weight of the crate.
W = -M .* g; %Newtons
fprintf('\nW = %1.1f N\t\t', W)

%EQUILIBRUM: The sum of the x components of force is zero.
%P + F = 0 so...
F = -P; %Newtons
fprintf('F = %1.1f N\t\t', F)

%EQUILIBRUM: The sum of the y components of force is zero.
%W + N_c = 0 so...
N_c = -W; %Newtons
fprintf('N_c = %1.1f N\n', N_c)

%EQUILIBRUM: The sum of the moments about 0 is zero.
%-P * y_p + N_c * x = 0 so...
x = P .* y_p ./ N_c; %meters
fprintf('x = %1.3f m\t\t', x)

%Checking the Results...
F_max = mu_s .* N_c; %Newtons
fprintf('F_max = %1.1f N\n\n', F_max)

if (abs(F) > F_max)
fprintf(['Case ', Case, ' is slipping\n'])



else
fprintf(['Case ', Case, ' is NOT slipping\n'])

end

if (x > x_crit)
fprintf(['Case ', Case, ' is tipping\n'])

else
fprintf(['Case ', Case, ' is NOT tipping\n'])

end

 

 

Summary of Results for All Eight Cases 
By repeatedly changing the assigned values for P and yP in the MATLAB script, the results for all 
cases can be determined. Those results are summarized here. The value NC = 343.2 N is not case 
dependent in this problem. 

Test Cases P yP F x Slip? Tip? 
1 100 N 0.2 m -100 N 0.058 m No No 
2 100 N 0.4 m -100 N 0.117 m No No 
3 100 N 0.8 m -100 N 0.233 m No No 
4 100 N 1.0 m -100 N 0.291 m* No Yes 
5 120 N 0.2 m -120 N 0.070 m Yes No 
6 120 N 0.4 m -120 N 0.140 m Yes No 
7 120 N 0.8 m -120 N 0.280 m* Yes Yes 
8 120 N 1.0 m -120 N 0.350 m* Yes Yes 

* The calculated result for x has no meaning except to indicate that the crate is tipping if x > xcrit. 

 

A faster approach to solving the problem is to define P and yP as vectors and having MATLAB perform 
all the calculations simultaneously.  By default MATLAB performs matrix calculations when using the 
*, /, and ^ operators.  To force MATLAB to perform element-by-element operations place a period in 
front of the operator.  To display the results we can then take advantage of the MATLAB for() 
statement to loop through the solution vectors and display the results by Case. 

 

Annotated MATLAB Script Solution – All Cases 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pushing a Crate Problem - All Cases %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Data from the problem statement...
% for specific case:
Case = [ 1 2 3 4 5 6 7 8 ];
P = [ 100 100 100 100 120 120 120 120]'; %Newtons
y_p = [ 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0]'; %meters

% for all cases:
M = 35; %kg
x_crit = 0.25; %meters
mu_s = 0.32;
g = 9.807; %meters/s^2

%Calculate the weight of the crate.
W = -M .* g; %Newtons



%EQUILIBRUM: The sum of the x components of force is zero.
%P + F = 0 so...
F= -P; %Newtons

%EQUILIBRUM: The sum of the y components of force is zero.
%W + N_c = 0 so...
N_c = -W; %Newtons

%EQUILIBRUM: The sum of the moments about 0 is zero.
%-P * y_p + N_c * x = 0 so...
x = P .* y_p ./ N_c; %meters

%Display and Check the Results...
F_max = mu_s .* N_c; %Newtons
fprintf('F_max = %1.1f N\t', F_max)
fprintf('\nW = %1.1f N\t', W)
fprintf('N_c = %1.1f N\n\n', N_c)

%Display results for each case.
for i = 1 : length(Case)

fprintf('\nCASE %1.0f:\n',Case(i))
fprintf('P = %1.1f N\t\t', P(i))
fprintf('y_p = %1.2f m\n', y_p(i))
fprintf('F = %1.1f N\t\t', F(i))
fprintf('x = %1.3f m\n', x(i))

if (abs(F(i)) > F_max)
fprintf(['Case ', num2str(Case(i)), ' is slipping\n'])

else
fprintf(['Case ', num2str(Case), ' is NOT slipping\n'])

end

if (x > x_crit)
fprintf(['Case ', num2str(Case(i)), ' is tipping\n'])

else
fprintf(['Case ', num2str(Case(i)), ' is NOT tipping\n'])

end
end 



Finding the Centroid of Volume 
Ref: Hibbeler § 9.2, Bedford & Fowler: Statics § 7.4 

 

The centroid of volume is the geometric center of a body. If the density is uniform throughout the 
body, then the center of mass and center of gravity correspond to the centroid of volume. The 
definition of the centroid of volume is written in terms of ratios of integrals over the volume of the 
body. 
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Either analytical or numerical integration methods can be used to evaluate these integrals and 
compute the centroid of volume for the body. 

 

 

The integrals over volume take slightly different forms depending on the coordinate system you use. 
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These integrals can be evaluated using analytical or numerical integration techniques.  

 

Example: Centroid of a Hemisphere 
Find the centroid of volume for a hemisphere of radius R = 7 cm. 

R
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Note: This simple example will allow us to check our results against published values. For example, 
Hibbeler shows (inside back cover) that the centroid for a hemisphere resting on the plane formed by 
the x and y axes to be located at x = 0, y = 0, z = 3/8 R. 

 

Solution: Numerical Integration 
The volume of the hemisphere can be calculated by using the equation for the area of a circle, and 
integrating in only one direction, z. 

To use this approach, first note that the area of the base is easily calculated, as A = π R2.  

yx

z

A = π R2

 
The area of the circle formed by any x-y plane through the hemisphere is calculated as a = π r2. 

yx

z
a = π r2
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where the value of r depends on z. The relationship between r and z is readily determined, since r 
and z are two sides of a right triangle in which the hypotenuse is the radius of the hemisphere, R. 

22 zRr −=  

We then integrate the area of the circle from z = 0 to z = R. 
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To approximate the result using numerical integration methods, rewrite the integral as a sum and the 
dz as a ∆z. Graphically (for the volume calculation in the denominator) this is equivalent to 
approximating the volume of the hemisphere by a series of stacked disks of thickness ∆z. One such 
disk is shown in the figure below. 



yx

z
Vi = π ri

2 ∆z
ri ∆z zi

 
Here, the value of r at the current (point “i”) value of z has been used to calculate the volume of the 
disk. Since R = 7 cm in this example, we might try a ∆z of 1 cm, and calculate the volumes of seven 
disks (N = 7). For each disk, the value of zi can be calculated using 

zizi ∆=  

The value of the corresponding radius is then 

2
i

2
i zRr −=  

The formula for volume can then be written in terms of z, as 

( ) zzRV 2
i

2
i ∆−π=  

The sum of all of the volumes of all seven disks is an approximation of the volume of the hemisphere. 
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In MATLAB, this calculation looks like this: 

» R  = 7;         %Raidus 

» N  = 7;    %Number of intervals 

» deltaZ = R/N;    %Interval spacing 

» %Sum (pi * (R^2 - (i*deltaZ)^2) * deltaZ) for i = 1,2,...,N 

» V_predicted = 0;   %Initialize predicted volume to zero 

» for i = 1:N 

   V_predicted = V_predicted + pi * (R^2 - (i*deltaZ)^2) * deltaZ; 

end 

» V_predicted 

V_predicted = 

  637.7433 

We can see how good (or bad) the approximation is by calculating the actual volume of the 
hemisphere. 

V_actual = 2/3 * pi * R^3 

V_actual = 

  718.3775 

The approximation using only seven disks is not too good. If we use more disks, say N = 70, the 
approximation of the volume is quite a bit better. 



» R  = 7;         %Raidus 

» N  = 70;    %Number of intervals 

» deltaZ = R/N;    %Interval spacing 

» %Sum (pi * (R^2 - (i*deltaZ)^2) * deltaZ) for i = 1,2,...,N 

» V_predicted = 0;   %Initialize predicted volume to zero 

» for i = 1:N 

   V_predicted = V_predicted + pi * (R^2 - (i*deltaZ)^2) * deltaZ; 

end 

» V_predicted 

V_predicted = 

  710.6440 

 

To calculate the centroid using numerical methods, simply replace the ratio of integrals by the 
numerical approximation: 
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The extra “z” has been included in the numerator as (I * deltaZ). In MATLAB, the calculation of the 
centroid looks like this: 

» numerator   = 0;   %Initialize numerator to zero 

» denominator = 0;   %Initialize denominator to zero 

» for i = 1:N    %Sum both numerator and denominator 

   numerator   = numerator + (i*deltaZ) * pi * (R^2 - (i*deltaZ)^2) * deltaZ; 

   denominator = denominator + pi * (R^2 - (i*deltaZ)^2) * deltaZ; 

end 

» z_bar = numerator / denominator  

z_bar = 

    2.6530 

We can use the analytical result to check our answer. 

» z_bar_act = 3/8 *R 

z_bar_act = 

    2.6250 

 



Annotated MATLAB Script Solution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Define the System
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R = 7; %Radius
N = 70; %Number of disks
deltaZ = R/N; %Calculate disk thickness
fprintf('SYSTEM\n')
fprintf('Raidus = %3.1f cm\t\tN = %3.0f\t\tdeltaZ = %3.2f\n\n',R,N,deltaZ)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate the Volume
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Sum (pi * (R^2 - (i*deltaZ)^2) * deltaZ) for i = 1,2,...,N
V_predicted = 0; %Initialize predicted volume to zero
for i = 1:N

V_predicted = V_predicted + pi * (R^2 - (i*deltaZ)^2) * deltaZ;
end
fprintf('CALCULATE THE VOLUME\n')
fprintf('Predicted Volume = %3.3f cm^3\n',V_predicted)

V_actual = 2/3 * pi * R^3;
fprintf('Actual Volume = %3.3f cm^3\n\n',V_actual)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate the Centroid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numerator = 0; %Initialize numerator to zero
denominator = 0; %Initialize denominator to zero
for i = 1:N %Sum both numerator and denominator

numerator = numerator + (i*deltaZ) * pi * (R^2 - (i*deltaZ)^2) *
deltaZ;

denominator = denominator + pi * (R^2 - (i*deltaZ)^2) * deltaZ;
end
z_bar = numerator / denominator;
fprintf('CALCULATE THE CENTROID\n')
fprintf('Calculated z_bar = %3.3f cm\n',z_bar)

z_bar_act = 3/8 *R;
fprintf('Actual z_bar = %3.3f cm\n',z_bar_act)

 



Resultant of a Generalized Distributed Loading 
Ref: Hibbeler § 9.5, Bedford & Fowler: Statics § 7.4 

 

When a load is continuously distributed across an area it is possible to determine the equivalent 
resultant force, and the position at which the resultant force acts. This is termed the resultant of a 
generalized distributed loading. This is the generalized case of the simple distributed loading 
considered earlier (#6). 

 

Example: Load Distribution Expressed as a Function of x and y 
The pressure on a surface is distributed as illustrated in the following surface plot: 
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This plot is described by the following function: 

22 y70y120x210x2301000)y,x(p −+−+=  

The x and y values range from 0 to 1 meter. The pressure is expressed in Pa.  

Determine the magnitude and location of the resultant force. 

 

Solution 
The magnitude of the resultant force is obtained by integration. 

∫ ∫∫ ==
y xA

R dydx)y,x(pdA)y,x(pF  

To perform this integration we first need to create an m-file for the pressure function, p(x,y), and save 
it in the MATLAB search path.  We then use the MATLAB dblquad() function to carry out the 
integration on the new function.   

function p = PressureFunction(x, y)
%Saved as PressureFunction.m in the MATLAB search path.

%Pressure Function (Pa)
p = 1000 + 230 .*x - 210 .*x.^2 + 120 .* y - 70 .* y.^2;
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» F_R = dblquad('PressureFunction', 0, 1, 0, 1)    %Newtons 

F_R = 

  1081.7 

The location at which the resultant force acts is found by calculating the centroid of the volume 
defined by the distributed loading diagram.  We again need to create a new function to calculate the 
1st moment of p(x, y).  The centroid  is then found by dividing the x and y 1st moments by magnitude 
of the resultant force. 

 

function FM = FirstMomentX(x, y)
%Saved as FirstMomentX.m in the MATLAB search path.

%Pressure Function (Pa)
FM = x .* (1000 + 230 .*x - 210 .*x.^2 + 120 .* y - 70 .* y.^2);

 

» x_loc = dblquad('FirstMomentX',0,1,0,1) ./ F_R   %Meters 

x_loc = 

    0.5015 

 

function FM = FirstMomentY(x, y)
%Saved as FirstMomentY.m in the MATLAB search path.

%Pressure Function (Pa)
FM = y .* (1000 + 230 .*x - 210 .*x.^2 + 120 .* y - 70 .* y.^2);

 

» y_loc = dblquad('FirstMomentY',0,1,0,1) ./ F_R   %Meters 

y_loc = 

    0.5039 

 



Annotated MATLAB Script Solution 

function p = PressureFunction(x, y)
%Saved as PressureFunction.m in the MATLAB search path.

%Pressure Function (Pa)
p = 1000 + 230 .*x - 210 .*x.^2 + 120 .* y - 70 .* y.^2;

 

function FM = FirstMomentX(x, y)
%Saved as FirstMomentX.m in the MATLAB search path.

%Pressure Function (Pa)
FM = x .* (1000 + 230 .*x - 210 .*x.^2 + 120 .* y - 70 .* y.^2);

 

function FM = FirstMomentY(x, y)
%Saved as FirstMomentY.m in the MATLAB search path.

%Pressure Function (Pa)
FM = y .* (1000 + 230 .*x - 210 .*x.^2 + 120 .* y - 70 .* y.^2);

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resultant of a Generalized Distributed Loading %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The magnitude of the resultant force is calculated.
F_R = dblquad('PressureFunction', 0, 1, 0, 1);%Newtons
fprintf('\nThe magnitude of the resultant force is = %1.0f N\n', F_R)

%The location of the resultant force is calculated.
x_loc = dblquad('FirstMomentX', 0, 1, 0, 1) ./ F_R;%meters
y_loc = dblquad('FirstMomentY', 0, 1, 0, 1) ./ F_R;%meters
fprintf('The location of the resultant force is = (%1.3f, %1.3f)m\n', x_loc, y_loc)

 

 

 

 

 



Calculating Moments of Inertia 
Ref: Hibbeler § 10.1-10.2, Bedford & Fowler: Statics § 8.1-8.2 

 

Calculating moments of inertia requires evaluating integrals. This can be accomplished either 
symbolically, or using numerical approximations. Mathcad’s ability to integrate functions to generate 
numerical results is illustrated here. 

 

Example: Moment of Inertia of an Elliptical Surface 
Determine the moment of inertia of the ellipse illustrated below with respect to a) the centroidal x’ 
axis, and b) the x axis. 

The equation of the ellipse relative to centroidal axes is 
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In this problem, x and y have units of cm. 

 

 

Solution 
The moment of inertia about the centroidal x axis is defined by the equation 

∫=
A

2
'x dA'yI  

where dA is the area of the differential element indicated in the figure above. 

'dyx2dA =  

So, the integral for moment of inertia becomes 
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∫=
A

2
'x 'dyx2'yI  

Furthermore, x (or x’) can be related to y’ using the equation of the ellipse. 

Note: Because of the location of the axes, x = x’ in this example. 
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The equation for the moment of inertia becomes: 
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To perform this integration we need to place the integrand in an m-file function and call MATLAB’s 
quad() function on the m-file. 

function Ix_integrand = Moment_Of_Inertia_Integrand(y_prime)
%Saved as Moment_Of_Inertia_Integrand.m in the MATLAB
%search path.

x = sqrt(8.^2 .* (1 - y_prime.^2./14^2));
Ix_integrand = y_prime.^2 .* 2 .* x;

 

» Ix_prime = quad('Moment_Of_Inertia_Integrand',-8,8)  %cm^4 

Ix_prime = 

  4890 

 

The moment of inertia relative to the original x axis can be found using the parallel-axis theorem. 
2

y'xx dAII +=  

Where A is the area of the ellipse, and dy is the displacement of the centroidal y axis from the original 
y axis. 

The required area can be calculated by integration in the same fashion as before. 

function A = Area_Integrand(y_prime)
%Saved as Area_Integrand.m in the MATLAB search path.

x = sqrt(8.^2 .* (1 - y_prime.^2 ./ 14^2));
A = 2 .* x;

 

» A = quad('Area_Integrand',-8,8) %cm^2 

A = 

  241.2861 

 

Then the moment of inertia about x can be determined. 

» dy = 16;       %cm 



» I_x = Ix_prime + A .* dy.^2     %cm^4 

I_x = 

  66660 

 

Annotated MATLAB Script Solution 

function Ix_integrand = Moment_Of_Inertia_Integrand(y_prime)
%Saved as Moment_Of_Inertia_Integrand.m in the MATLAB search path.

x = sqrt(8.^2 .* (1 - y_prime.^2./14^2));
Ix_integrand = y_prime.^2 .* 2 .* x;

 

function A = Area_Integrand(y_prime)
%Saved as Area_Integrand.m in the MATLAB search path.

x = sqrt(8.^2 .* (1 - y_prime.^2 ./ 14^2));
A = 2 .* x;

%Calculate the moment of inertia relative to the x' axis.
Ix_prime = quad('Moment_Of_Inertia_Integrand',-8,8);%cm^4
fprintf('\nThe moment of inertia relative to the x'' axis is %1.0f cm^4\n',
Ix_prime)

%Calculate the area of the ellipse.
A = quad('Area_Integrand',-8,8);%cm^2
fprintf('The area of the ellipse is %1.2f cm^2\n', A)

%Use the parallel-axis theorm to calculate the moment of inertia relative to
the x axis
dy = 16;%cm
I_x = Ix_prime + A .* dy.^2;%cm^4
fprintf('The moment of inertia relative to the x axis is = %1.0f cm^4\n', I_x)

 



Curve-Fitting to Relate s-t, v-t, and a-t Graphs 
Ref: Hibbeler § 12.3, Bedford & Fowler: Dynamics § 2.2 

 

The relationships between a particle’s position, s, velocity, v, and acceleration, a, over time are all 
related. When the relationship between a particle’s velocity (for example) and time is described by a 
mathematical equation, that equation can be integrated to obtain the particle’s position, and 
differentiated to determine the particle’s acceleration. But what if the velocity vs. time relationship is 
described by a set of data values or a graph, rather than a mathematical equation? You can still 
obtain position and acceleration information, either directly from the data values (numerical 
approximations of integration and differentiation), or by fitting an equation to the data, then using 
calculus on the resulting equation. The curve-fitting approach will be demonstrated here. 

 

Example: Fitting a Polynomial to Velocity Data 
A driver on a straight track accelerates his car from 0 to 75 mph in 14 seconds, and then allows the 
car to begin to slow. A data recorder connected to the speedometer recorded the data shown below. 
Since the car is moving along a straight path, the car’s speed and velocity are equal. 

t (sec.) v (mph) 
0 0 
1 1 
2 4 
3 8 
4 14 
5 21 
6 28 
7 35 
8 43 
9 51 

10 58 
11 64 
12 69 
13 73 
14 75 
15 75 
16 73 
17 68 
18 60 
19 49 
20 35 

 
Fit a curve to the v-t data, and then use the equation of the curve to plot s-t, v-t, and a-t graphs. 

 

Solution – First Attempt 
First, let’s plot the data to see what we’re working with. 

» t = 0:20; 

» v = [0 1 4 8 14 21 28 35 43 51 58 64 69 73 75 75 73 68 60 49 35]; 

» plot(t,v,'o');  

» xlabel('{\bf t(sec)}');  

» ylabel('{\bf v(mph)}'); 

12 



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

 t(sec)

 v
(m

ph
)

 
 

The graph shows the increasing velocity for the first 14 seconds then the velocity drops off again. It 
looks like a smooth curve, and clean (not noisy) data. 

A commonly used approach to fitting a curve to a set of data values is polynomial regression. We 
might try, for example, the following second-order polynomial.1 

32
2

1 btbtbvp ++=  

MATLAB’s Statistics Toolbox provides a function for fitting linear2 and nonlinear models such as this 
polynomial, the nlinfit() function. This function calculates the coefficient values that provide the best fit 
of the model equation to the data. The regression model is described by either an inline function or an 
m-file containing the desired function of the independent variable (t, in this case) and coefficients . For 
our second-order polynomial, the vector could be written as follows: 

» F = inline('b(1).*t.^2 + b(2).*t  ', 'b', 't') 

F = 

     Inline function: 

     F(b,t) = b(1).*t.^2 + b(2).*t  

 
Note: We want the velocity to be zero when t = 0. The way to force this to happen is to leave off the 
constant term in the F(b,t) function. 

Then, nlinfit() uses the t and v values (as vectors), the F(b,t) function shown above, and a vector of 
initial guesses for each coefficient in F to calculate the b values that produce the “best” fit of the 
polynomial to the data. 

» b = nlinfit(t,v,F,[0 0]); 

» b 

b = 

                                                      
1 A second-order polynomial is not a good choice for this data. A parabola is a second-order equation, and the 
data shows a lot more curvature than a simple parabola. It will require a higher-order polynomial to adequately 
fit this data – but the goal of the first attempt is to demonstrate that the “best fit” polynomial may still be a very 
poor fit to the data. 
2 For curve-fitting, the variables are the model coefficients, the b values. All of the times are known from the 
data set. This polynomial is linear in the b values, so it is a linear model for curve fitting. 



   -0.2706 

    8.2273 

 
These coefficients tell us that the regression model is 

02273.82706.0 2 ++−= ttvp  

The subscript p indicates that the equation is used to calculate predicted values of velocity. 

The calculated coefficients provide the best possible fit of the model equation to the data, but that 
does not guarantee that the equation is a good fit. You should always calculate predicted values with 
the regression equation and compare them to the original data to visually determine if the regression 
equation is actually fitting the data. 

» v_p = b(1).*t.^2  + b(2).*t; 

» plot(t,v,'o',t,v_p); 

» xlabel(' t(sec) ');  

» ylabel(' v(mph) '); 

» legend('v','v_p',2)  

 
 
 
 
 
 
 
 
 
 

Clearly, the regression curve (solid line) is not doing a good job of fitting the data. 

 

Solution – Second Attempt 
We need a better regression equation. We’ll try a third-order polynomial. 
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2
3

1 btbtbtbvp +++=  

The inline function F(b,t) gets another element… 

» F = inline('b(1).*t.^3 + b(2).*t.^2 + b(3).*t','b','t'); 

…and nlinfit() now finds three b values… 

» b = nlinfit(t,v,F,[0 0 0]); 

» b 

b = 

   -0.0493 

    1.0762 

   -0.0403 
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Again, we calculate predicted velocities to check the fit. 

» v_p = v_p = b(1).*t.^3 + b(2).*t.^2  + b(3).*t; 

» plot(t,v,'o',t,v_p); 

» xlabel(' t(sec) ');  

» ylabel(' v(mph) '); 

» legend('v','v_p',2)  

 

 

 

 

 

 

 

 

The new model is doing a good job of fitting the data. The regression equation that fits the data is 
32

p t049.0t076.1t04.00v −+−=  

This equation can be used to generate the s-t and a-t graphs. 

MATLAB can integrate the vp equation to get position, s, and differentiate the equation for 
acceleration, a, using the polyint() and polydiff() functions respectively.  MATLAB represents 
polynomial’s as vectors of coefficients.  The first vector element is the coefficient on the highest 
ordered term and the last vector element is the constant.  Therefore, we need to add a zero to the 
end of our b vector so it is treated as a 3rd order polynomial by MATLAB.    

» b(4) = 0 

b = 

   -0.0493 

    1.0762 

   -0.0403 

         0 

 

» b(4) = 0; 

» b_a = polyder(b) 

b_a = 

   -0.1480    2.1524   -0.0403 

 

» b_s = polyint(b) 

b_s = 

   -0.0123    0.3587   -0.0202         0         0 



Note: When MATLAB integrates, it does not add the constant of integration. It effectively assumed the 
car was at s = 0 at t = 0. 

» a = b_a(1).*t.^2 + b_a(2).*t + b_a(3); 

» s = b_s(1).*t.^4 + b_s(2).*t.^3 + b_s(3).*t.^2 + b_s(4)*t; 

With the equations above, acceleration and position vectors a and s have been calculated by 
MATLAB. All that remains is to plot the results. 

» subplot(1,2,1); 

» plot(t,a,'o'); 

» xlabel('t');  

» ylabel('a'); 

 

» subplot(1,2,2); 

» plot(t,s,'o'); 

» xlabel('t');  

» ylabel('s'); 
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There are some strange units on the values plotted here. The acceleration has units of mi/sec.hr, and 
the position, s, has units of mi.sec/hr. We can clean this up a bit by building the unit conversions into 
the calculations for a and s. 

» a = a ./ 3600; 

» s = s ./ 3600; 

 

» subplot(1,2,1); 

» plot(t,a,'o'); 

» xlabel('t');  

» ylabel('a'); 

 

» subplot(1,2,2); 

» plot(t,s,'o'); 



» xlabel('t');  

» ylabel('s'); 
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The units are now a [=] mi/sec2 and s [=] miles. 

 

Annotated MATLAB Script Solution 

%Define the time and velocity vectors, and plot the v-t graph
t = 0:20; %t = 0,1,2,...,20
v = [0 1 4 8 14 21 28 35 43 51 58 64 69 73 75 75 73 68 60 49 35];
plot(t,v,'o');
xlabel('{\bf t(sec)}');
ylabel('{\bf v(mph)}');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First Solution Attempt - Second Order Polynomial %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Define the polynomial using the inline function F(b,t).
F = inline('b(1).*t.^2 + b(2).*t','b','t');
%Find the best-fit coefficients using F(b,t).
b = nlinfit(t,v,F,[0 0]);
%Calculate predicted velocity values (at each t value) to see if the
regression equation actually fits the data.
v_p = b(1).*t.^2 + b(2).*t;
subplot(1,2,1);
plot(t,v,'o',t,v_p);
xlabel('{\bf t(sec)}');
ylabel('{\bf v(mph)}');
legend('v','v_p',2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Second Solution Attempt - Third Order Polynomial %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Define the polynomial using the inline function F(b,t).
F = inline('b(1).*t.^3 + b(2).*t.^2 + b(3).*t','b','t');
%Find the best-fit coefficients using F(b,t).
b = nlinfit(t,v,F,[0 0 0]);



%Calculate predicted velocity values (at each t value) to see if the
regression equation actually fits the data.
v_p = b(1).*t.^3 + b(2).*t.^2 + b(3).*t;
subplot(1,2,2);
plot(t,v,'o',t,v_p);
xlabel('{\bf t(sec)}');
ylabel('{\bf v(mph)}');
legend('v','v_p',2);

%Convert b to a MATLAB polynomial vector
b(4) = 0;

%Take the derivative of b to find the equation for a.
b_a = polyder(b);
%Calculate a at each value of t
a = b_a(1).*t.^2 + b_a(2).*t + b_a(3);
%Simplify the units by building in the conversion from hours to seconds.
a = a ./ 3600;

%Integrate b to find the equation for s.
b_s = polyint(b)
%Calculate s at each value of t
s = b_s(1).*t.^4 + b_s(2).*t.^3 + b_s(3).*t.^2 + b_s(4)*t;
%Simplify the units by building in the conversion from hours to seconds.
s = s ./ 3600;

%Plot the results in a new figure.
figure;
subplot(1,2,1);
plot(t,a,'o');
xlabel('{\bf t}');
ylabel('{\bf a}');

subplot(1,2,2);
plot(t,s,'o');
xlabel('{\bf t)}');
ylabel('{\bf s}');

 



Curvilinear Motion: Rectangular Components 
Ref: Hibbeler § 12.5, Bedford & Fowler: Dynamics § 2.3 

 

A fixed x, y, z frame of reference is commonly used to describe the path of a particle in two situations: 

1. The path “fits” the Cartesian coordinate system well (tends to follow straight lines, or simple 
paths.) 

2. The path does not “fit” any commonly used coordinate system well. 

The example used here falls into the latter category. 

 

Example: Finding the Velocity and Acceleration of a Particle 
The complex path of a particle for times between 0 and 10 seconds has been fit using multivariable 
regression to the following functions: 

3
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The position of the particle at any point in time for which the functions are valid (0 ≤ t ≤ 10 sec.) can 
be determined as 

kjir zyx ++=  

Given these functions for x, y, and z determine the position, and the magnitudes of the velocity and 
acceleration of the particle at t = 7 sec. 

 

Solution 
The first thing we might want to do is graph this particle path, just to see what it looks like. MATLAB 
can help here. First, declare the three functions of time that describe the particle’s path: 

» x = inline('2 .* cos(t)', 't') 

x = 

     Inline function: 

     x(t) = 2 .* cos(t) 

 

» y = inline('1.3 + 0.27.*t.^2 - 0.031.*t.^3', 't') 

y = 

     Inline function: 

     y(t) = 1.3 + 0.27.*t.^2 - 0.031.*t.^3 

 

» z = inline('2.4 + 0.14.*t.^3', 't') 

z = 

     Inline function: 

     z(t) = 2.4 + 0.14.*t.^3 
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Then ask MATLAB to plot the particle path by placing the three function names into the scatter3() 
function. 

» t = 0 : 0.1: 10;  %sec - time over which to plot  

» scatter3(x(t),y(t),z(t),'o') 

» xlabel('x-axis') 

» Ylabel('y-axis') 

» zlabel('z-axis') 

 

 

 

 

 

 

 

 

Solving for Position 
Declare r(t) as a three-component matrix composed of the three functions.  The position is described 
by function r(t), so finding the position at t = 7 sec. Simply requires evaluating r(t) at this time. 

» r = inline('[ [2 .* cos(t)]   [1.3 + 0.27. *t.^2 - 0.031 .*t.^3]   [2.4 + 0.14. * t.^3] ]', 't') 

r = 

     Inline function: 

     r(t) = [[2.*cos(t)] [1.3+0.27.*t.^2-0.031.*t.^3] [2.4+0.14.*t.^3]] 

» r(7) 

ans = 

    1.5078    3.8970   50.4200 

 

So, at t = 7 seconds, the particle is located at x = 1.5078, y = 3.8970, and z = 50.4200. 

 

Solving for the Magnitude of the Velocity 
For velocity we need to take the derivative of the x, y, and z functions. Here, the derivatives are 
obtained using MATLAB’s symbolic math toolbox and cutting-and-pasting into three new inline 
functions: vx(t), vy(t), and vz(t). 

Note: Capital letters are used to represent symbolic variables while lower case letters are assigned a 
value or to a function. 

» syms T      %Define a symbolic variable T 

» X = 2 .* cos(T);     %Define X 

» diff(X)       %Differentiate on X 

ans = 

 -2*sin(T) 



» v_x = inline('-2 .* sin(t)','t');    %Assign v_x(t) 

 

» Y = 1.3 + 0.27.*T.^2 - 0.031.*T.^3;    %Define Y 

» diff(Y)       %Differentiate onY 

ans = 

 27/50*T-93/1000*T^2 

» v_y = inline('27/50 - 93/1000 .*t.^2', 't');   %Assign v_y(t) 

  

» Z = 2.4 + 0.14.*T.^3;     %Define Z 

» diff(Z)       %Differentiate onZ 

ans = 

 21/50*T^2 

» v_z = inline('21/50 .* t.^2', 't');     %Assign v_z(t) 

 
The magnitude of the velocity at t = 7 seconds can now be determined. 

» v = sqrt(v_x(7).^2 + v_y(7).^2 + v_z(7).^2) 

v = 

   21.0095 

 

Solving for the Magnitude of the Acceleration 
To find the acceleration, we need to differentiate the vx, vy, and vz functions with respect to time. The 
derivatives obtained using MATLAB’s symbolic math toolbox and cutting-and-pasting into three new 
inline functions: ax(t), ay(t), and az(t). 

» diff(-2*sin(T), T)     %Differentiate v_x 

ans = 

 -2*cos(T) 

» a_x = inline('-2.*cos(t)','t')     %Assign a_x(t) 

 a_x = 

     Inline function: 

     a_x(t) = -2.*cos(t) 

 

» diff(27/50 .* T - 93/1000 .* T.^2, T)    %Differentiate v_y 

ans = 

 27/50-93/500*T 

» a_y = inline('0.54 - 0.186.*t','t')    %Assign a_y(t) 

a_y = 

     Inline function: 

     a_y(t) = 0.54 - 0.186.*t 



 

» diff(21/50 .* T.^2, T)      %Differentiate v_z 

ans = 

 21/25*T 

» a_z = inline('0.84.*t','t')     %Assign a_z(t) 

a_z = 

     Inline function: 

     a_z(t) = 0.84.*t 

 

The magnitude of the acceleration at t = 7 seconds is 

» a = sqrt( a_x(7).^2 + a_y(7).^2 + a_z(7).^2 ) 

a = 

 6.1179 

 

 

Annotated MATLAB Script Solution  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Curvilinear Motion: Rectangular Components %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Declare the time functions for the particle's path.
x = inline('2 .* cos(t)', 't');
y = inline('1.3 + 0.27.*t.^2 - 0.031.*t.^3', 't');
z = inline('2.4 + 0.14.*t.^3', 't');

%Create a plot to see the particle path
t = 0 : 0.1: 10;%sec - time over which to plot
scatter3(x(t),y(t),z(t),'o')
xlabel('{\bf x-axis}')
Ylabel('{\bf y-axis}')
zlabel('{\bf z-axis}')

%Declare the r(t) function.
r = inline('[[2.*cos(t)] [1.3+0.27.*t.^2-0.031.*t.^3]
[2.4+0.14.*t.^3]]','t');

%Evaluate r(t) at t = 7 to find the position.
position = r(7);
fprintf('\nr(7) = [ %1.3f, %1.3f, %1.3f ]\n', r(7))

%Take the time derivatives of x, y, and z functions.
syms T %Define a symbolic variable T
X = 2 .* cos(T); %Define X
diff(X) %Differentiate on X
v_x = inline('-2 .* sin(t)','t'); %Assign v_x(t)

Y = 1.3 + 0.27.*T.^2 - 0.031.*T.^3; %Define Y
diff(Y) %Differentiate on Y



v_y = inline('27/50 - 93/1000 .*t.^2', 't'); %Assign v_y(t)

Z = 2.4 + 0.14.*T.^3; %Define Z
diff(Z) %Differentiate on Z
v_z = inline('21/50 .* t.^2', 't'); %Assign v_z(t)

%Calculate the magnitude of the velocity at 7 seconds.
v = sqrt(v_x(7).^2 + v_y(7).^2 + v_z(7).^2);
fprintf('Magnitude of the velocity at 7 seconds = %1.3f \n', v)

%Take the time derivatives of the velocity functions.
diff(-2*sin(T), T) %Differentiate on v_x
a_x = inline('-2.*cos(t)','t'); %Assign a_x(t)

diff(27/50 .* T - 93/1000 .* T.^2, T); %Differentiate on v_y
a_y = inline('0.54 - 0.186.*t','t'); %Assign a_y(t)

diff(21/50 .* T.^2, T) %Differentiate on v_z
a_z = inline('0.84.*t','t'); %Assign a_z(t)

%Calculate the magnitude of the acceleration at 7 seconds.
a = sqrt(a_x(7).^2 + a_y(7).^2 + a_z(7).^2);
fprintf('Magnitude of the acceleration at 7 seconds = %1.3f \n\n', a)



Curvilinear Motion, Motion of a Projectile 
Ref: Hibbeler § 12.6, Bedford & Fowler: Dynamics § 2.3 

 

Rectilinear motion refers to motion in a straight line. When a particle follows a non-straight path, it’s 
motion is termed curvilinear. Projectile motion is typically curvilinear, although a projectile fired 
straight up (in the absence of a crosswind), or moving along a straight track would be rectilinear 
motion. 

 

 

A projectile’s motion can be broken down into three phases: an acceleration phase where the 
actuator (gun, catapult, golf club, etc.) gets the projectile moving. The second phase of motion is after 
the projectile leaves the actuator, when the only acceleration acting on it is the acceleration due to 
gravity. 

Note: A common assumption that simplifies the problem considerably, but is not altogether accurate, 
is that the frictional drag between the projectile and the fluid through which it moves is negligible. This 
assumption is more reasonable for small, smooth, slow-moving particles through low-viscosity fluid 
than for large, irregularly shaped particles moving at high speeds through highly viscous fluids. 

The third phase of a projectile’s motion is after impact. The particle may roll, continue moving through 
a very different medium (water or earth), or break up. Here we will consider only the second phase of 
the projectile’s motion: the projectile has already been accelerated by an actuator, and is flying 
through the air. 

 

Example: Slingshot Contest 
Projectile throwing contests are pretty common at engineering schools. There are several ways to run 
the contest: highest, farthest, most accurate, etc; and several ways to propel the projectile: slingshot, 
catapult, etc. This example focuses on a tennis ball slingshot competition. 

Tennis Ball Data (approximate)  
Diameter 2.5 inches (6.4 cm) 
Weight 2 oz (57 g) 

 

A team of mechanical engineering students has built a slingshot that allows precise control of the pre-
release tension and angle. They also connected the release mechanism to a digital camera to take a 
series of photos in 1millisecond intervals just as the tennis ball is released. The photos are used to 
calculate the velocity (speed and angle) at which the tennis ball leaves the sling. 
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A test run with the camera operational gave the following set of photos (superimposed). 

25°

0 20 40 60 mm
 

Part 1. 
Determine: 

a. The initial velocity of the tennis ball as it leaves the sling. 

b. The predicted time of flight for the ball. 

c. The predicted horizontal travel distance for the ball. 

 

Part 2. 
The team that gets most balls into a basket set 30 meters from the launch site wins. If they can keep 
the initial speed constant (at the test run value of 22.1 m/s), what angle should they use to shoot the 
tennis balls into the basket? 

 
Part 1. Solution 
The initial velocity is calculated from the 60 mm horizontal travel distance observed in the photos 
using the camera’s 1 millisecond interval between snapshots. 

» x_test  = 60 / 1000;    %Horizontal travel distance for all four frames (m) 

» theta   = 25 * pi/180;  %Angle of trajectory (radians) 

» d_test  = x_test / cos(theta)  %Distance ball traveled in direction of motion  (m) 

d_test = 

    0.0662 

» dt_pic  = 0.001;  %Interval between snapshots (s) 

» dt_test = 3 * dt_pic;    %3 time intervals between the four photos 

» v_int   = d_test / dt_test %Initial velocity of the tennis ball 

v_int = 

   22.0676 

The horizontal and vertical components of the initial velocity will be useful for later calculations. 

» v_yint  = v_int * sin(theta)    %y component of initial velocity 



 

v_yint = 

    9.3262 

» v_xint  = v_int * cos(theta)    %x component of initial velocity 

v_xint = 

    20 

» v_x  = v_xint            %x component of velocity is constant (if air resistance is ignored) 

v_x = 

    20 

 

The predicted time of flight can be calculated using 
2

flightc2
1

flightinit_y0 tatvyy ++=  

where ac is the constant acceleration. In this problem, the acceleration is due to gravity and acts in 
the –y direction, so ac = -g. 

If we assume that the flight is over a horizontal surface, then y at the end of the flight is zero. Another 
common assumption is to assume that y0 is also zero. This is a reasonable assumption if the vertical 
position of the tennis ball as it leaves the sling is small compared to the maximum height reached 
during the flight. 

With these assumptions, the equation can be solved for the time of flight 

c

init_y
flight a

v2
t

−
=  

Using MATLAB, the time of flight is predicted to be 1.9 seconds. 

» a_c     = -9.8;    %The constant acceleration in this problem is due to gravity 

» t_flight= -2 * v_yint / a_c 

t_flight = 

    1.9033 

We can calculate the maximum height to see if the assumption that y0 is negligible is reasonable. The 
maximum height occurs at ½ the flight time (if y0 =yfinal, and air resistance is negligible). 

» y_o     = 0; 

» y_final = 0; 

» y_max   = y_o + v_yint *  t_flight / 2 + a_c / 2 * ( t_flight/2 )^2 

y_max = 

    4.4376 

Looking at the drawing of the slingshot, the ball is released at a height about two or three times the 
ball diameter, around 15 to 20 cm. 20 cm is nearly 5% of ymax. That is probably negligible, but we can 
use MATLAB’s root finder to find tflight including y0 = 20 cm. 

 

 

 



» y_o     = 20 / 100;         %Initial height (m)    

» y_final = 0;     %Final height (m) 

» coeffs  = [( a_c/2 ) ( v_yint ) ( y_o - y_final )];  %Polynomial  

» t_flight= roots(coeffs)    %Roots 

t_flight = 

    1.9245 

   -0.0212 

» t_flight= t_flight(1)            %Choose positive root  

t_flight = 

    1.9245 

 

Note: See the annotated MATLAB Script Solution for a more complete explanation of MATLAB’s 
roots function and how MATLAB represents polynomials.   

Accounting for the initial height increased the predicted flight time from 1.902 to 1.925 seconds (about 
1% difference). 

Finally, we calculate the predicted horizontal travel distance. 

» x_o = 0;         %Initial horizontal position 

» x   = x_o + v_x * t_flight  

x = 

   38.4901 



Annotated MATLAB Script Solution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Projectile Motion: Slingshot Contest
%Calculate Initial Velocity from Test Run
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Horizontal travel distance for all four frames (m)
x_test = 60 / 1000;
%Angle of trajectory (radians)
theta = 25 * pi/180;
%distance ball traveled in direction of motion (m)
d_test = x_test / cos(theta);
fprintf('Distance ball traveled in direction of motion = %1.4fm\n',d_test)

%Interval between snapshots (s)
dt_pic = 0.001;
%3 time intervals between the four photos
dt_test = 3 * dt_pic;
%Initial velocity of the tennis ball
v_int = d_test / dt_test;
fprintf('Initial velocity = %3.1f m/s\n',v_int)

%y component of initial velocity
v_yint = v_int * sin(theta);
fprintf('\ty component = %3.1f m/s\n',v_yint)
%x component of initial velocity
v_xint = v_int * cos(theta);
fprintf('\tx component = %3.1f m/s\n\n',v_xint)

%x component of velocity is constant (if air resistance is ignored)
v_x = v_xint;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate Time of Flight
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%The constant acceleration in this problem is due to gravity
a_c = -9.8;
t_flight= -2 * v_yint / a_c;
fprintf('Flight time (Ignoring y_o) = %3.3f s\n',t_flight)

y_o = 0; %Initial height
y_final = 0; %Final height
y_max = y_o + v_yint * t_flight/2 + a_c/2 * ( t_flight/2 )^2;
fprintf('y_max = %3.1f m\n\n',y_max)

continues…



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Alternative Solution Method - Include y_o and use MATLAB's root finder
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%The predicted time of flight can be calculated using
% y_max = y_o + v_yint * t_flight + a_c/2 * t_flight^2
%
%This equation is a second order polynomial in t_flight and can be
%rewritten in the form
% 0 = a2 * x^2 + a1 * x + a0
% with
% a2 = a_c/2
% a1 = v_yint
% a0 = y_o - y_final
%
%Polynomials are represented in MATLAB by an array of the
%coefficients in descending order. Therefore, this polynomial
%would be represented by the following
% coefficients = [a2 a1 a0]
% or
% coefficients = [( a_c/2 ) ( v_yint ) ( y_o - y_final )];

y_o = 20 / 100; %Initial height (m)
y_final = 0; %Final height (m)
coeffs = [( a_c/2 ) ( v_yint ) ( y_o - y_final )]; %Polynomial
t_flight= roots(coeffs); %Roots
t_flight= t_flight(1); %Choose the positive root
fprintf('Alternative Solution Method - Include y_o and use MATLAB''s root
finder\n')
fprintf('Flight time = %3.3f s\n',t_flight)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate Horizontal Motion
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_o = 0;
x = x_o + v_x * t_flight;
fprintf('Horizontal Motion = %3.3f m\n',x)

 

Part 2. 
With the MATLAB Script, we can simply try some different angles until we calculate a predicted 
horizontal travel distance of 30 meters. 

First, try 20 degrees. 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate Inital Velocity Components
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Initial velocity of the tennis ball
v_int = 22.1;
%Angle of trajectory (radians)
theta = 20 * pi/180;
fprintf('Initial velocity = %3.1f m/s\t\t',v_int)
fprintf('Angle of trajectory = %3.2f deg\n',theta * 180/pi)

%y component of initial velocity
v_yint = v_int * sin(theta);
fprintf('\ty component = %3.1f m/s\n',v_yint)
%x component of initial velocity
v_xint = v_int * cos(theta);
fprintf('\tx component = %3.1f m/s\n\n',v_xint)

%x component of velocity is constant (if air resistance is ignored)
v_x = v_xint;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate Time of Flight
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%The constant acceleration in this problem is due to gravity
a_c = -9.8;
t_flight= -2 * v_yint / a_c;
fprintf('Flight time (Ignoring y_o) = %3.3f s\n',t_flight)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate Horizontal Motion
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_o = 0;
x = x_o + v_x * t_flight;
fprintf('Horizontal Motion = %3.3f m\n',x)

 

MATLAB Output 

Initial velocity = 22.1 m/s   Angle of trajectory = 20.00 deg 

 y component = 7.6 m/s 

 x component = 20.8 m/s 

 

Flight time (Ignoring y_o) = 1.543 s 

Horizontal Motion = 32.035 m 

With a little trial and error, the predicted angle should be 18.5 degrees. 

 

 



Curvilinear Motion: Normal and Tangential Components 
Ref: Hibbeler § 12.7, Bedford & Fowler: Dynamics § 2.3 

 

When the path of a particle is known, an n-t coordinate system with an origin at the location of the 
particle (at an instant in time) can be helpful in describing the motion of the particle. Hibbeler gives a 
concise procedure for analysis in section 12.7, which we will apply to the following example. 

 

Example: A skateboarder in a quarter pipe. 
A skateboarder has dropped into a 3 meter (radius) quarter pipe. When she’s dropped a distance of 1 
meter her speed is 3.2 m/s and is increasing by 7.8 m/s2. 

Determine the normal and tangential components of the skateboarder’s acceleration. 

 

Solution 
The equation of the skateboarder’s path is that of a quarter circle: 

22 xRRy −−=  

where R is the radius, 3 m. 

First, we need to determine the actual location of the skateboarder when she has dropped 1 m. 

x

y

1 m
θ

A
vA = 3.2 m/s

t

n

 
She is obviously R – 1 = 2 m off the ground, and her x-position can be determined from the path 
equation using either MATLAB’s iterative root finder (fzero), or symbolic math capability. Here, we first 
create a function (an m-file) whose root we wish to find and then call the fzero iterative solver on the 
newly created function. 
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%Define the function on which to use fzero.

function F = FindMinimum(x) 

R=3; %3 meters radius
Y=2; %2 meters off the ground

%The equation describing the scateboarders path is that of
% and quarter circle => x^2 + y^2 = R^2
% or similarly => y = R - sqrt(x^2 + y^2)
%
% Then setting the equation equal to some arbitrary variable
% and solving for the root
F = R - sqrt(R^2 - x^2) - Y;

>> X = fzero('FindMinimum',2)  %Guess: 2 

X = 

    2.8284 

So, at the instant of interest, the skateboarder is located at X = 2.828 m, Y = 2 m. 

Next, the equation of the slope of the path at this point can be determined using MATLAB’s symbolic 
derivative operator as follows: 

>> syms  x   y   r   %Define the x, y , and R as symbolic variables 

      %Find symbolic result to the first derivative 

>> y = r - sqrt( r^2 - x^2 );   %Define symbolic equation 

>> dydx = diff(y,x)    %Find first derivative 

 dydx = 

 1/(r^2-x^2)^(1/2)*x 

Note:  lowercase variables are the symbolic variables while uppercase variables are assigned a 
numeric value. 

By assigning the derivative to an inline function and X and R to their respective values, the numeric 
value of the derivative can be calculated. 

>> R = 3; 

>> X = 2.8284; 

>> DYDX = inline('1/(r^2-x^2)^(1/2)*x','x','r') 

DYDX = 

     Inline function: 

     DYDX(x,r) = 1/(r^2-x^2)^(1/2)*x 

>> DYDX(X,R) 

ans = 

    2.8282 

The angle in degrees at point A can then be determined as: 

>> atan(2.8282) * 180/pi 

ans = 

   70.5273 



The skateboarder’s acceleration can be written in terms of normal and tangential velocities, as 
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The radius of curvature, ρ, of the path at the point of interest (X=2.828 m, Y = 2 m) can be calculated 
as: 
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In MATLAB, this equation is evaluated as follows: 

>> y = r - sqrt( r^2 - x^2 );    %Define Symbolic Equation 

>> dydx   = diff(y,x)     %First Derivative 

dydx = 

1/(r^2-x^2)^(1/2)*x 

>> DYDX = inline('1/(R^2-x^2)^(1/2)*x','x','R');  %Create inline function DYDX 

>> dy2dx2 = diff(diff(y,x),x)    %Second Derivative 

dy2dx2 = 

1/(r^2-x^2)^(3/2)*x^2+1/(r^2-x^2)^(1/2) 

%Create inline function DY2DX2 

>> DY2DX2 = inline('1/(r^2-x^2)^(3/2)*x^2+1/(r^2-x^2)^(1/2)','x','r'); 

>> RHO = (1 + DYDX(X,R)^2)^(3/2) / abs(DY2DX2(X,R)) 

RHO = 

    3.0000 

The calculated radius of curvature is 3 m – which should come as no surprise since the path is a 
circle of radius 3 m. 

The equation for the acceleration of the skateboarder in terms of 
tangential and normal components is now:  
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The magnitude of the acceleration is found with the following 
calculation: 
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>> a = sqrt(7.8^2 + ( 3.2^2 / 3 )^2)    %meters per second squared 

a = 

    8.5142 

While the angle (in degrees), φ, is found using the atan() function and multiplying by the conversion 
factor 180o/π. 

>> PHI = atan(v_dot / ( v^2/rho )) *180/pi 

PHI = 

   66.3655 

The angle of the acceleration in degrees from the positive x axis is: 

>> ANGLE = THETA + 90 + PHI 

ANGLE = 

  226.8941 

 

Annotated MATLAB Script Solution 

%Define the function on which to use fzero.
function F = FindMinimum(x)

R=3; %3 meters radius
Y=2; %2 meters off the ground

%The equation describing the scateboarders path is that of
% and quarter circle => x^2 + y^2 = R^2
% or similarly => y = R - sqrt(x^2 + y^2)
%
% Then setting the equation equal to some arbitrary variable
% and solving for the root
F = R - sqrt(R^2 - x^2) - Y;

 

%Call fzero on the FindMinimum function with an initial guess of 2
X = fzero('FindMinimum',2); %Guess: 2
fprintf('X = %1.4f m .\n', X)

%Define all other variables using uppercase letters to indicate the
variable has been assigned a value.
V_dot = 7.8;
V = 3.2;
R = 3;
Y = 2;

%Define the x, y , and r as symbolic variables.
%Note: Lowercase variables are all symbolic variables while
% uppercase variables are assigned a numeric value.
syms x y r;

%Find symbolic result to first and second derivatives
y = r - sqrt( r^2 - x^2 ); %Define Symbolic Equation
dydx = diff(y,x) %First Derivative



DYDX = inline('1/(R^2-x^2)^(1/2)*x','x','R');
dy2dx2 = diff(diff(y,x),x) %Second Derivative
DY2DX2 = inline('1/(r^2-x^2)^(3/2)*x^2+1/(r^2-x^2)^(1/2)','x','r');

%Calculate the angle at point A.
THETA = atan(X) *180/pi;
fprintf('The angle at point a is %1.4f degrees.\n', THETA)

%Calculate the radius of curvature at X = 2.828 m and y = 2 m.
RHO = (1 + DYDX(X,R)^2)^(3/2) / abs(DY2DX2(X,R));
fprintf('The radius of curvature at X = 2.828 m and y = 2 m is %1.4f
m.\n', RHO)

%Calculate the magnitude of acceleration.
A = sqrt(V_dot^2 + (V^2/RHO)^2);
fprintf('The magnitude of acceleration is %1.4f m/s^2.\n', A)

%Calculate the algle of acceleration relative to the t,n coordinate
system.
PHI = atan(V_dot / ( V^2/RHO )) *180/pi;

%Calculate the angle of acceleration relative to the positive x-axis.
ANGLE = THETA + 90 + PHI;
fprintf('The angle of acceleration relative to the positive x-axis is
%1.4f degrees.\n', ANGLE)

 



Dependent Motion of Two Particles 
Ref: Hibbeler § 12.9, Bedford & Fowler: Dynamics, chapter 2 (no directly analogous section) 

 

Sometimes the motion of one particle depends on the motion of another – this is called dependent 
motion. One situation that creates dependent motion is when two particles are connected by a cord 
around a pulley. 

 

 

If weight A is pulled downward, weight B will be raised, but the total length of the cord, Ltotal, (assumed 
inextensible) is constant. The total length of the cord can be described in terms of cord lengths that 
change, sA and sB, and unchanging lengths, combined and called Lconst (shown in red in the next 
figure.) 
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totalconstAB LLss2 =++  
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Differentiating this equation with respect to time yields the time rates of change of position, or 
velocities of each weight. 

AB

AB

vv2

00
dt

ds
dt

ds
2

−=

=++
 

So, if weight A moves down at 0.3 m/s, weight B will move up at 0.15 m/s. 

 

Example: Four Pulley System 
At what rate, and in which direction must weight A move if weight B is to fall at a rate of 0.3 m/s? 

A
0.3 m/s

B
 

Solution 
There is a single cord between weights A and B, so the motion of one of the weights is dependent 
upon one the other. While the physical system is somewhat more complex than the original, 2-pulley 
example, the solution is not very different. The total length of the cord is made up of 9 segments, as 
shown in the figure below. There are 4 equivalent-length sections that lengthen as weight B is 
lowered. The length of each of these sections is labeled SB. 
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The length of the cord segment connected to weight A is labeled SA. There are four cord segments 
around the four pulleys that do not change as the weights move. These segments are shown in red in 
the figure, and their lengths are combined and called Lconst. The total cord length, then, is 

totalconstAB LLss4 =++  

Differentiating this equation with respect to time yields the time rates of change of position, or 
velocities of each weight. 
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So, if weight B moves down at 0.3 m/s, weight A will move up at 1.2 m/s. 

 

So far, these problems require only simple calculus, and there is little need for MATLAB’s 
calculational abilities. However, when there are several cords involved, MATLAB’s matrix math 
capabilities can come into play. 

 

Example: Three Cord System 
In the example shown below, three cords are connected around a complicated pulley system. The 
length of each of the cords is constant, so the sum of the segment lengths can be written for each 
cord.  

B

A
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To simplify things a bit, we first determine which segments are of constant length, shown in gray in the 
following figure. Then the segments that are changing length are labeled (S1 through S6, as shown in 
the figure.) 
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The following relationships involving the changing segment lengths can be written: 

1) Segments S1 and S2, plus a fixed length, FG, sum to the total length of the green cord. LG. 

2) Segments S3 and S4, plus a fixed length, FB, sum to the total length of the blue cord. LB. 

3) Segments S5 and S6, plus a fixed length, FY, sum to the total length of the yellow cord. LY. 

Two additional relationships can be written: 

4) Segments S1, S3, S5 and the length of the floating link, LLINK, sum to an unknown, but 
constant (fixed) length, F1. 

5) Segments S4, S5 and the length of the floating link, LLINK, sum to an unknown, but constant 
(fixed) length, F2. 

In summary, the following five equations are written: 
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Taking time derivatives, the segment lengths become velocities, and the constant terms go to zero. 
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Since v6 is known to be 0.3 m/s (downward), these 5 equations in 5 unknowns can be solved. 
Including the known value, the equations become… 
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To solve these simultaneous linear equations using matrix methods in MATLAB, we rewrite the 
equations as a coefficient matrix, C, and a right-hand-side vector, r.  Note that the apostrophe on the 
r vector transposes r from a row vector into a column vector. 

>> C = [ 1    1    0    0    0; 
              0    0    1    1    0; 
              0    0    0    0    1; 
              1    0    1    0    1; 
              0    0    0    1    1; ]; 
 
>> r = [  0    0    -0.3    0    0 ]';       %Units => m/s 

 

We then invert the coefficient matrix, and multiply the inverted coefficient matrix and the r vector to 
obtain the unknown velocities. 

>> C_inv  =  inv(C) 

C_inv = 

     0    -1    -2     1     1 

     1     1     2    -1    -1 

     0     1     1     0    -1 

     0     0    -1     0     1 

     0     0     1     0     0 

 

>> v  =  C_inv * r %Units => m/s 

v = 

    0.6000 

   -0.6000 

   -0.3000 

    0.3000 

   -0.3000 

 

These velocities represent the rate at which segment lengths S1 through S5 are changing with time, 
and are not (generally) velocities relative to the datum. In order to determine the velocity of point A 
relative to the datum, the distance of point A relative to the datum (called LA in the figure below) must 
be written in terms of segment lengths. 
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The velocity of point A relative to the datum is the time derivative of LA. 
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Velocities v2, v3, and v5 are known, so vA can be determined.  

>> v_a  =  v(5) + 0 + v(3) + v(2) 
 
v_a = 
   -1.2000 
 

Since the velocity at point B was 0.3 m/s downward, this result indicates that point A is moving at 1.2 
m/s upward. 

 

Annotated MATLAB Script Solution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Four Pulley System
% Calculate segment velocities and velocity of point A
% relative to the datum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Declare the coefficient matrix and right-hand-side vector
C = [ 1 1 0 0 0;

0 0 1 1 0;
0 0 0 0 1;
1 0 1 0 1;
0 0 0 1 1;];

r = [ 0 0 -0.3 0 0]'; %Units => m/s



Annotated MATLAB Script Solution Continued 

%Invert the coefficient matrix.
C_inv = inv(C);

%Multiply the inverted coefficient matrix and the right-hand-side
%vector to calculate the segment velocities.
v = C_inv * r; %Units => m/s
fprintf('\nThe Segment Velocitys are as follows:\n')
fprintf('\tv(1) = %3.1f m/s \n', v(1))
fprintf('\tv(2) = %3.1f m/s \n', v(2))
fprintf('\tv(3) = %3.1f m/s \n', v(3))
fprintf('\tv(4) = %3.1f m/s \n', v(4))
fprintf('\tv(5) = %3.1f m/s \n', v(5))

%Use the segment velocities to calculate the velocity of point A
%relative to the datum.
v_a = v(5) + 0 + v(3) + v(2);
fprintf('\nThe velocity of point A relative to the datum is %3.1f m/s \n',
v_a)
 



Kinetics of a Particle: Force and Acceleration 
Ref: Hibbeler § 13.4, Bedford & Fowler: Dynamics § 3.1-3.4 

 

In an earlier example (#8) we looked at “pushing a crate” and investigated the effect of changing the 
height of the push and the magnitude of the push on the rigid body. Specifically, we tested to see if 
the crate would tip or slip. In this example, we will determine the initial acceleration of the crate and 
the velocity after a short time at that acceleration. 

 

Example: Pushing a Crate 
A crate weighs 35 kg, and is 0.5 m wide and 1.0 m in height. A force, P, is applied to the side of the 
crate at height yP = 0.4 m from the floor. From the earlier example (#8) we know that this force is 
sufficient to overcome friction, and when applied at this height will not tip the crate. The coefficient of 
kinetic friction is 0.24. 

Determine the initial acceleration and, assuming the acceleration remains constant, the expected 
velocity of the crate after 3 seconds. 

yP = 0.4 m

P

F

NC

x

y
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W

 
 

Solution 
First, a free-body diagram is drawn. 
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We start the solution by assigning values given in the problem statement to variables: 

» M = 35;      %kg 

» P = 120;      %Newtons 

» y_p = 0.4;      %meters 

» g = 9.807;      %meters/s^2 

» mu_k = 0.24; 

Then we calculate the weight of the crate. 

» W = -M .* g      %Newtons 

W = 

 -343.2450 

We can use the equation of motion for the y-components of force to determine the resultant normal 
force, NC (but the result is not much of a surprise.) 

» %EQ of MOTION: y components of force. 

» % W + N_c = 0  so... 

» N_c = -W      %Newtons - acts in the +x direction 

N_c = 

  343.2450 

Knowing NC, the friction force can be determined. 

» F= mu_k .* N_c;  %Newtons - this equation does not account for direction 

» F = -F    %Newtons - sign changed since F acts in -x direction 

F = 

  -82.3788 

 



Next, we use the equations of motions with the information on the free-body diagram to solve for the 
acceleration, ax. 

» %EQ of MOTION: x components of force. 

» % P + F = M * a_x  so... 

» a_x = (P + F) ./ M     %m / s^2 

a_x = 

    1.0749 

Now the velocity after 3 seconds can be determined. 

» %Calculate the velocity after three seconds. 

» v_o = 0;      %m / s 

» delta_t = 3;      %s 

» a = a_x;      %m / s^2 

» v = v_o + a .* delta_t     %m / s 

v = 

    3.2247 

 

 

Annotated MATLAB Script Solution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pushing a Crate - Initial Acceleration %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Data from the problem statement...
M = 35; %kg
P = 120; %Newtons
y_p = 0.4; %meters
g = 9.807; %meters/s^2
mu_k = 0.24;

%Calculate the weight of the crate.
W = -M .* g; %Newtons
fprintf('\nW = %1.1f N\t\t', W)

%EQ of MOTION: y components of force.
%W + N_c = 0 so...
N_c = -W; %Newtons
fprintf('N_c = %1.1f N\n', N_c)

%Calculate teh friction force, F.
F= mu_k .* N_c; %Newtons - this equation does not account for direction
F = -F; %Newtons - Sign changed since F acts in -x direction
fprintf('F = %1.1f N\t\t', F)

%EQ of MOTION: x components of force.
%P + F = M * a_x so...
a_x = (P + F) ./ M; %m/s^2
fprintf('a_x = %1.3f m/s^2\n\n', a_x)



%Calculate the velocity after three seconds.
v_o = 0; %m / s
delta_t = 3; %s
a = a_x; %m/s^2
v = v_o + a .* delta_t; %m/s
fprintf('v = %1.3f m/s\n\n', v)

 



Equations of Motion: Normal and Tangential Components 
Ref: Hibbeler § 13.5, Bedford & Fowler: Dynamics § 3.4 

 

In an earlier example (#14) we looked at the motion of a skateboarder along a curved path. Now, we 
apply the equations of motion to that problem to investigate the significance of friction in the problem. 

 

Example: A skateboarder in a quarter pipe. 
A skateboarder with a mass of 55 kg has dropped into a 3 meter (radius) quarter pipe. When she’s 
dropped a distance of 1 meter her speed is 3.2 m/s and is increasing by 7.8 m/s2. At this location the 
surface is at an angle of 19.4° from vertical. 

Draw a free body diagram of this system including a friction force. Neglect the size of the 
skateboarder and her board. Solve the equations of motion for the normal force, NA, and the friction 
force, F. Then, calculate the coefficient of kinetic friction required to generate the observed friction 
force. 

 

Solution 
A free-body diagram for this system looks like the following: 
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First, information from the problem statement is entered into MATLAB. 

» v = 3.2;     %m / s 

» a_t = 7.8;     %m / s^2 

» M = 55;     %kg 

» g = 9.807;     %m / s^2 

» alpha = 19.4 * pi /180;    %radians - angle from vertical 

» rho = 3;     %meters - circular path, constant rho 
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The tangential acceleration at this location was given in the problem statement, as at = 7.8 m/s2. The 
normal acceleration can be calculated from the stated velocity (3.2 m/s) and the radius of curvature 
(3 m). 

» a_n = v.^2 ./ rho    %m / s^2 

a_n = 

    3.4133 

The normal component of the equation of motion can be used to find NA, but first we need the normal 
component of the skateboarder’s weight. 

» W = M .* g     %Newtons 

W = 

  539.3850 

 

» W_n = -W .* sin(alpha)   %Newtons - minus sign accounts for direction 

W_n = 

 -179.1627 

 

» W_t =  W .* cos(alpha)   %Newtons 

W_t = 

  508.7602 

Then find the normal force, NA. 

» % N_A + W_n = M * a_n  so... 

» N_A = M .* a_n - W_n    %Newtons 

N_A = 

  366.8961 

Next, use the tangential component of the equation of motion to determine the friction force. 

» % W_t + F = M * a_t    so... 

» F = M .* a_t - W_t     %Newtons 

F = 

  -79.7602 

The friction force, F, and the normal force, NA, can be used together to calculate the apparent 
coefficient of kinetic friction for this problem. 

» mu_k = abs(F) ./ N_A     %need only the magnitude of F here 

mu_k = 

    0.2174 



Annotated MATLAB Script Solution  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Friction Force on a Skateboarder %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Set problem parameters as stated in the problem.
v = 3.2; %m/s
a_t = 7.8; %m/s^2
M = 55; %kg
g = 9.807; %m/s^2
alpha = 19.4 * pi /180; %radians - angle from vertical
rho = 3; %meters - circular path, constant rho

%Solve for the normal acceleration.
a_n = v.^2 ./ rho; %m/s^2
fprintf('\nNormal Acceleration = %1.1f M/s^2 \n', a_n)

%Find the normal and tangential components of the skateboarder’s weight
W = M .* g; %Newtons
W_n = -W .* sin(alpha); %Newtons - minus sign accounts for direction
W_t = W .* cos(alpha);%Newtons
fprintf('Skateboarder''s Weight = %1.0f N\n', W)
fprintf('\tNormal component = %1.0f N\n', W_n)
fprintf('\tTangential component = %1.0f N\n', W_t)

%EQ of MOTION: normal component
%N_A + W_n = M * a_n so...
N_A = M .* a_n - W_n; %Newtons
fprintf('Normal Force = %1.2f N\n', N_A)

%EQ of MOTION: tangential component
%W_t + F = M * a_t so...
F = M .* a_t - W_t; %Newtons
fprintf('Friction Force = %1.1f N\n', F)

%Calculate the coefficient of kinetic friction
mu_k = abs(F) ./ N_A; %need only the magnitude of F here
fprintf('Coefficient of Kinetic Friction = %1.2f\n\n', mu_k)

 



Principle of Work and Energy 
Ref: Hibbeler § 14.3, Bedford & Fowler: Dynamics § 8.1-8.2 

 

The principle of work and energy states that the work done by all of the external forces and couples 
as a rigid body moves between positions 1 and 2 is equal to the change in the body’s potential 
energy. Hibbeler writes the resulting equation as 

2211 TUT =+∑ −  Hibbeler (14-7) 

The same equation is written as 

1212 TTU −=  Bedford and Fowler: Dynamics (8.4) 

by Bedford and Fowler. 

The difference between these two equations is simply nomenclature. Both ∑ −21U  and 12U  
represent the sum of work done by all external forces and couples on the body. We can use the 
principle of work and energy to solve problems involving force, displacement, and velocity. 

 

Example: Skid-to-Stop Braking Distance 
The driver of a 1600 kg passenger car hits the brakes and skids to a stop to try to avoid hitting a deer. 
When the deer suddenly appeared in the headlights [at an estimated distance of 300 ft (91 m)] the car 
was moving at 75 mph (120 km/hr). 

After the incident long skid marks were visible on the pavement, and the deer was seen running over 
a nearby hill. Did the driver get the car stopped in time, or did the deer manage to get out of the way? 

Assumptions: 

 Assume a 1.5 second reaction time – that is, it took 1.5 seconds from the time the driver saw 
the deer until he or she pressed the brake pedal. 

 Assume a dry, flat road with a coefficient of friction, µk = 0.80. 

 

Solution 
A free body diagram of this system shows the various forces acting on the car. 

W

NA

FA
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Because the road was assumed to be flat, the normal force, NA, is equal to the vehicle’s weight. 

» M = 1600;       %kg 

» g = 9.807;       %m / s^2 

» W = M .* g;       %Newtons 

» N_A = W       %Newtons 

N_A = 

  15691 

The friction force during the skid (wheels locked) is calculated using the normal force and the 
coefficient of kinetic friction, µk. 

» mu_k = 0.80; 

» F_A = mu_k .* N_A      %Newtons 

F_A = 

  12553 

The length of the skid can be determined using the principle of work and energy. 

2
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The final velocity, v2, is zero (skid-to-stop), and the only force acting on the car during the 
deceleration is the friction force, FA, acting through the skid distance, s. 

( ) 0sFvm A
2

12
1 =−+  

This equation can be solved for the skid distance. 

» v(1) = 75;       %mi / hr 

» v(1) = v(1) .* 1609 ./ 3600;     %m / s 

» s = 0.5 .* M .* v(1).^2 / F_A     %meters 

s = 

   71.6100 

That looks good; it is possible to stop in less than 91 meters, the initial distance between the car and 
the deer. But, we also need to account for the distance the car traveled in the 1.5 seconds between 
the time the driver saw the deer and the moment the brakes were applied. 

» t_reaction = 1.5;      %sec 

» s_reaction = v(1) .* t_reaction     %meters 

s_reaction = 

   50.2813 

The total distance traveled between the moment the deer was spotted and the vehicle coming to a 
complete stop is 50.2813 + 71.6100 = 121.8912m. 

» s_total = s + s_reaction     %meters 

s_total = 

  121.8912 



The driver did not get stopped within 91 m. The deer had to get out of the way in order to escape 
injury. 

 

Annotated MATLAB Script Solution  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Skid-to-Stop Calculations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the magnitude of the normal force.
M = 1600; %kg
g = 9.807; %m/s^2
W = M .* g; %Newtons
N_A = W %Newtons
fprintf('Magnitude of the normal force = %1.0f N\n', N_A)

%Calculate the friction force.
mu_k = 0.80;
F_A = mu_k .* N_A; %Newtons
fprintf('Friction force = %1.0f N\n', F_A)

%Calculate the skid distance
v(1) = 75; %mi/hr
v(1) = v(1) .* 1609 ./ 3600; %m/s
s = 0.5 .* M .* v(1).^2 / F_A ; %meters
fprintf('Skid distance = %1.0f m\n', s)

%Calculate the distance traveled during the driver’s reaction time.
t_reaction = 1.5; %sec
s_reaction = v(1) .* t_reaction; %meters
fprintf('Distance traveled during the drivers reaction ')
fprintf('time = %1.0f m\n', s_reaction)

%Calculate the total distance traveled after spotting the deer.
s_total = s + s_reaction; %meters
fprintf('Total distance traveled after spotting the ')
fprintf('deer %1.0f m\n', s_total)

 



Rotation About a Fixed Axis 
Ref: Hibbeler § 16.3, Bedford & Fowler: Dynamics § 9.1 

 

Because drive motors are routinely used, solving problems dealing with rotation about fixed axes is 
commonplace. The example used here looks at a very old-fashioned drive motor – a water wheel. 

 

Example: Water Wheel 
Long ago, a water wheel was used to drive a mill. The point labeled “R” on the outermost edge of the 
water wheel was 1.25 m from the center of the wheel. A drive wheel, labeled “A”, was directly 
attached to the water wheel. A belt connected the drive wheel to the shaft on wheel “B”. The 
dimensions of the various wheels and shafts are listed below. 

Shortly after the water gate was opened to allow water to flow over the wheel, then water wheel had 
an angular acceleration of 0.1 rad/s2. Assume the belts did not slip. 

Determine: 

a) The magnitudes of the velocities and accelerations at points R and P after the water wheel 
has made two complete revolutions. 

b) The velocity and acceleration of point Q on the belt leaving wheel B. 

R
A B P

Q

 
Dimensions Diameter 

Wheel A 0.7 m 
Wheel B 1 m 
Shaft B 0.19 m 

 

 

Solution, part a (point R) 

Movement through a complete circle is equivalent to moving a point through 2π radians, so two 
complete revolutions of point R would move that point through 4π radians, or 4 x 3.1416 = 12.57 
radians. So, 

rad57.12R =θ  

The water wheel is accelerating at constant rate, s/rad1.0A =α , so the angular velocity of point R is 
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In MATLAB, this calculation can be performed as follows: 

» alpha_A = 0.1;       %radians / s^2 

» omega_0 = 0;        %radians / s 

» theta_0 = 0;        %radians 

» theta_R = 4 * pi;       %radians 

» omega_R = sqrt(omega_0.^2 + 2 .* alpha_A .* (theta_R - theta_0)) %radians / s 

omega_R = 

    1.5853 

The velocity at point R can now be determined. 

» r_R = 1.25;        %meters 

» v_R = omega_R *r_R       %m / s 

v_R = 

    1.9817 

Point R has tangential and normal components of acceleration. They are calculated as follows. 

» a_Rt = alpha_A .* r_R       %m / s^2 

a_Rt = 

    0.1250 

 

» a_Rn = omega_R.^2 .* r_R      %m / s^2 

a_Rn = 

    3.1416 

Then the magnitude of the acceleration at point R can be determined. 

» a_R = sqrt(a_Rt.^2 + a_Rn.^2)      %m / s^2 

a_R = 

    3.1441 

 

Solution, part a (point P) 
The connector between drive wheel A and wheel B is the belt between the two wheels. If the belt 
does not slip, then 

shaft_BBAA rrs θ=θ=  

Notice that the radius of the shaft on wheel B is used in this calculation, because the belt from wheel 
A goes around the shaft on wheel B, not wheel B itself. However, the angular displacement of the 
shaft on wheel B is the same as the angular displacement of wheel B – they are directly connected. 



» theta_A = theta_R       %radians 

theta_A = 

   12.5664 

» r_A = 0.35;        %meters 

» r_B_shaft = 0.19 ./ 2;       %meters 

» theta_B = theta_A .* r_A ./ r_B_shaft     %radians 

theta_B = 

   46.2972 

Since the belt connecting wheel A and shaft B has the same speed and tangential component of 
acceleration, we can write: 

shaft_BBAAt

shaft_BBAA

rra

rrv

α=α=

ω=ω=
 

These relationships can be used to find the angular velocity and tangential component of acceleration 
of shaft B, which are also the angular velocity and tangential component of acceleration of point P on 
wheel B. 

» omega_A = omega_R;      %radians / s 

» omega_B = omega_A .* r_A ./ r_B_shaft    %radians / s 

omega_B = 

    5.8407 

» alpha_B = alpha_A .* r_A ./ r_B_shaft     %radians / s^2 

alpha_B = 

    0.3684 

Now it is possible to calculate the magnitudes of the velocity and acceleration at point P. 

» r_P = 0.5;        %meters 

» v_P = omega_B .* r_P       %m / s 

v_P = 

    2.9203 

» a_Pt = alpha_B .* r_P       %m / s^2 

a_Pt = 

    0.1842 

» a_Pn = omega_B.^2 .* r_P      %m / s^2 

a_Pn = 

   17.0568 

» a_P = sqrt(a_Pt.^2 + a_Pn.^2)      %m / s^2 

a_P = 

   17.0578 

 

Solution, part b (point Q) 



Point Q has the same velocity and tangential component of acceleration as point P. 

» v_Q = v_P        %m / s 

v_Q = 

    2.9203 

» a_Q = a_Pt        %m / s^2 

a_Q = 

    0.1842 

 

 

Annotated MATLAB Script Solution  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Water Wheel Problem %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the angular velocity of the water wheel (and point R).
alpha_A = 0.1; %radians/s^2
omega_0 = 0; %radians/s
theta_0 = 0; %radians
theta_R = 4 * pi; %radians
omega_R = sqrt(omega_0.^2 + 2 .* alpha_A .* (theta_R-theta_0)); %radians/s
fprintf('\nAngular Velocity of the Water Wheel = %1.2f rad/s\n', omega_R)

%Find the velocity at piont R.
r_R = 1.25; %meters
v_R = omega_R *r_R; %m/s
fprintf('Velocity at Piont R = %1.2f m/s\n', v_R)

%Find the tangential and angular components of acceleration at point R.
a_Rt = alpha_A .* r_R; %m/s^2
a_Rn = omega_R.^2 .* r_R; %m/s^2
fprintf('Components of acceleration at point\n')
fprintf('\tTangential component = %1.3f m/s^2\n', a_Rt)
fprintf('\tAngular component = %1.3f m/s^2\n', a_Rn)

%Determine the magnitude of the acceleration at point R.
a_R = sqrt(a_Rt.^2 + a_Rn.^2); %m/s^2
fprintf('Magnitude of the Acceleration at point R = %1.3f m/s^2\n', a_R)

%Determine the angular displacement of wheel B.
theta_A = theta_R; %radians
r_A = 0.35; %meters
r_B_shaft = 0.19 ./ 2; %meters
theta_B = theta_A .* r_A ./ r_B_shaft; %radians
fprintf('Angular Displacement of Wheel B = %1.1f rad\n', theta_B)

%Determine the angular velocity and tangential component of acceleration
of shaft B (and point P).
omega_A = omega_R; %radians/s
omega_B = omega_A .* r_A ./ r_B_shaft; %radians/s
alpha_B = alpha_A .* r_A ./ r_B_shaft; %radians/s^2
fprintf('Angular Velocity of Shaft B = %1.2f rad/s\n', omega_B)



fprintf('Tangential Component of Acceleration of ')
fprintf('Shaft B = %1.2f rad/s^2\n', alpha_B)

%Find the velocity and acceleration at point P.
r_P = 0.5;%meters
v_P = omega_B .* r_P; %m/s
a_Pt = alpha_B .* r_P; %m/s^2
a_Pn = omega_B.^2 .* r_P; %m/s^2
a_P = sqrt(a_Pt.^2 + a_Pn.^2); %m/s^2
fprintf('\nVelocity at point P = %1.2f m/s\n', v_P)
fprintf('Acceleration at point P = %1.1f m/s^2\n', a_P)

%Find the velocity and acceleration of point Q.
v_Q = v_P; %m/s
a_Q = a_Pt; %m/s^2
fprintf('\nVelocity at point Q = %1.2f m/s\n', v_Q)
fprintf('Acceleration at point Q = %1.1f m/s^2\n', a_Q)
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