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ABSTRACT

Multidecadal and longer changes to the Atlantic interhemispheric sea surface temperature gradient

(AITG) in phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical simulations are in-

vestigated. Observations show a secular trend to this gradient over most of the twentieth century, with the

southern lobe warming faster relative to its northern counterpart. A previous study of phase 3 of the CMIP

(CMIP3) suggests that this trend is partially forced by anthropogenic sulfate aerosols. This analysis collec-

tively confirms the partially forced trend for the CMIP5 and by anthropogenic aerosols. Like the CMIP3, the

CMIP5 also simulates a reversal in the AITG trend in the late 1970s, which was attributed to a leveling off of

the anthropogenic aerosol influence and increased influence of greenhouse gases in the late twentieth century.

Two (of 25) CMIP5models, however, systematically simulate a twentieth-century trend opposite to observed,

leading to some uncertainty regarding the forced nature of the AITG trend. The observedAITG also exhibits

a pronounced multidecadal modulation on top of the trend, associated with the Atlantic multidecadal os-

cillation (AMO). Motivated by a recent suggestion that the AMO is a forced response to aerosols, the causes

of this multidecadal behavior were also examined. A few of the CMIP5 models analyzed do produce mul-

tidecadal AITG variations that are correlated to the observed AMO-like variation, but only one, the Hadley

Centre Global Environmental Model, version 2 (HadGEM2), systematically simulates AMO-like behavior

with both the requisite amplitude and phase. The CMIP5 simulations thus point to a robust aerosol influence

on the historical AITG trend but not to the AMO-like multidecadal behavior.

1. Introduction

The Atlantic interhemispheric sea surface tempera-

ture gradient (AITG) exerts strong control on rainfall in

the tropical Atlantic sector (Cox et al. 2008; Hastenrath

and Heller 1977; Moura and Shukla 1981). There is an

observed trend to this gradient over the twentieth cen-

tury (Fig. 1), implying that the tropical Atlantic in-

tertropical convergence zone shifted southward with

the AITG given the tight coupling between the ITCZ

position and cross-equatorial sea surface temperature

(SST) gradient (e.g., Chang et al. 2000; Chiang et al.

2002). Chang et al. (2011) were the first to show this

long-term southward ITCZ displacement and analyze

its causes, with phase 3 of the Coupled Model Inter-

comparison Project (CMIP3; Meehl et al. 2007) simula-

tions showing that anthropogenic sulfate aerosols forced

at least a part of the twentieth-century trend. They also

identified a reversal to this trend around 1980, possibly

related to regulations limiting atmospheric pollution in

Europe and North America in the 1970s.

The prevailing view of this hemispheric asymmetry in

the long-term tropical Atlantic SST evolution is because

of the cooling effect of anthropogenic (primarily sulfate)

aerosols, located and acting mostly in the Northern Hemi-

sphere. The role of anthropogenic aerosols in further

shifting the tropical rainbands southward was originally

suggested in studies with atmospheric general circu-

lation models coupled to thermodynamic ‘‘slab’’ ocean
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models (Rotstayn and Lohmann 2002; Williams et al.

2001). An atmospheric teleconnection is thought to con-

nect the largely extratropical thermal forcing by the

aerosols to the tropical climate, specifically altering

the Hadley circulation, and recent studies have begun

to elucidate its mechanisms [see the review paper by

Chiang and Friedman (2012)]. Another possibility is

a weakening Atlantic meridional overturning circula-

tion (AMOC) induced by the twentieth-century cli-

mate forcing, which would have a similar effect on the

AITG.

Historical simulations (Taylor et al. 2012) from phase

5 of the CMIP (CMIP5) present an opportunity to test

the conclusions of Chang et al. (2011). While the CMIP5-

class models evolved from the CMIP3-class models and

so the test cannot be construed as independent, recent

advances in representing the radiative effects of aero-

sols in the CMIP5-class models, including the now

near-universal inclusion of indirect effects, makes this

analysis meaningful and worthwhile. Furthermore, the

extratropical thermal influence to the tropical rainband

is thought to be sensitive to the strength of cloud radiative

feedbacks (Kang et al. 2009); cloud feedbacks were also

a target for extensive CMIP5-class model improvements.

This study extends the original investigation by Chang

et al. (2011) by examining multidecadal variations in the

AITG, which are quite pronounced (Fig. 1) and shown

by Chang et al. (2011) to be tied to the Atlantic multi-

decadal oscillation (AMO), a prominent multidecadal

variation to the basinwide North Atlantic SST. It had

previously been assumed that the AMO was internal to

the climate system (e.g., Ting et al. 2009), but a recent

study by Booth et al. (2012) has suggested that theAMO

was, in fact, largely a forced response to anthropogenic

and volcanic aerosols. Given that sulfate aerosols force

the AITG trend, the Booth et al. (2012) result suggests

that the multidecadal modulation of the AITG could

similarly be forced. Related to this, Chang et al. (2011)

also found a reversal to the forced AITG trend after

1980, which they speculated was due to the reduction in

SO2 emissions with the advent of air pollution controls.

Our revisit of the long-termAITG behavior examines

two issues: (i) does the CMIP5 support the Chang et al.

(2011) conclusions and (ii) are there forcedmultidecadal

variations in the AITG that are consistently expressed

across the CMIP5 multimodel ensemble, specifically an

AMO-like response?

2. Data

Table 1 details the CMIP5 models/simulations in-

cluded this analysis, from the Earth System Grid (http://

pcmdi3.llnl.gov/esgcet/home.htm). There are 85 histor-

ical ensemble members across 24 different models

spanning 1850–2005; these simulations are forced with

the entire suite of time-varying anthropogenic and nat-

ural forcings. The models used constitute a sizable frac-

tion of what is available in the CMIP5 archive (17 of

26 modeling groups are represented). The bulk of the

members used in our analysis (models 1–18: 71 mem-

bers) were included in our initial analysis in late 2011,

taken fromwhat was then available (simulations were still

being archived at that time). Models 19–24 (14 members)

were added in the revision stage, to increase the repre-

sentation of modeling groups in the analysis. As such,

the choice of models from the CMIP5 pool was essen-

tially random (based on their availability at time of ini-

tial analysis), and they also constitute a sizable fraction

of the pool. We are, thus, confident that the output used

in our analysis is representative of the population of

CMIP5 historical simulations. For comparison to the

forced historical simulations, we use the last 239 yr of the

FIG. 1. The observedAITG index, defined as the SST difference between the north (58–358N,

08–808W) and south (58–358S, 608W–208E) tropical Atlantic, south minus north. Each line is

from an observational SST dataset as denoted: Extended Reconstructed SST, version 3b

(ERSST.v3b; Smith et al. 2008); Hadley Centre Sea Ice and Sea Surface Temperature dataset

(HadISST; Rayner et al. 2003); and Kaplan extended SST, version 2 (Kaplan et al. 1998). The

dotted straight line is the linear least squares best-fit line to the average of the three curves.

1 NOVEMBER 2013 CH IANG ET AL . 8629

http://pcmdi3.llnl.gov/esgcet/home.htm
http://pcmdi3.llnl.gov/esgcet/home.htm


T
A
B
L
E
1
.
L
is
t
o
f
C
M
IP
5
m
o
d
e
ls
u
se
d
in

th
is
st
u
d
y
.
T
h
e
d
e
sc
ri
p
ti
o
n
s
o
f
th
e
fi
rs
t
si
x
co
lu
m
n
s
a
re

a
s
fo
ll
o
w
s,
fr
o
m

le
ft
to

ri
gh

t:
m
o
d
e
l
n
u
m
b
er
;
n
u
m
e
ri
ca
l
id
e
n
ti
fi
e
r
(I
D
)
fo
r
e
n
se
m
b
le

m
e
m
b
e
rs

(u
se
d
in

re
fe
re
n
ce

to
th
e
E
O
F
lo
a
d
in
g
s)
;
a
b
b
re
v
ia
te
d
n
a
m
e
o
f
m
o
d
e
l;
e
x
p
a
n
d
e
d
n
a
m
e
o
f
e
a
ch

m
o
d
e
l;
a
e
ro
so
l
in
d
ir
e
ct

e
ff
e
ct

(A
IE

),
w
h
e
re

m
o
d
e
l
is
m
a
rk
e
d
a
s
‘‘
Y
’’
if
in
d
ir
e
ct

e
ff
e
ct
s
a
re

p
a
ra
m
e
te
ri
ze
d
in

m
o
d
e
la
n
d
‘‘
N
’’
o
th
e
rw

is
e
;a
n
d
n
u
m
b
e
r
o
f
h
is
to
ri
ca
lr
u
n
s
fo
r
th
a
t
p
a
rt
ic
u
la
r
m
o
d
e
la
n
d
h
o
w
m
a
n
y
u
se

T
S
o
r
T
A
S
.T

h
e
fi
n
a
le
ig
h
t
co
lu
m
n
s
in
d
ic
a
te

th
e
n
u
m
b
er

o
f
si
n
g
le
-f
o
rc
in
g
ru
n
s
fo
r
e
a
ch

p
a
rt
ic
u
la
r
m
o
d
e
l
u
se
d
in

o
u
r
a
n
a
ly
si
s
(b
la
n
k
e
n
tr
y
in
d
ic
a
te
s
n
o
ru
n
s
a
v
a
il
a
b
le
):
a
ll
a
n
th
ro
p
o
g
e
n
ic
(A

n
t)
,
a
n
th
ro
p
o
g
e
n
ic
a
e
ro
so
ls
(A

A
),
g
re
e
n
h
o
u
se

g
a
se
s

(G
H
G
),
la
n
d
-u
se

ch
a
n
g
e
(L

U
),
a
ll
n
a
tu
ra
l
(N

a
t)
,
o
zo
n
e
(O

z;
tr
o
p
o
sp
h
e
ri
c
a
n
d
st
ra
to
sp
h
e
ri
c)
,
so
la
r
(S
l)
,
a
n
d
v
o
lc
a
n
ic

(V
l)
.

N
o
.

ID
N
am

e
E
x
p
a
n
si
o
n

A
IE

H
is
to
ri
ca
l

(T
S
/T
A
S
)

A
n
t
A
A

G
H
G

L
U

N
at

O
z
S
l
V
l

1
1
–
6

C
C
S
M
4

C
o
m
m
u
n
it
y
C
li
m
a
te

S
y
st
e
m

M
o
d
e
l,
v
e
rs
io
n
4

N
6
(4

T
S
,
2
T
A
S
)

4
3

1
2

1
2

3
3

2
7
–
1
6
C
N
R
M
-C

M
5

C
e
n
tr
e
N
a
ti
o
n
a
l
d
e
R
ec
h
e
rc
h
e
s
M
� et
� eo

ro
lo
g
iq
u
e
s
C
o
u
p
le
d
G
lo
b
a
l

C
li
m
a
te

M
o
d
e
l,
v
e
rs
io
n
5

Y
1
0
(1

T
S
,
9
T
A
S
)

1
0

—
6

—
6

—
—

—

3
1
7
–
2
6
C
S
IR

O
M
k
3.
6
.0

C
o
m
m
o
n
w
e
al
th

S
ci
e
n
ti
fi
c
a
n
d
In
d
u
st
ri
a
l
R
es
e
a
rc
h
O
rg
a
n
is
a
ti
o
n

M
a
rk
,
v
e
rs
io
n
3
.6
.0

Y
1
0
(T

A
S
)

5
5

—
—

5
—

—
5

4
2
7
–
3
1
C
a
n
E
S
M
2

S
e
co
n
d
G
e
n
e
ra
ti
o
n
C
a
n
a
d
ia
n
E
a
rt
h
S
y
st
e
m

M
o
d
e
l

Y
5
(T

S
)

—
5

5
5

5
—

5
—

5
3
2
–
3
6
G
IS
S
-E

2
H

G
o
d
d
a
rd

In
st
it
u
te

fo
r
S
p
a
ce

S
tu
d
ie
s
M
o
d
e
l
E
,
co
u
p
le
d

w
it
h

th
e

H
Y
C
O
M

o
ce
an

m
o
d
e
l

Y
5
(T

S
)

5
5

—
—

5
5

—
—

6
3
7
–
4
1
G
IS
S
-E

2
-R

G
o
d
d
a
rd

In
st
it
u
te

fo
r
S
p
a
ce

S
tu
d
ie
s
M
o
d
e
lE

,c
o
u
p
le
d
w
it
h
th
e
R
u
ss
e
ll

o
ce
a
n
m
o
d
e
l

Y
5
(T

S
)

1
0

5
3

5
5

5
5
—

7
4
2
–
4
5
H
a
d
C
M
3

H
a
d
le
y
C
e
n
tr
e
C
o
u
p
le
d
M
o
d
e
l,
v
e
rs
io
n
3

Y
4
(T

S
)

—
—

—
—

—
—

—
—

8
4
6

H
a
d
G
E
M
2
-C

C
H
a
d
le
y
C
e
n
tr
e
G
lo
b
a
l
E
n
v
ir
o
n
m
e
n
t
M
o
d
e
l,
v
e
rs
io
n
2
—

C
a
rb
o
n
C
y
cl
e

Y
1
(T

S
)

—
—

—
—

—
—

—
—

9
4
7
–
5
0
H
a
d
G
E
M
2
-E

S
H
a
d
le
y
C
e
n
tr
e
G
lo
b
al

E
n
v
ir
o
n
m
en

t
M
o
d
e
l,
v
e
rs
io
n
2
(E

a
rt
h
S
y
st
e
m
)

Y
4
(T

S
)

—
—

4
—

3
—

—
—

1
0

5
1

IP
S
L
-C

M
5
A
-L
R

L
’I
n
st
it
u
t
P
ie
rr
e
-S
im

o
n
L
a
p
la
ce

C
o
u
p
le
d
M
o
d
e
l,
v
e
rs
io
n
5
,
co
u
p
le
d

w
it
h
N
u
cl
eu

s
fo
r
E
u
ro
p
e
a
n
M
o
d
e
ll
in
g
o
f
th
e
O
ce
a
n
(N

E
M
O
),
lo
w

re
so
lu
ti
o
n

Y
1
(T

S
)

3
1

1
—

3
—

—
—

1
1

5
2

M
IR

O
C
5

M
o
d
e
l
fo
r
In
te
rd
is
ci
p
li
n
a
ry

R
e
se
a
rc
h
o
n
C
li
m
a
te
,
v
e
rs
io
n
5

Y
1
(T

S
)

—
—

—
—

—
—

—
—

1
2

5
3

M
IR

O
C
-E

S
M
-C

H
E
M

M
o
d
e
l
fo
r
In
te
rd
is
ci
p
li
n
a
ry

R
e
se
a
rc
h

o
n

C
li
m
a
te
,
E
a
rt
h

S
y
st
e
m

M
o
d
e
l,
C
h
e
m
is
tr
y
C
o
u
p
le
d

Y
1
(T

S
)

—
—

—
—

1
—

—
—

1
3

5
4
–
5
6
M
IR

O
C
-E

S
M

M
o
d
e
lf
o
r
In
te
rd
is
ci
p
li
n
a
ry

R
es
e
a
rc
h
o
n
C
li
m
a
te
,E

a
rt
h
S
y
st
e
m

M
o
d
e
l

Y
3
(T

S
)

—
—

—
—

3
—

—
—

1
4

5
7
–
5
9
M
P
I-
E
S
M
-L
R

M
a
x
P
la
n
ck

In
st
it
u
te

E
a
rt
h
S
y
st
em

M
o
d
e
l,
lo
w
re
so
lu
ti
o
n

Y
3
(T

S
)

—
—

—
—

—
—

—
—

1
5

6
0
–
6
4
M
R
I-
C
G
C
M
3

M
e
te
o
ro
lo
gi
ca
l

R
es
e
a
rc
h

In
st
it
u
te

C
o
u
p
le
d

A
tm

o
sp
h
e
re
–
O
ce
a
n

G
e
n
e
ra
l
C
ir
cu
la
ti
o
n
M
o
d
e
l,
v
e
rs
io
n
3

Y
5
(T

S
)

—
—

—
—

1
—

—
—

1
6

6
5
–
6
7
N
o
rE

S
M
1
-M

N
o
rw

e
gi
a
n
E
a
rt
h
S
y
st
e
m

M
o
d
e
l,
v
e
rs
io
n
1
(i
n
te
rm

e
d
ia
te

re
so
lu
ti
o
n
)

Y
3
(2

T
S
,
1
T
A
S
)

—
1

1
—

1
—

—
—

1
7

6
8
–
7
0
B
C
C
_
C
S
M
1
.1

B
e
ij
in
g
C
li
m
a
te

C
e
n
te
r,
C
li
m
a
te

S
y
st
e
m

M
o
d
e
l,
v
e
rs
io
n
1
.1

N
3
(T

S
)

—
—

—
—

1
—

—
—

1
8

7
1

IN
M
-C

M
4
.0

In
st
it
u
te

o
f
N
u
m
e
ri
ca
l
M
a
th
e
m
a
ti
cs

C
o
u
p
le
d
M
o
d
e
l,
v
e
rs
io
n
4
.0

N
1
(T

S
)

—
—

—
—

—
—

—
—

1
9

7
2

A
C
C
E
S
S
1
.0

A
u
st
ra
li
a
n
C
o
m
m
u
n
it
y
C
li
m
a
te

a
n
d
E
a
rt
h
-S
y
st
em

S
im

u
la
to
r,

v
e
rs
io
n
1
.0

Y
1
(T

S
)

—
—

—
—

—
—

—
—

2
0

7
3

A
C
C
E
S
S
1
.3

A
u
st
ra
li
a
n
C
o
m
m
u
n
it
y
C
li
m
a
te

a
n
d
E
a
rt
h
-S
y
st
em

S
im

u
la
to
r,

v
e
rs
io
n
1
.3

Y
1
(T

S
)

—
—

—
—

—
—

—
—

2
1

7
4
–
7
6
C
E
S
M
1
(C

A
M
5
)

C
o
m
m
u
n
it
y
E
a
rt
h
S
y
st
e
m

M
o
d
e
l,
v
e
rs
io
n
1
(C

o
m
m
u
n
it
y
A
tm

o
sp
h
e
re

M
o
d
e
l,
v
e
rs
io
n
5
)

Y
3
(T

S
)

—
—

—
—

—
—

—
—

2
2

7
7
–
8
1
G
F
D
L
C
M
3

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

C
li
m
a
te

M
o
d
e
l,
v
e
rs
io
n
3

Y
5
(T

S
)

3
3

—
—

3
—

—
—

2
3

8
2
–
8
4
G
F
D
L
-E

S
M
2G

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

E
a
rt
h
S
y
st
e
m

M
o
d
e
l
w
it
h

G
e
n
e
ra
li
ze
d
O
ce
a
n
L
ay
e
r
D
y
n
a
m
ic
s
(G

O
L
D
)
co
m
p
o
n
e
n
t

Y
3
(T

S
)

—
—

—
—

—
—

—
—

2
4

8
5

G
F
D
L
-E

S
M
2M

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

E
a
rt
h
S
y
st
e
m

M
o
d
e
l
w
it
h

M
o
d
u
la
r
O
ce
a
n
M
o
d
e
l
4
(M

O
M
4
)
co
m
p
o
n
e
n
t

Y
1
(T

S
)

1
1

1
1

1
—

1
1

T
o
ta
l
n
u
m
b
e
r
o
f
ru
n
s

8
5

4
1

2
9

2
2

1
3

4
4

1
2

1
4
9

8630 JOURNAL OF CL IMATE VOLUME 26



corresponding preindustrial simulations where climate

forcings are kept constant in time. We also examine a

number of single-forcing simulations (Table 1) spanning

the historical period but with only one (or a subset) of

the time-varying forcings applied.

Following Chang et al. (2011), we defined an AITG

index by subtracting the average SST across the entire

tropical–subtropical North Atlantic basin (58–358N,

08–808W) from the tropical–subtropical South Atlantic

(58–358S, 608W–208E), south minus north. Monthly anom-

alies are calculated by removing the long-term climatology

(taken over the 1890–2004 period), and a 21-yr running

mean is subsequently applied to the monthly anomaly in

order to emphasize multidecadal and longer-term vari-

ations. Themean for each year is then calculated, and all

subsequent analyses use this annual-resolution time se-

ries. The same procedure is used for both the observed

and simulated AITG indices.

In a few instances (see Table 1), we used the surface

air temperature (TAS) variable when the surface tem-

perature (TS) variable was not available; this was done

to maximize the number of models included in the

analysis. We found the AITG indices thus constructed

be virtually identical when both variables were available

for a particular ensemble member. This is not surprising

given the close correspondence between SST and sur-

face air temperature on longer time scales.

As a first cut, we visually examine the CMIP5 AITG

time series as a ‘‘spaghetti’’ diagram with all member

time series overlaid (Fig. 2a). There is significant varia-

tion between ensemble member simulations of the

AITG, but there is a discernible upward trend within

the spaghetti that is confirmed in the multimodel mean

(Fig. 2a, thick black line). There is also an apparent

multidecadal modulation in the mean, with peaks around

1920 and 1980. We point out features apparent in this

visual analysis that will be discussed in depth later on:

1) TheHadGEM2 simulations (Fig. 2a, thin black lines)

exhibit a pronounced multidecadal variation compa-

rable in phase and amplitude to the influence by the

AMO on the AITG.

2) Two models (MPI-ESM-LR and MRI-CGCM3)

systematically simulate a decreasing trend over the

historical period, at variance with the other model

simulations (Fig. 2b, thin black lines).

3) If these model ‘‘outliers’’ (HadGEM2, MPI-ESM-

LR, andMRI-CGCM3) are not included in the multi-

model ensemble mean, the resulting mean AITG

(Fig. 2b, thick dashed line) exhibits less of the peak

FIG. 2. AITG indices in the CMIP5 historical simulations. (a) AITG indices simulated by each ensemble member

(light gray lines) and the multimodel ensemble mean (thick black line). As a whole, the simulated AITG exhibit

a progressive upward trend over the twentieth century but with significant variation between individual ensemble

members. The five HadGEM2AITG simulations are highlighted as thin black lines, showing the pronouncedAMO-

like multidecadal variation. (b) Light gray lines are the AITG indices simulated by each ensemble member, as in (a).

The thin black lines show theMPI-ESM-LR andMRI-CGCM3AITG simulations, each exhibiting a downward trend

that is at variance with the AITG simulations by the other models. The thick dashed line is the multimodel ensemble

mean excluding the HadGEM, MPI, and MRI models.
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around 1920. However, the peak around 1980 is still

prominent, as is the turnaround in the AITG trend.

The ensemble-mean AITG thus appears to have two

periods of upward trends: a smaller one from the late

1800s to ;1920 and a more pronounced upward

trend from the mid-1940s to the late 1970s.

3. EOF and trend analysis

In this section, we repeat the Chang et al. (2011)

analysis on theAITGhistorical simulations, but with the

CMIP5 multimodel ensemble, and discuss similarities

and differences between the two results.

a. CMIP5 historical results

Following Chang et al. (2011), we extract the ‘‘most

common’’ AITG behavior in the historical simulations

from 1900 to 1998 by applying an empirical orthogonal

function (EOF; Barnett 1977) analysis collectively on the

71 model AITG indices. The ‘‘stations’’ that usually refer

to spatial grid points in conventional EOF applications on

climate data here represent individual ensemblemembers.

Prior to analysis, each index was normalized by the stan-

dard deviation of theAITG index from the corresponding

model’s preindustrial simulation.As such, weweight each

ensemble member equally, thus treating each member as

a possible realization of the climate. The other choice

was to weight by model, but in the absence of a compel-

ling reason we decided rather to weight each ensemble

member equally as it makes the least assumptions re-

garding the properties of the model simulations.

The first principal component (PC1; Fig. 3a), ac-

counting for 44% of the total variance, shows a trend

for most of the twentieth century with a turnaround in

the late 1970s. The EOF1 loadings (Fig. 3b) are pre-

dominantly positive, indicating that most (though not all;

see section 3c) of the ensemble members simulate this

trend behavior and in the same sense. In this regard,

the CMIP5 EOF1 results are quite similar to the CMIP3

results in the variance explained (44% for the CMIP5

versus 47% for the CMIP3), the structure of PC1, and

also in that theEOF1 loadings aremostly of the same sign

(cf. Figs. 3a,b for the CMIP5 and Figs. 3c,d for the

CMIP3). As a check, the multimodel ensemble–mean

AITG (in particular Fig. 2b shows themean taken over all

models excluding the outlier HadGEM2, MPI-ESM-LR,

and MRI-CGCM3) closely resemble PC1, including the

late 1970s turnaround.

FIG. 3. Results of EOF analyses on theAITG indices. (a) PC1 and (b) corresponding EOFof the 85-memberAITG

indices from CMIP5. EOF1 explains 44% of the total variance. The order of the models in the EOF loadings is as

indicated in Table 1, and gray/white shading on the EOF demarcates the loadings for the same model. The ‘‘H’’

indicates the location of the loadings for the HadGEM2-ES ensemblemembers (the loneHadGEM2-CC is the entry

immediately to its left), ‘‘P’’ is for theMPI-ESM-LR ensemblemembers, and ‘‘R’’ is for theMRI-CGCM3. The EOF

exhibits an upward trend, andmostmodels project positively onEOF1, indicating that this upward trend in theAITG

occurs in most twentieth-century model simulations. Because the EOF analysis was applied on normalized AITG

indices, the EOFs and projection coefficients are dimensionless. (c),(d) As in (a),(b), but for the CMIP3 models

(Chang et al. 2011). Here, EOF1 explains 47% of the total variance. The order of the CMIP3 EOF loadings is as

presented in Fig. 3 of Chang et al. (2011).
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We note in passing that the HadGEM2 simulations

essentially do not project onto mode 1 (Fig. 3b) and

hence do not contribute to the inferred CMIP5 multi-

model AITG trend behavior. Moreover, the turnaround

in the AITG trend after the late 1970s is not dependent

on the HadGEM2 contribution: this is clearly appar-

ent in Fig. 1b, where the multimodel mean excluding

HadGEM2, MPI-ESM-LR, and MRI-CGCM3 still ex-

hibits the turnaround in the AITG trend.

Following Chang et al. (2011), we calculate the slope

of the AITG trend from 1900 to 1982 for each ensemble

member to form a distribution of slopes (Fig. 4a). This

is compared to a distribution of slopes of 83-yr AITG

trends extracted from the corresponding preindustrial

simulations (Fig. 4b). For each preindustrial simulation,

overlapping 83-yr-trend slopes are calculated, starting at

the first year and stepping the window forward in 1-yr

increments. The estimated degrees of freedom of the

preindustrial slope distribution are calculated conser-

vatively by dividing, for each model, the length of the

preindustrial simulation used (239 yr) by the length of

the trend window (83 yr) and then summing this value

across the various models.

The CMIP5 distribution is shifted in the positive direc-

tion, with the mean trend of 0.1098C century21 (Fig. 4a,

dashed line) being significantly different at the 99% level

(one-tailed t test) from the mean of the preindustrial

distribution (Fig. 4a, dashed–dotted line). The CMIP5

historical-mean trend slope is only about half the magni-

tude of the observed AITG trend (Fig. 4a, solid line),

but the observed trend magnitude is still well within the

distribution of CMIP5 historical AITG trends. We note

that the AITG trend distribution in the CMIP5 pre-

industrial simulations is comparable in width to the

CMIP5 historical distribution, indicating that the range

in the simulated AITG trend is largely due to internal

variability. Thus, internal variations of the AITG offer

a plausible explanation for the difference between the

observed AITG trend and the CMIP ensemble–mean

trend. However, we also cannot rule out the possibility

that models may not be simulating the correct magni-

tude of the forced AITG trend. We discuss this topic

further in section 6.

b. CMIP5 single-forcing runs

We examine single-forcing simulations to determine

the cause(s) of the forced AITG trend in the CMIP5

historical runs. The available simulations are somewhat

sparse (Table 1), and there is some ambiguity regarding

what is incorporated into a particular single-forcing

FIG. 4. Statistics of 83-yr trends of the modeled AITG indices from the CMIP5 (a) historical and (b) preindustrial simulations. The

distribution of slopes of the trends computed from each of the 85 historical simulations; the y axis counts the number of members in each

bin with the trend magnitudes as shown on the x axis. Also shown is the ensemble-mean slope magnitude (dashed line), mean of the

preindustrial slope distribution (dashed–dotted line), and the observed slopemagnitude (solid line). The observed slope value is the average

trend of the three observed AITG estimates shown in Fig. 1a: the Kaplan SST dataset (0.1588C century21), HadISST (0.1888C century21),

andERSST.v3b (0.3588C century21). (b) The distribution of slopes computed from the corresponding preindustrial simulations; the lines are

drawn as in (a). The y axis counts the number of evaluated 83-yr intervals in the preindustrial simulationswith the trendmagnitudes shownon

the x axis. (c),(d) As in (a),(b), but for the CMIP3 (Chang et al. 2011).
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category (so, e.g., anthropogenic aerosols may incor-

porate somewhat different microphysical treatment and

aerosol mixes in different models). Thus, a fully con-

trolled multimodel evaluation of the single-forcing sim-

ulations is not possible. On the other hand, we havemany

more single-forcing runs here than what was used in

the Chang et al. (2011) CMIP3 study (they used seven

members across three models per single-forcing set).

Some strong suggestions emerge from this analysis.

Figures 5a–h show the AITG from all single-forcing

simulations, grouped by forcing type. One result is im-

mediately apparent: anthropogenic (Fig. 5a, derived

from 41 members from 8 different models) rather than

natural (Fig. 5e, derived from 47 members from 16 dif-

ferent models) forcing is responsible for both the

upwardAITG trend prior to the late 1970s, as well as for

the turnaround in the AITG trend after that period. The

natural forcing–only simulations do not produce a dis-

cernible AITG trend.

The standout anthropogenic influence on the AITG

trend is from anthropogenic aerosols, whose single-

forcing simulations collectively show a pronounced pos-

itive trend throughout the twentieth century except at

the end (Fig. 5b, derived from 24 members from 8 dif-

ferent models). Here, we excluded the CSIRO Mk3.6.0

members because their behaviors were significantly

different from the others (see the end of this section for

a discussion). Individually, all the individual anthropo-

genic aerosol members (again, excepting the CSIRO

Mk3.6.0) exhibit upward trends. Interestingly, the time

FIG. 5. The AITG as simulated by single-forcing runs listed in Table 1: (a)–(h) Ant, AA, GHG, LU, Nat, Oz, Sl, and Vl, respectively.

The black line is the ensemble mean, and shading denotes one std dev above and below the mean. The number at the bottom right of each

panel is the ensemble size. Note that, for (b), the CSIRO Mk3.6.0 anthropogenic aerosol members were excluded. (i)–(k) Nat, AA and

GHG but limited to a consistent subset of models and ensemble members, comprising 1 CCSM4, 5 CanESM2, 3 GISS-E2-R, 1 IPSL-

CM5A-LR, 1 NorESM1-M, and 1 GFDL-ESM2M member. (l) The 5 CSIRO Mk3.6.0 anthropogenic aerosol members.
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evolution of the anthropogenic aerosol–only AITG re-

sembles the time history of sulfate aerosol emissions

over the North Atlantic sector (see Fig. 8 of Chang et al.

2011): there are two periods of emissions growth (from the

middle to late 1800s until ;1920 and again from ;1940

through ;1980), with a hiatus from ;1920 to ;1940 and

a reversal after the mid-1970s.

The conclusion of anthropogenic aerosol forcing

driving the AITG trend can also be inferred separately

from the other anthropogenic single-forcing runs. None

of the other sources of anthropogenic forcing—greenhouse

gases (Fig. 5c), land use (Fig. 5d), and ozone (Fig. 5f)—

shows an upward trend, and in fact all hint at small

downward trends. The implication is that the trend from

the anthropogenic all-forcing runs originates from the

only remaining sizable anthropogenic forcing group

(i.e., anthropogenic aerosols). The small downward trend

in the other anthropogenic forcings also likely explains

why the upward trend in the all anthropogenic–forcing

run is less than for the anthropogenic aerosol–forcing

run.

The single-forcing simulations also suggest the origins

of the late 1970s reversal in the AITG trend. There is

also a flattening to the anthropogenic aerosol–only trend

in the late twentieth century, consistent with the sug-

gestion by Chang et al. (2011) that the reduction of at-

mospheric pollution helped cause a reversal in theAITG.

However, greenhouse gas forcing also drove a fairly

pronounced negative AITG trend after the 1970s

(Fig. 5c), suggesting that it also contributed to the re-

versal in the AITG trend after the late 1970s. We think

this is indeed the case; we discuss this further in section 4.

A drawback of our above analysis is that each single-

forcing behavior is inferred from different sets of models

in the composition. We address this by creating a com-

posite of the single-forcing simulations that have the

same model composition. Figures 5i–k show this com-

parison for the natural-, anthropogenic aerosol–, and

greenhouse gas–forcing simulations respectively, combin-

ing 1 CCSM4member, 5 CanESM2members, 3 GISS-E2-

R members, 1 IPSL-CM5A-LR member, 1 NorESM1-M

member, and 1 GFDL-ESM2M member (for a total of

12 ensemble members). They confirm our assessment

above that anthropogenic aerosol forcing produces a

significant upward trend prior to the late twentieth

century, whereas natural or greenhouse gas forcing

does not.

Finally, we comment on the CSIRO Mk3.6.0 anthro-

pogenic aerosol runs. They are distinctly different from

the other models’ anthropogenic aerosol runs, in that

each member exhibits large multidecadal variability

(Fig. 5l) very unlike the upward trend behavior of the

anthropogenic aerosol runs of the other models (Fig. 5b).

The AMOC of the CSIRO model is quite sensitive to

forcing: Collier et al. (2013) showed that the AMOC in

the CSIRO Mk3.6.0 historical anthropogenic aerosol

runs respond with a pronounced acceleration over the

second half of the twentieth century, causing a warming

of the North Atlantic. This would explain the downward

trend in the CSIRO AITG simulations in the latter half

of the twentieth century (Fig. 5l). Nevertheless, given

that the other 8 models represented in the anthropo-

genic aerosol single-forcing runs individually show

similar AITG upward trends, we regard the CSIRO

Mk3.6.0 anthropogenic aerosol result as an outlier. In-

terestingly, the CSIRO Mk3.6.0 all-anthropogenic runs

collectively show behavior similar to the multimodel-

mean all-anthropogenic runs (not shown), so we can at

least make that attribution from the CSIRO Mk3.6.0

runs.

c. Comparison to CMIP3

The CMIP5 results are generally consistent with the

CMIP3 results: namely,

d The most common AITG behavior, shared by most

(but not all) models, is a trend whereby the south

warms faster than the north over most of the twentieth

century (Figs. 2, 3); in both cases, there is a reversal in

the trend in the late 1970s;
d The mean historical AITG trends (pre-1980s) are

significantly different from those simulated by the

preindustrial simulation, indicating that a portion of

the AITG trend is forced (Fig. 4).
d Anthropogenic aerosols are the main contributors to

this AITG trend, though the lack of sulfate aerosol–

only runs precludes us from making that specific

attribution (Fig. 5).
d Anthropogenic aerosols also appear to partly cause

the reversal of the AITG trend in the late 1970s; in

addition [not found in Chang et al. (2011)], there also

appears to be a role of greenhouse gases in causing this

reversal.

Themost significant difference is that 2 (of 25) CMIP5

models systematically simulate decreasing AITG trends

(MPI-ESM-LR and MRI-CGCM3); this is clearly seen

in the individual member AITG indices for those

models (Fig. 2b, thin black lines), and also in the nega-

tive EOF1 loadings with these models (Fig. 3b). This is

unlike the CMIP3, where no model (23 total) analyzed

systematically produceddecreasingAITG trends (Fig. 3d).

As a consequence, the multimodel ensemble mean–

forced trend is weaker in the CMIP5 (0.1098C century21)

than in the CMIP3 (0.1298C century21). Excluding these

two models from our analysis results in a multimodel-

mean trend of 0.1398C century21, similar to CMIP3, and
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the extreme negative contributions to the CMIP5 dis-

tribution (Fig. 4a, the 20.48 and 20.38C century21 en-

tries) disappear. We do not know the reason why these

two models exhibit negative AITG trends, but we will

discuss this issue further in section 4.

The spread in the distribution of trend slopes—

reflecting the uncertainty in the magnitude of the forced

trend—has not been reduced in the CMIP5; if anything,

it has slightly increased because of the two CMIP5

model outliers. We have not established the reasons for

the negative AITG trend in the two CMIP5 models

(though see the discussion in section 4), and we have no

reason to exclude them from our analysis. Thus, while

the conclusions from the CMIP5 remain the same as for

the CMIP3, there is somewhat less confidence in the

robustness of the conclusions because of the two CMIP5

model outliers.

4. Northern and southern components of the AITG

We separately examine the behaviors of the northern

and southern components of the AITG [northern trop-

ical Atlantic (NTA) and southern tropical Atlantic

(STA)] in order to further attribute causes of the AITG

trend in section 3. If anthropogenic aerosols are indeed

the primary driver of the trend before the late 1970s

and the turnaround after that, then the influence

should primarily be felt in the NTA because anthro-

pogenic aerosols are largely located in the Northern

Hemisphere. We also note that the NTA and STA SST

variability has been previously shown to be uncorrelated

over interannual–decadal time scales (Enfield et al.

1999; Houghton and Tourre 1992), indicating that each

can evolve for different and possibly independent

reasons.

Figure 6a (Fig. 6b) shows the spaghetti diagram for all

CMIP5 ensemble simulations of the NTA (STA), and

the dashed line gives the multimodel ensemble mean

(excluding the outliers HadGEM2, MPI-ESM-LR, and

MRI-CGCM3 as in Fig. 2b). For both NTA and STA

indices there are three distinct periods of evolution, but

with subtle differences that explain the multimodel-

mean behavior of the AITG:

d From the late 1800s to the late 1940s: the small but

distinct upward AITG trend is due to the slightly

faster STA warming compared to the NTA.
d From the late 1940s to the late 1970s: the sharp upward

rise in theAITG is driven primarily by a cooling NTA;

the STA remains relatively flat.
d From the late 1970s onward: both the STA and NTA

resume their warming trend, but this time with the

NTA warming faster; this results in the AITG turn-

around after that time.

All natural, anthropogenic aerosol, and greenhouse gas

single-forcing simulations of the NTA and STA (shown

in Figs. 6c,d, respectively) aid our interpretation of the

CMIP5 multimodel–mean NTA and STA behavior

(here, we use the same multimodel subset as in Figs.

5i–k to compute the ensemble means, so that the

curves can be consistently compared). They reveal the

following:

d From the late 1800s to the early 1950s: both greenhouse

gas and natural forcings warm the NTA and STA and

anthropogenic aerosols cool; however, the aerosol

cooling is significantly stronger in the NTA than STA,

accounting for the greater STA rise over the NTA

during this period (and hence an upward AITG trend).
d From the late 1940s to the late 1970s: both greenhouse

gases and anthropogenic aerosols continue their ear-

lier trend, but the aerosol cooling accelerates in the

NTA. Furthermore, natural forcings also start cooling

both the NTA and STA. As a result, both the NTA

and STA undergo cooling trends during this interval,

with the NTA cooling being more pronounced.
d From the late 1970s onward: both the anthropogenic

aerosol and natural influence on the NTA and STA

flattens out; this allows the greenhouse gas influence to

become strongly expressed in the NTA and STA. As

a result, both the NTA and STA warm considerably

during this period. Furthermore, greenhouse gases

warm the NTA faster than the STA, resulting in the

same for the NTA and STA in the all-forcing runs.

So, in summary, our separate NTA and STA analyses

suggest that the upwardAITG trend prior to the 1970s is

due primarily to the fact that anthropogenic aerosols

cooled the NTA more than the STA, in particular from

the late 1940s to the late 1970s; after the late 1970s, the

anthropogenic aerosol influence on the AITG leveled

off. The temporal behaviors are consistent with our

understanding of the anthropogenic aerosol influence on

the historical climate, in particular with sulfate aerosols

that dominate anthropogenic aerosol emissions. The

SO2 emissions grew steadily from the 1800s but accel-

erated in pace since the 1950s until leveling off in the

1970s and falling thereafter (Lamarque et al. 2010).

Also, the fact that the NTA cooled faster relative to the

STA is consistent with a Northern Hemisphere anthro-

pogenic SO2 source (Rotstayn and Lohmann 2002).

On the other hand, the reversal in the upward AITG

trend after the late 1970s was a combination of the

leveling off of the anthropogenic aerosol influence,

combined with an increased influence of greenhouse

gases that warmed the NTA faster than the STA. This

result is parallel with a recent analysis by Friedman et al.
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(2013) on the global interhemispheric surface tempera-

ture gradient (i.e., Northern Hemisphere versus Southern

Hemisphere); they also found that the anthropogenic

aerosol influence leveled off in the late 1970s, allowing the

greenhouse gas forcing to dominate the change in the

global interhemispheric gradient. Increased greenhouse

gases warm the Northern Hemisphere (as a whole) faster

than the Southern Hemisphere (Friedman et al. 2013),

because of greater land area in the North as well as pos-

itive feedbacks (in particular from Arctic sea ice cover).

Finally, we briefly revisit the issue regarding the two

models with negative AITG trends (MPI-ESM-LR and

MRI-CGCM3; their NTA and STA simulations are

shown in Figs. 6e,f, respectively). In both cases, their

NTA and STA simulations are plausibly within the en-

semble behavior; they both show two phases of warming

in the early and late twentieth century, with a hiatus in

the middle of the century. However, it can also be seen

that the total NTA variation over the twentieth century

in these two models is larger than that for the STA,

unlike the other models (and thus explaining the nega-

tive AITG trend). We conclude from this that the rea-

sons for the different AITG behavior for MPI and MRI

models is likely to be quite subtle, possibly having to do

with how the NTA and STA separately respond to ra-

diative forcing.

5. Multidecadal variations

Booth et al. (2012) showed that the HadGEM2-ES

historical simulations generated AMO-like changes in

North Atlantic SST, approximately matching the ob-

served in both phase and amplitude: they quote that

75% of the detrended North Atlantic SST variation

FIG. 6. CMIP5 simulations of (a) NTA and (b) STA. The light gray lines are the individual CMIP ensemble

members, and the thick dashed line is the multimodel ensemble mean excluding the outlier HadGEM2, MPI-ESM-

LR, and MRI-CGCM3 models. The figures indicate that the accelerated upward trend in the AITG beginning in the

1940s is due to amild cooling of the NTA starting around that time; the STA stayed relatively flat. On the other hand,

the reversal of theAITG trend post-1980 is due to the acceleratedwarming of theNTAat that time. (c) Single-forcing

simulations of the NTA showing the ensemble-mean AA, GHG, and Nat. Here, we use the same multimodel subset

as for Figs. 5i–k. (d) As in (c), but for the STA. (e) Comparing the NTA multimodel ensemble mean (thick dashed

line) against the ensemble means of the MPI-ESM-LR (thin solid line) and MRI-CGCM3 (thin dashed line) sim-

ulations. (f) As in (e), but for the STA.
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(smoothed over 10-yr intervals to highlight the multi-

decadal) is explained by the HadGEM2-ES histori-

cal simulations. They attributed this behavior to the

radiative effects of imposed anthropogenic and volcanic

aerosols on the SST, in particular indirect effects. Given

a pronounced AMO influence in the observed AITG

(Fig. 7a, solid line), we ask to what extent they occur in

the CMIP5.

The 5 HadGEM simulations in our 85-member en-

semble simulate an AMO-like signature in both phase

and amplitude (Fig. 2a, thin black lines; the detrended

HadGEM multimodel mean is shown in Fig. 7a, dashed

line). However, the detrended AITG averaged across

the remaining ensemble members (note that this mean

includes the MPI-ESM-LR and MRI-CGCM3 models)

show only a muted multidecadal modulation (Fig. 7a,

dashed–dotted line). We further compared the multi-

decadal AITG simulations for each model against the

observed, by computing the regression slope of each

model’s mean multidecadal behavior on the observed

detrended AITG. Prior to regression, all AITG indices

of a particular model were detrended and averaged

(so we are examining the collective ability of that model

to simulate the observed multidecadal variation). Only

models with at least three historical ensemble members

were analyzed. The results (Fig. 7b) show that only 2 of

15 models with at least three historical members—

HadCM3 and HadGEM2-ES—were correlated at the

95% level (r . 0.73, assuming N 5 6, given that the

AITG time series are smoothed with a 21-yr running

mean). At the 90% level (r . 0.61), three additional

models—namely, CanESM2, GISS-E2H, and GISS-E2-

R—exceeded this threshold. It is thus apparent that only

a small subset of the CMIP5 models plausibly simulate

AMO-like behavior in the AITG; moreover, the re-

gression coefficients in Fig. 7b indicate that of them, only

the HadGEM2-ES model simulated the AMO-like be-

havior with amplitudes comparable to the observed

AMO.

6. Summary and discussion

We examined multidecadal and trend behavior of the

Atlantic interhemispheric SST gradient in the CMIP5

historical simulations, following previous CMIP3 analyses

(Chang et al. 2011). Our results confirm the major con-

clusions of the previous study that at least a portion of

the historical trend in theAITGwas likely forced and by

FIG. 7. (a)Multidecadalmodulation in theAITG. The observed detrendedAITG (where the

AITG here is taken as the average of the three estimates shown in Fig. 1) is shown as the solid

line. The dashed line is the average of the detrended AITG of the HadGEM2-CC and

HadGEM2-ES historical simulations, and the dashed–dotted line is the average of all the other

CMIP5 AITG indices excluding the HadGEM2-CC and HadGEM2-ES. (b) Regression slope

of the observed detrended AITG [black line of (a)] with the simulated detrended AITG by

each CMIP5 model with at least three historical members, from 1890 to 2004. For each model,

we took the ensemble members available and averaged their detrended AITG; this was then

regressed against the observed detrended AITG. The height of the bars represents the re-

gression slope. Bars are shaded gray if the correlation between the observed and model mean

AITG exceed r. 0.61, significant at the 90% level, and shaded black if the correlation exceeds

r . 0.73, significant at the 95% level. The model corresponding to the model number can be

looked up in Table 1; HadCM3 (model 7) and HadGEM-ES (model 9) are correlated at the

95% level, and CanESM2 (model 4), GISS-E2H (model 5), and GISS-E2-R (model 6) are

correlated at the 90% level.
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anthropogenic aerosols. Given previous work that es-

tablished the causal link between the Atlantic ITCZ and

the AITG, we thus conclude that human activity likely

contributed to the southward trend of the Atlantic

ITCZ over the twentieth century. However, the CMIP5

ensemble–mean trend magnitude is only about half the

observed AITG trend magnitude. Our analysis suggests

that internal variations offer a plausible explanation to

account for this difference. However, it is also possible

that the simulated magnitude in the forced AITG trend

may be underestimated.We discuss these further toward

the end of this section.

The CMIP5 single-forcing simulation results appear

to unambiguously reveal the influence of anthropogenic

aerosols in forcing the model trend; no other forcing

exhibits the increasing AITG trend with comparable

magnitude of the slope and consistency across ensemble

members. Similar to CMIP3, CMIP5 also produces

a reversal in the AITG trend around 1980, further evi-

dence that this reversal is forced. Our attribution anal-

ysis suggests that this reversal is due to anthropogenic

forcing, partly from the leveling off of the anthropogenic

aerosol influence but also because of the increased in-

fluence of greenhouse gases, in the late twentieth cen-

tury. We have far greater confidence in the attribution

results of this study compared to Chang et al. (2011)

because of the far greater number of single-forcing runs

used here. However, a definitive attribution requires

that we are able to also tie the intermodel differences in

the AITG simulation to intermodel differences in the

applied historical forcing, something that we have not

done in this analysis.

With regards to forced multidecadal variations in the

AITG, our conclusion is that the HadGEM2 models are

the only ones that express AMO-like multidecadal vari-

ationswith the correct phase and amplitude.A few others

(CanESM2, GISS-E2H, GISS-E2-R, and HadCM3) do

simulate AITG multidecadal behavior that is signifi-

cantly correlated to the observed AMO-like behavior.

It suggests that there may be sufficient information in

the applied CMIP5 historical climate forcings to drive

AMO-like behavior in the AITG, even if the amplitude

of variation does not approach observed levels.

A stronger conclusion regarding the anthropogenic

influence on the historical AITG and the role of aerosols

remain elusive. Both CMIP3 and CMIP5 significantly

underestimate the magnitude of the AITG trend com-

pared to the observed, and there is also substantial

spread in the simulated trends. The latter is likely due to

internal variations of the climate system, given that the

preindustrial simulations also produce a similar spread

in simulated AITG trends. Variations in the AMOC

strength are the most likely source of unforced AITG

trends, given that they have long time scales and sig-

nificantly affect the AITG (e.g., Knight et al. 2005).

However, it is also possible that uncertainty in rep-

resentation of aerosol forcing in climate models may

also contribute to the difference between the observed

and ensemble-meanAITG trend, as well to the spread in

the simulated AITG trends. Since the CMIP3, there has

been a concerted effort by various modeling groups to

improve the representation of historical aerosol forcing,

both direct and indirect, in coupled models. In particu-

lar, based on results of our previous analysis with the

CMIP3 (Chang et al. 2011), we anticipated that the near-

universal inclusion of indirect effects in the CMIP5-class

models would result in a larger simulated AITG trend,

more closelymatching the observed trend.However (and

to our surprise), neither the CMIP5 AITG trends mag-

nitude nor spread appreciably changed from the CMIP3.
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