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ABSTRACT

Constraining intermodel spread in cloud feedbackwith observations is problematic because available cloud

datasets are affected by spurious behavior in long-term variability. This problem is addressed by examining

cloud amount in three independent ship-based [Extended Edited Cloud Reports Archive (EECRA)] and

satellite-based [International Satellite CloudClimatology Project (ISCCP) andAdvancedVeryHighResolution

Radiometer Pathfinder Atmosphere–Extended (PATMOS-X)] observational datasets, and models from phase 5

of the Coupled Model Intercomparison Project (CMIP5). The three observational datasets show consistent

cloud variability in the overlapping years of coverage (1984–2007). The long-term cloud amount change from

1954 to 2005 in ship-based observations shares many of the same features with the multimodel mean cloud

amount change of 42 CMIP5 historical simulations, although the magnitude of the multimodel mean is smaller.

The radiative impact of cloud changes is estimated by computing an observationally derived estimate of cloud

amount feedback. The observational estimates of cloud amount feedback are statistically significant over four

regions: the northeast Pacific subtropical stratocumulus region and equatorial western Pacific, where cloud

amount feedback is found to be positive, and the southern central Pacific and western Indian Ocean, where

cloud amount feedback is found to be negative. Multimodel mean cloud amount feedback is consistent in sign

but smaller in magnitude than in observations over these four regions because models simulate weaker cloud

changes. Individual models, however, can simulate cloud amount feedback of the same magnitude if not larger

than observed. Focusing on the regions where models and observations agree can lead to improved un-

derstanding of the mechanisms of cloud amount changes and associated radiative impact.

1. Introduction

Cloud feedback represents the largest uncertainty of

future climate change in climate models from phase 3 of

the Coupled Model Intercomparison Project (CMIP3)

used for the Intergovernmental Panel on Climate Change

Fourth Assessment Report (IPCC AR4) (Solomon et al.

2007; Soden and Held 2006; Ringer et al. 2006; Dufresne

and Bony 2008; Trenberth and Fasullo 2009; Stephens

2005). Intermodel disagreement in cloud feedback has

been attributed to differences in cloud parameterization

schemes and is largest for tropical low-level clouds (Bony

et al. 2006, Webb et al. 2006), which are ubiquitous over

the oceans (Norris 1998). Some components of cloud feed-

back, however, show intermodel agreement. For example,

there is model agreement on the change in the altitude of

tropical high-level cloud cover, which results in positive

high cloud altitude feedback (Zelinka and Hartmann

2010). Hartmann and Larson (2002) proposed the fixed-

anvil-temperature (FAT) mechanism to explain positive

cloud altitude feedback. According to the FAT mecha-

nism, high clouds in the tropics tend to rise as the climate

warms in order to conserve their cloud-top temperature.
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This mechanism appears to be robust across climate

models, and is consistent with the response of high clouds

to El Ni~no events (Zelinka and Hartmann 2011).

Bony and Dufresne (2005) and Soden and Vecchi

(2011) showed that the largest source of intermodel dis-

agreement in tropical cloud feedback arises from the re-

sponse of clouds in regions of large-scale subsidence over

the tropical oceans. The subtropical stratocumulus re-

gions at the eastern side of the ocean basins are among

the regions of largest intermodel spread in cloud feed-

back among theCMIP3models (Soden andVecchi 2011).

These regions are mainly covered by stratus and strato-

cumulus cloud types, which form over oceans with rela-

tively cold sea surface temperature (SST), and to the east

of the subtropical highs. Klein and Hartmann (1993) and

subsequent studies have identified five major subtropical

stratocumulus regions located off the coasts of Australia

(southeast Indian), California (northeast Pacific), Peru

(southeast Pacific), Canaries (northeast Atlantic), and

Namibia (southeast Atlantic). In these regions, marine

boundary layers are often well mixed and capped by

strong temperature inversions. Increased cloud cover

is associated with relatively cold SST, high lower tropo-

spheric stability (LTS), large-scale atmospheric subsidence,

and surface wind divergence (Klein and Hartmann 1993;

Wood and Bretherton 2006; Klein et al. 1995; Mu~noz

et al. 2011). While strong subsidence generally coincides

with strong LTS on seasonal to interannual time scales,

individually these two quantities can have opposing ef-

fects on clouds. For example, Myers and Norris (2013)

show that strong subsidence favors reduced cloud cover

for the same LTS while stronger LTS promotes greater

cloudiness for the same subsidence rate.

Given this complexity, simulating cloud variability

in climate models is challenging. While observations

show clear relationships between environmental vari-

ables and cloud fraction, the simulated relationships are

highlymodel dependent (Clement et al. 2009).Moreover,

in response to greenhouse gas forcing models project an

increase in SST, which on its own would decrease low-

level clouds (Brient and Bony 2013; Sandu and Stevens

2011), an increase in lower tropospheric stability, which

would increase low-level clouds (Miller 1997; Medeiros

et al. 2008), and weaker midtropospheric large-scale

subsidence (Vecchi and Soden 2007a,b), which could ei-

ther decrease low-level clouds (Sandu and Stevens 2011;

Mauger and Norris 2010; Stevens et al. 2007) or increase

them (Myers and Norris 2013). An observational per-

spective on long-term cloud changes could therefore

provide an important constraint on cloud feedback sim-

ulated by themodels and onmechanisms of cloud change.

Long-term cloud observations from synoptic ship re-

ports are the longest source of cloud information and

could potentially narrow the uncertainties in climate

models. However, only a few studies have looked at long-

term changes in observations, mainly because of the ar-

tifacts that affect the available cloud datasets (Norris

1999; Eastman et al. 2011). Clement et al. (2009) exam-

ined cloud variability in the northeast Pacific subtropical

stratocumulus region in multiple satellite and surface

datasets. They found that cloud cover, SST, and large-

scale atmospheric circulation covaried on decadal time

scales, suggesting a positive feedback between stratocu-

mulus clouds and large-scale Pacific climate variability.

Eastman et al. (2011) examined low-level cloud cover

changes in observations from ships over the years 1954–

2008 in the subtropical stratocumulus regions. They found

that decreased stratocumulus cloud cover was partially

compensated by increased cumulus cloud cover, which

suggests a long-term stratocumulus-to-cumulus transition

and positive low-cloud feedback (Albrecht et al. 1995;

Bretherton and Wyant 1997; Wood and Bretherton 2004;

Sandu and Stevens 2011). Deser et al. (2010) examined

long-term trends in cloud cover from 1900 to the present

and found an eastward shift in cloud cover in the western

Pacific that is consistent with a weakening of the Walker

circulation. Norris (2005) investigated upper-level cloud

trends in ship-based observations from 1954 to 1997. He

found an increase in high clouds over the central equa-

torial South Pacific and a decrease over the adjacent

subtropics, the western Pacific, and the equatorial Indian

Ocean.

Despite the uncertainties in ship-based observational

datasets, all the studies mentioned above showed that

cloud changes were consistent with changes in precipi-

tation, surface wind divergence, SST, sea level pressure

(SLP), total-sky radiation flux anomalies, and satellite-

based cloud observations in the overlapping period. In

this study we will address the following questions: Are

ship-based cloud observations reliable enough to constrain

cloud feedback simulated by climate models? What is

the radiative impact of the observed cloud changes? Can

models reproduce the observed cloud change and cloud

feedback? To address these questions we compare cloud

cover changes in three observational ship- and satellite-

based cloud datasets [the Extended Edited Cloud Re-

ports Archive (EECRA), International Satellite Cloud

Climatology Project (ISCCP), and Advanced Very

High Resolution Radiometer Pathfinder (AVHRR)

Atmosphere–Extended (PATMOS-X)] in the overlapping

years of coverage. We estimate cloud amount feedback

from long-term ship-based observations where they agree

with satellites, and then compare these estimates with

historical simulations from the phase 5 of the Coupled

Model Intercomparison Project (CMIP5) archive (Taylor

et al. 2012).
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2. Data

We examine total cloud amount over the ocean in

ship-based (EECRA) and satellite-based (ISCCP and

PATMOS-X) cloud datasets. The Extended Edited

CloudReportsArchive is a collection of synoptic weather

reports taken aboard volunteer observing ships (Hahn

and Warren 1999, 2009). Reports of cloud cover are

archived in the International Comprehensive Ocean–

Atmosphere Data Set (ICOADS) (Woodruff et al. 2005,

2011), and then further processed to form EECRA,

which currently provides cloud amount, cloud type, and

frequency of occurrence, in 108 3 108 grid boxes over the

global oceans for the years 1954–2008 (Eastman et al.

2011). EECRA represents the longest source of cloud

information, but it is affected by observational artifacts

that introduce spurious trends in the global mean long-

term variability (Norris 1999, 2005; Eastman et al. 2011).

To evaluate possible errors in EECRA, we supplement

ship observations with two satellite-based cloud datasets:

the International Satellite Cloud Climatology Project

(Rossow and Schiffer 1999) and the AVHRR Pathfinder

Atmosphere–Extended (PATMOS-X; Jacobowitz et al.

2003; Pavolonis et al. 2005). These datasets were cor-

rected for artifacts introduced by the replacement of in-

struments and orbital drifts over time (Clement et al.

2009; Evan et al. 2007). Unknown remaining artifacts

were corrected by subtracting global-scale long-term vari-

ability from each grid box (Evan et al. 2013). ISCCP and

PATMOS-Xprovidemonthlymeans of total cloud amount

in 2.58 3 2.58 grid boxes from June 1983 to July 2008.

To compute cloud amount feedbackwe use total cloud

cover from EECRA along with radiation fluxes at the

top of the atmosphere (TOA) and SST. Radiation fluxes

at TOAare from theClouds andEarth’s Radiant Energy

System (CERES) Energy Balanced and Filled (EBAF)

dataset (EBAF_Ed2.6r). This product is provided by the

National Aeronautics and Space Administration (NASA)

Langley Research Center and is available for the years

2001–10 in 18 3 18 grid boxes (Loeb et al. 2009). For SST,

we use the Hadley Centre Sea Ice and Sea Surface

Temperature (HadISST) reanalysis, which is provided

in 18 3 18 grid boxes and is available from 1870 to today

(Rayner et al. 2003).

We compare observational estimates of cloud change

and cloud amount feedback with historical simulations

of 42 coupled ocean–atmosphere climate models in the

CoupledModel Intercomparison Project phase 5 (CMIP5)

archive (Taylor et al. 2012). The historical simulations are

forced by observed atmospheric composition changes

and cover most of the industrial period from 1850 to 2005.

We analyze one ensemble member (r1i1p1) for each

model and examine the same years (1954–2005) covered

by ship observations.A list of themodels used is provided

in Table 1.

Total cloud fraction from observations, which is re-

trieved from visually or remotelymeasured optical depth,

is not the same as total cloud fraction frommodels, which

is computed from the model equations (e.g., Marchand

et al. 2010). To provide a more accurate evaluation of

model performance, cloud simulators have been devel-

oped (Klein et al. 2013; Pincus et al. 2012). Unfortunately

there are not simulators of human observers (i.e., ship-

based datasets), but we will show that intermodel spread

in the sign of cloud changes is larger than errors that could

arise from the different definitions of cloud cover in

models and ship observations.

3. Methods

In this study, we focus on cloud changes over the

tropical and subtropical Indian and Pacific basins. To

correct long-term spurious variability in EECRA, we

subtract the tropical annual mean from all years and all

grid boxes. A similar approach was taken by Deser et al.

(2010) to correct the ICOADS cloud dataset, which is

affected by the same observational errors as EECRA

since cloud observations in EECRA are processed from

ICOADS. For consistency, we subtract the tropical an-

nual mean from cloud observations in the corrected

ISCCP and PATMOS-X datasets, and in the 42 CMIP5

historical simulations. Therefore, all results shown in

this study should be interpreted as relative to the trop-

ical mean. In the observational datasets, we also mask

out poorly sampled regions by requiring an average of at

least 25 observations per season in each grid box (cf.

Eastman et al. 2011).

We form interannual anomalies by removing the

seasonal cycle from all model and observational data,

and then calculate long-term changes in cloud amount

and SST as the linear trend in each grid box multiplied

by the number of years. Estimates of cloud amount

feedback are calculated as follows. Net (i.e., shortwave

plus longwave) radiation flux at TOA (Rtot) can be ex-

pressed as the sum of overcast sky radiation (Rcld) with

area c and clear-sky radiation (Rclr) with area (1 2 c),

where c is the fraction of sky covered by clouds, and Rtot

is positive for downwelling fluxes:

Rtot 5 cRcld 1 (12 c)Rclr . (1)

The change in Rtot between two climate states can there-

fore be written as

DRtot5DRclr 1Dc(Rcld 2Rclr)1 c(DRcld 2DRclr)1 « .

(2)
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TABLE 1. Forty-two ocean–atmosphere coupled climate models that provided the first ensemble member (r1i1p1) for the historical

experiment in the CMIP5 archive.

Institution Model name

Commonwealth Scientific and Industrial Research

Organization (CSIRO) and Bureau of Meteorology

(BOM) (Australia)

Australian Community Climate and Earth-System Simulator,

version 1.0 (ACCESS1.0)

ACCESS1.3

Beijing Climate Center, China Meteorological Administration

(China)

Beijing Climate Center, Climate System Model, version 1.1

(BCC-CSM1.1)

BCC-CSM1.1 with a moderate resolution [BCC-CSM1.1(m)]

College of Global Change and Earth System Science, Beijing

Normal University (China)

Beijing Normal University - Earth SystemModel (BNU-ESM)

Canadian Centre for Climate Modeling and Analysis (Canada) SecondGenerationCanadianEarth SystemModel (CanESM2)

National Center for Atmospheric Research (U.S.) Community Climate System Model, version 4 (CCSM4)

Community Earth System Model (CESM) contributors (U.S.) CESM version 1 (CESM1), biogeochemistry version (BGC)

CESM1 with Community Atmosphere Model version 5

(CAM5)

CESM1 with FASTCHEM (FASTCHEM)

CESM1 with Whole Atmosphere Community Climate Model

(WACCM)

Centre National de Centre National de Recherches M�et�eorologiques Coupled

Global Climate Model, version 5 (CNRM-CM5)

Recherches Meteorologiques/Centre CNRM-CM5(2)

Europeen de Recherche et Formation Avancees en Calcul

Scientifique (France)

Commonwealth Scientific and Industrial Research

Organization in collaboration with Queensland Climate

Change Centre of Excellence (Australia)

Commonwealth Scientific and Industrial Research

Organisation Mark, version 3.6.0 (CSIRO-Mk3.6.0)

LASG, Institute of Atmospheric Physics, Chinese Academy

of Sciences and CESS, Tsinghua (China)

Flexible Global Ocean–Atmosphere–Land System Model

gridpoint, version 2.0 (FGOALS-g2)

The First Institute of Oceanography, SOA (China) First Institute of Oceanography Earth System Model

(FIO-ESM)

NOAA Geophysical Fluid Dynamics Laboratory (U.S.) Geophysical Fluid Dynamics Laboratory (GFDL) Climate

Model, version 3 (GFDL-CM3)

GFDL Earth System Model with Generalized Ocean Layer

Dynamics (GOLD) component (GFDL-ESM2G)

GFDL Earth System Model with Modular Ocean Model 4

(MOM4) component (GFDL-ESM2M)

NASA Goddard Institute for Space Studies (U.S.) Goddard Institute for Space Studies (GISS) Model E, coupled

with the HYCOM ocean model (GISS-E2-H)

GISS-E2-H with interactive terrestrial carbon cycle and

oceanic biogeochemistry (GISS-E2-H-CC)

GISS Model E, coupled with the Russell ocean model

(GISS-E2-R)

GISS-E2-Rwith interactive terrestrial carbon cycle and oceanic

biogeochemistry (Giss-E2-R-CC)

National Institute of Meteorological Research/Korea

Meteorological Administration (South Korea)

Hadley Centre Global Environment Model, version

2 - Atmosphere and Ocean (HadGEM2-AO)

Met Office Hadley Centre (U.K.) Hadley Centre Coupled Model, version 3 (HadCM3)

Hadley Centre Global Environment Model, version 2

(HadGEM)–Carbon Cycle (HadGEM2-CC)

HadGEM2–Earth System (HadGEM2-ES)

Institute for Numerical Mathematics (Russia) Institute of Numerical Mathematics Coupled Model,

version 4.0 (INM-CM4)

Institut Pierre-Simon Laplace (France) L’Institut Pierre-Simon Laplace (IPSL) Coupled Model,

version 5, coupled with NEMO, low resolution

(IPSL-CM5A-LR)

IPSL Coupled Model, version 5, coupled with NEMO,

low resolution (IPSL-CM5A-MR)

IPSL-CM5B-LR; new atmospherical physics at low resolution
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The first term on theRHS of (2) represents the change in

clear-sky flux. The second term represents the contri-

bution from changes in cloud cover (Dc) with all the

other properties affecting radiation held fixed, while the

third term represents the effect of changes in radiation

fluxes weighted by the mean cloud cover. The last term

(«) accounts for the covariance among the fields.

In previous studies observational estimates of cloud

feedback have often been computed as the change in

cloud radiative effect (CRE) at TOA divided by change

in global mean SST (DTs). The change in CRE at TOA

can be written rearranging Eq. (2) as

DCRE5DRtot 2DRclr 5Dc(Rcld 2Rclr)

1 c(DRcld2DRclr) , (3)

where the covariance term is much smaller than the

other terms and can be omitted (cf. Taylor et al. 2007).

This method has been criticized because the second

term on the RHS of (3) may include changes in clear-sky

fluxes due to noncloud feedbacks (see discussion in Soden

et al. 2008). These changes can cause a change in CRE that

is not caused by a change in cloud cover.

In this study, we use only the first term on the RHS

of (3) to define cloud feedback, so our definition is not

contaminated by changes in clear-sky radiation. When

this term [i.e., Dc(Rcld 2Rclr)] is divided by change in

SST (DTs) it represents cloud feedback.We note that we

cannot evaluate cloud feedback due to changes in cloud

vertical and optical properties because long-term ship-

based observations only provide information about cloud

amount. Therefore,Dc in our study corresponds to changes

in cloud amount and we can only estimate the cloud

amount component of cloud feedback.

SinceCRE is defined asCRE5Rtot 2Rclr, we canwrite

Rcld 2Rclr using (1) as

k5
CRE

c
, (4)

where k represents the sensitivity of Rtot to changes in

cloud amount, and is calculated as mean cloud radiative

effect (CRE5Rtot 2Rclr) at TOA fromCERES divided

by mean cloud amount (c) from EECRA. We will refer

to k as ‘‘cloud amount radiative kernel’’ in the reminder

of this text in analogy to cloud radiative kernels devel-

oped by Zelinka et al. (2012a). In previous studies, k has

been evaluated using a radiative transfer model that

calculates cloud radiative kernels directly (Zelinka et al.

2012a; Zhou et al. 2013) or as a residual from radiative

kernels of all the other noncloud feedback variables

(Soden et al. 2008). Other methods have also been de-

veloped [e.g., the ‘‘approximate partial radiative pertur-

bation method’’ of Taylor et al. (2007)]. Soden et al.

(2008) provide a good overview of these different tech-

niques. In addition to changes in cloud amount, these

methods generally take into account the sensitivity to

perturbations in cloud vertical and optical properties.

Cloud amount feedback (units of Wm22K21) can

then be finally written as

CAF5
kDc

DTs

. (5)

The sign convention is that positive values indicate posi-

tive cloud amount feedback, whichmeans an amplification

TABLE 1. (Continued)

Institution Model name

Atmosphere and Ocean Research Institute (The University of

Tokyo), National Institute for Environmental Studies, and

Japan Agency for Marine-Earth Science and Technology

(Japan)

Model for Interdisciplinary Research on Climate (MIROC),

Earth System Model (MIROC-ESM)

MIROC, Earth System Model, Chemistry Coupled

(MIROC-ESM-CHEM)

MIROC, version 4 (high resolution) (MIROC4h)

MIROC, version 5 (MIROC5)

Max Planck Institute for Meteorology (Germany) Max Planck Institute (MPI) Earth System Model, low

resolution (MPI-ESM-LR)

MPI Earth SystemModel, medium resolution (MPI-ESM-MR)

MPI Earth System Model, paleo (MPI-ESM-P)

Meteorological Research Institute (Japan) Meteorological Research Institute (MRI) Coupled

Atmosphere–Ocean General Circulation Model, version 3

(MRI-CGCM3)

MRI Earth System Model, version 1 (MRI-ESM1)

Norwegian Climate Centre (Norway) Norwegian Earth System Model, version 1 (intermediate

resolution) (NorESM1-M)

NorESM1 with prognostic biogeochemical cycling

(NorESM1-ME)
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of climate change, and negative values indicate nega-

tive cloud amount feedback, which means a reduction

of climate change. We note that since we do not con-

sider vertical changes in cloud cover and cloud prop-

erties, our computation of cloud amount feedback is

not the same as cloud feedback, which can be written

as the sum of cloud amount, cloud altitude, cloud

optical feedbacks, and a residual term (Zelinka et al.

2012b).

We estimate cloud amount feedback in models as

in observations using Eq. (5). We compute model es-

timates for the first ensemble member (r1i1p1) of the

42 models considered, and then obtain the multimodel

mean by averaging all estimates. Averaging across

multiple models ensures better separation of long-term

forced climate trends from internal climate variability.

Since we subtracted tropical mean cloud amount from

cloud fields, both model and observational estimates

of cloud amount feedback are relative to the tropical

mean. Hence, positive local feedback means more posi-

tive than the tropical mean, and negative local feedback

more negative than the tropical mean. We note that the

tropical multimodel mean cloud change is 20.25%;

therefore, the absolute and relative estimates of local

cloud amount feedback in the multimodel mean are not

much different from one another and exhibit the same

sign. We cannot evaluate the difference between ab-

solute and relative estimates of local cloud amount

feedback in observations because of the observational

biases discussed above.

4. Results

a. Cloud amount change

Figure 1 shows total cloud amount changes from 1954

to 2005 in (a) observations (EECRA) and (b) the CMIP5

multimodel mean. Contours represent cloud climatology,

while stippling indicates where the change is robust. For

observations, the change is considered robust where it is

significant at the 90% level of a two-tailed Student’s t test.

The degrees of freedom in each grid box correspond to the

number of observations, and are adjusted to take into ac-

count autocorrelation at lag 1 where the autocorrelation is

significant at the 90% level of a Pearson’s R test. For

models, stippling indicates where at least 31 out of 42

(;74%)models agree on the sign of cloud change. Figure 1

shows that the tropical pattern of the multimodel mean

cloud amount change shares many large-scale features

with observations, although changes are smaller (note the

different color scales). Observations (Fig. 1a) display ro-

bust cloud changes in the four regions contoured by black

boxes: cloud cover is found to decrease over the northeast

Pacific and equatorial western Pacific, and to increase over

the southern central Pacific and western Indian Ocean.

Over these regions, the multimodel mean exhibits cloud

changes of the same sign as observations but smaller in

magnitude (Fig. 1b). In addition, models simulate robust

cloud increase over the subtropical southeast Pacific (58–
208S, 808–1208W), which is the only region where there is

good intermodel agreement. While there are not enough

observations in EECRA to constrain cloud cover changes

FIG. 1. Total cloud amount change (1954–2005): (a) EECRA and (b) CMIP5 multimodel

mean. Contours represent cloud amount climatology (long-term mean), while stippling in-

dicates where the changes are robust. In (a) changes are considered robust if they pass a two

tailed Student’s t test at the 90% level where the degrees of freedom for the test correspond to

the number of observations in each grid box, and are adjusted to take into account autocor-

relation at lag1 where the autocorrelation is significant at the 90% level of a Pearson’s R test. In

(b) stippling indicates where at least 31 models out of 42 (74%) agree on sign. The boxed

regions highlight where observed cloud changes are robust.
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over this region, the multimodel mean is consistent with

observed positive cloud trends from 1900 to present in the

southeast Pacific found in the ICOADS observations by

Deser et al. (2010).

To corroborate these long-term cloud changes, we

compare cloud anomalies in EECRA with ISCCP and

PATMOS-X. Figure 2 shows interannual cloud cover

anomalies in the four boxed regions of Fig. 1 where

cloud changes in EECRA are statistically significant.

EECRA anomalies are plotted in blue, ISCCP in red,

and PATMOS-X in green. Dashed blue lines represent

the linear trend fit toEECRAanomalies. Cloud anomalies

in EECRA show less interannual variance than satellite

observations; however, interannual fluctuations and trends

are consistent in the three datasets in the overlapping years

of coverage (1984–2007). For example, interannual peaks

during ENSO events in the western and central Pacific

boxes are evident in all three datasets, and decadal fluc-

tuations in cloud cover over the northeast Pacific due to

shifts in the Pacific decadal oscillation (Deser et al. 2004)

are also captured by all datasets. In Table 2 we compute

correlation coefficients between the time series shown in

Fig. 2. All correlations are significant at the 95% level of

a two-tailed Pearson’s R test with the exception of the

western Indian box where surface observations do not

show statically significant correlation with satellites. We

note that there is less agreement also between the two

satellites in this region.

As discussed above, EECRAobservations suffer from

global spurious variability, which makes the interpre-

tation of long-term trends problematic. However, con-

sistency with satellite datasets where cloud changes are

statistically significant (Fig. 2) gives increased confi-

dence in the credibility of cloud changes in EECRA.

The western Indian Ocean is a region where there is less

agreement with satellites, and this needs to be taken into

account in the interpretation of long-term cloud changes.

We note, however, that models simulate consistent sign

FIG. 2. Regional time series of total cloud amount interannual anomalies in the four boxed regions of Fig. 1. Blue

refers to EECRA (1954–2008), red to ISCCP (1984–2007), and green to PATMOS-X (1984–2007). The blue dashed

line is the linear trend fitted to EECRA.

TABLE 2. Linear correlation coefficient between the time series shown in Fig. 2. Bolded values indicate where correlations are significant

at the 95% level of a Pearson’s R test.

Correlation coefficient EECRA-ISCCP EECRA-PATMOSX ISCCP-PATMOSX

Western Indian 0.24 0.20 0.64

Western Pacific 0.81 0.78 0.79

Northeast Pacific 0.83 0.77 0.82

Central Pacific 0.75 0.78 0.86
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of cloud change with observations over this region and

similar large-scale patterns in all the Indo-Pacific Ocean

(Fig. 1), which suggests that there could be robust physical

mechanisms inmodels to explain the observed cloud cover

changes.

We quantify the radiative impact associated with these

long-term cloud trends by computing cloud amount feed-

back, and then compare observational estimates of cloud

amount feedback with those derived in climate models.

While satellite products may seem a more reliable dataset

to estimate cloud feedbacks, their short-term coverage

(less than 30yr) limits their applicability for climate change

studies. In fact, trends in atmospheric variables on time

scales of 30 yr or shorter tend to reflect internal climate

variability, in particular over regions characterized by high

variability on decadal time scales, such as theNorth Pacific

(Deser et al. 2012) and North Atlantic (Ting et al. 2009).

For example, cloud signals in the northeast Pacific exhibit

significant decadal fluctuations, which are linked to shifts

in the Pacific decadal oscillation (PDO) that occurred in

the 1976–77 and late 1990s. The time series in Fig. 2c

show that all datasets exhibit reduced cloud cover from

the mid-1970s to the late 1990s when SST in the eastern

Pacific was warmer due to the positive phase of the PDO,

and then increased cloud cover from the late 1990s when

SST was colder due to the negative phase of the PDO.

Therefore, the slightly positive trend in cloud cover from

1984 to 2007 in the northeast Pacific reflects decadal

variability and is not representative of the long-term trend

in EECRA (blue dashed line in Fig. 2c). This suggests

that satellite cloud products are not suitable for climate

change studies in regions where decadal variability is

important. For this reason, we choose to estimate long-

term cloud amount feedback from ship-based observa-

tions, which cover more than five decades and are less

sensitive to decadal fluctuations.

b. Cloud amount feedback

To obtain the cloud amount feedback, we multiply

cloud amount radiative kernel by cloud cover change

and then divide by tropical mean change in SST, as de-

fined in Eq. (5). We first obtain the observational esti-

mate of cloud amount radiative kernel (Fig. 3a), which

is computed as the mean cloud radiative effect from

CERES divided by themean cloud cover fromEECRA,

after regridding CERES to the gridbox size of EECRA.

The model estimates of cloud amount radiative ker-

nel are computed as in observations for each of the

42 models. Themultimodel mean (Fig. 3b) is then obtained

by averaging all model estimates. Figure 3a (observa-

tions) and Fig. 3b (models) show good agreement in

sign. Negative values indicate where clouds have a net

(i.e., shortwave plus longwave) cooling effect, while

positive values indicate where clouds have a net warm-

ing effect. Cloud amount radiative kernels are negative

almost everywhere in both observations and models,

which means that clouds have a net cooling effect. Models

display even larger values than observations, suggesting

that the radiation budget in the models is more sensitive

to changes in cloud cover. This is consistent with the fact

FIG. 3. Cloud amount radiative kernel computed as mean cloud radiative effect (CRE) di-

vided by mean cloud cover. (a) Observational estimate (CRE is from CERES and mean cloud

cover is from EECRA) and (b) CMIP5 multimodel mean.
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that models simulate too few and too bright clouds

(Nam et al. 2012), so that the numerator of the cloud

amount radiative kernel (i.e., CRE) is too large (nega-

tive) while the denominator (i.e., cloud amount) is too

small, making the cloud amount radiative kernel larger

and more negative in models than in observations. The

largest discrepancies between the multimodel mean and

observational estimates occur over the central and west-

ern tropical Pacific and southern Indian Ocean, where

clouds in observations have a smaller cooling effect than

in models (Fig. 3).

We note that the observational estimate shown in

Fig. 3a is sensitive to cloud climatology. For instance, if

we use ISCCP or PATMOS-X instead of EECRA, the

cloud amount radiative kernel looks slightly different,

although we still get less negative values than the multi-

modelmean, especially in thewestern Pacific. These slight

differences do not influence our conclusions because we

use cloud amount radiative kernel not to evaluate model

performance, but rather to weigh the radiative impact of

cloud cover changes in relation to the mean cloud cover.

For example, if in a particular location of the world cloud

cover is larger in ISCCP (e.g., 80%) than in EECRA (e.g.,

60%) for the same value of CRE, then a 5% change in

cloud cover will have relatively larger impact on cloud

amount feedback computed from EECRA than from

ISCCP, because the fraction of cloud change to mean

cloud cover is larger in EECRA (5%/60%) than ISCCP

(5%/80%). The same applies to intermodel differences,

although models simulate different cloud climatology due

to different model parameterizations rather than different

retrieval methods.

After obtaining the cloud amount radiative kernel, we

compute model and observational estimates of cloud

amount feedback, which are shown in Fig. 4. Figure 4 is

calculated multiplying long-term trends in cloud cover

by cloud amount radiative kernel, and then dividing by

tropical mean SST change. Model estimates of cloud

amount feedback are computed for each model, and

then the multimodel mean is obtained by averaging all

model estimates. Contours in Fig. 4 represent total cloud

cover climatology, while stippling indicates where the

changes are statistically significant. Observational cloud

amount feedback is statistically significant where cloud

trends shown in Fig. 1a are, that is, over the northeast

Pacific and western Pacific where cloud amount feed-

back is positive, and central Pacific and western Indian

where cloud amount feedback is negative. Model cloud

amount feedback is only significant over the southeast

Pacific where there is intermodel agreement in cloud

trends. The multimodel mean cloud amount feedback

(Fig. 4b) is less than half the observational values (Fig. 4a);

nevertheless, the sign of the feedback is consistent with

observations over most of the Indian and Pacific Oceans.

Cloud amount feedback [Eq. (5)] can be split into

contributions from 1/DTs,DC, and k. To roughly estimate

which of these terms contributes the most to weaker

model cloud amount feedback, we compute the frac-

tional change in cloud amount feedback (CAF) in the

four boxed regions of Fig. 4. The fractional change

FIG. 4. Cloud amount feedback. (a) Observational estimate computed multiplying cloud

amount radiative kernel (Fig. 3a) by EECRA cloud amount changes (Fig. 1a) and then di-

viding by tropical mean change in SST fromHadISST (0.468C). Contours represent total cloud
amount climatology fromEECRA. Stippling indicates where cloud amount feedback is robust

and is computed as in Fig. 1. (b) CMIP5multimodel mean. Contours represent the multimodel

mean cloud amount climatology. Stippling indicates where at least 31 models out 42 (;74%)

agree on sign. Boxes indicate the regions where cloud changes in Fig. 1a are statistically

significant.
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in CAF can be written as dCAF=CAF5 (dk=k)1
(dDC=DC)2 (dDTs=DTs), where d represents the differ-

ences between observed andmultimodel mean values.We

do not expect the LHS of this equation to be equal to the

difference between the computed multimodel mean and

observations because this equation is a valid approximation

only for small perturbations. Nonetheless, this approxima-

tion indicates which terms contribute the most to the dif-

ferences between models and observations. The fractional

changes of the RHS terms of the equation are reported in

Table 3,which shows that the largest contribution toweaker

model cloud amount feedback comes from smaller model-

simulated cloud cover changes than observed.

Figures 5 and 6 show the estimates of cloud amount

feedback in the four boxed regions of Fig. 4 in each

model (numbered bars), multimodel mean (denotedM),

and observations (OBS). Numbered bars correspond to

individual model estimates according to the legend in

Table 4. Figure 5 shows the estimates in the (a) western

Indian and (b) western Pacific, while Fig. 6 shows the

(a) northeast Pacific and (b) central Pacific. Also plotted

in Figs. 5 and 6 are estimates of observational errors

(horizontal lines), which represent the error on the es-

timates of cloud trends (see the caption of Fig. 5). While

generally the multimodel mean is significantly smaller

than observations, models individually can simulate

cloud amount feedback of the same strength if not larger

than observations. In the western Indian (Fig. 5a),

30 models out of 42 (;71%) agree in sign with observa-

tions. Of these, 10 fall within the error range of obser-

vations, and 2 exceed the upper extent of the error range.

In the western Pacific (Fig. 5b), 24 models (;57%) agree

in sign with observations, 8 fall within the error range, and

1 exceeds the upper extent of the error range. In the

northeast Pacific (Fig. 6a), 21 models (50%) agree in sign

with observations, and only 1 falls within the error range.

In the central Pacific (Fig. 6b), 25 models (;59%) agree

with observations, 3 fall within the error range, and 1 ex-

ceeds the upper extent of the error range. The region of

largest uncertainty is therefore the northeast Pacific, which

is a region predominantly covered by low-level marine

stratocumulus clouds. It is also noteworthy that the ob-

servational estimate in the northeast Pacific is larger than

that simulated by any models, whereas this is not the case

for the other regions, where some of the model estimates

can exceed the observed changes.

We computed similar bar charts for changes in cloud

cover in these four regions. No model simulated cloud

cover changes larger than the observed in any of the

regions (not shown). Therefore, somemodels are able to

simulate similar magnitude cloud amount feedback as

observations (Fig. 5 and 6), not because they reproduce

the same cloud amount changes but because they over-

estimate the radiative effect of clouds (Fig. 3). We do not

find any particular model that performs better than the

others in the simulation of cloud cover changes or cloud

amount feedback in all four regions.

We mentioned that total cloud fraction computed in

the models is not the same as observed total cloud frac-

tion, which introduces uncertainty in the estimates of

cloud amount feedback. However, the uncertainty in the

estimation of cloud amount feedback due to the different

TABLE 3. Observed minus multimodel mean fractional changes

of (left) cloud amount radiative kernel k, (middle) cloud cover

change DC, and (right) tropical mean SST change DTs, in the four

boxed regions of Fig. 4. The denominators are mean cloud amount

radiative kernel, cloud cover change, and tropical mean SST change

from observations. The numbers shown are the absolute values.

Differences between

observations and the

multimodel mean dk/k dDC/DC dDTs/DTs

Western Indian 0.70 0.89 0.24

Western Pacific 0.41 1.00 00

Northeast Pacific 0.16 0.96 00

Central Pacific 0.72 0.91 00

TABLE 4. Legend of model numbers for Figs. 5 and 6.

1. ACCESS1–0 15. GFDL-CM3 29. MIROC-ESM-CHEM

2. ACCESS1–3 16. GFDL-ESM2G 30. MIROC-ESM

3. BNU-ESM 17. GFDL-ESM2M 31. MIROC4h

4. CCSM4 18. GISS-E2-H-CC 32. MIROC5

5. CESM1-BGC 19. GISS-E2-H 33. MPI-ESM-LR

6. CESM1-CAM5 20. GISS-E2-R-CC 34. MPI-ESM-MR

7. CESM1-FASTCHEM 21. GISS-E2-R 35. MPI-ESM-P

8. CESM1-WACCM 22. HadCM3 36. MRI-CGCM3

9. CNRM-CM5–2 23. HadGEM2-AO 37. MRI-ESM1

10. CNRM-CM5 24. HadGEM2-CC 38. NorESM1-ME

11. CSIRO-Mk3–6-0 25. HadGEM2-ES 39. NorESM1-M

12. CanESM2 26. IPSL-CM5A-LR 40. BCC-CSM1-1-M

13. FGOALS-g2 27. IPSL-CM5A-MR 41. BCC-CSM1-1

14. FIO-ESM 28. IPSL-CM5B-LR 42. INM-CM4
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definitions of total cloud fraction in models and obser-

vations (Marchand et al. 2010) seems to be much smaller

than the uncertainty that arises from the large intermodel

spread in the simulation of cloud cover changes and cloud

amount feedback (Figs. 5 and 6).

5. Discussion

The pattern of observed cloud cover changes over the

tropical Pacific Ocean (Fig. 1) for the years 1954–2005 is

similar to century time scale cloud cover changes (1900 to

the present) computed from ICOADS (Deser et al.

2010). Those authors argued that the pattern in Fig. 1a is

reminiscent of El Ni~no because there is decrease in cloud

cover over the western Pacific and increase over the

central Pacific. They found that this El Ni~no–like cloud

change pattern in the western Pacific was consistent with

an observed eastward shift in precipitation in the tropical

Pacific and weakening of the Walker circulation over the

last century (Vecchi et al. 2006). Furthermore, Tokinaga

et al. (2012) ranAGCMexperiments with prescribed SST

patterns from observations and showed that the models

were able to reproduce cloud cover changes consistent

with Fig. 1a, along with an eastward shift in convection

and weakening of theWalker circulation. Thus, the east–

west dipole pattern of cloud change and feedback in the

central andwestern Pacific may be explained byElNi~no–

like mechanisms occurring on long time scales.

On the other hand, cloud increase in the southeast Pa-

cific subtropical stratocumulus and trade-cumulus regions

shown by both Fig. 1b of this study and Deser et al. (2010)

does not resemble cloud changes during El Ni~no events,

because during El Ni~no events cloud cover decreases over

both the southeast and northeast Pacific stratocumulus

regions (Deser et al. 2004). This suggests that, in contrast

to the western and central Pacific, mechanisms of climate

change in the eastern Pacific might not be explained by

El Ni~no–like mechanisms (cf. DiNezio et al. 2009).

FIG. 5. Cloud amount feedback averaged over the first two boxed regions of Fig. 4:

(a) western Indian and (b) western Pacific. The numbers indicate the model name (see legend

in Table 4). Horizontal lines represent the estimated range of observational errors, which are

computed using the propagation of uncertainty formula assuming that the error in the estimate

of cloud amount change is much larger than the errors in the estimates of tropical mean SST

change and cloud amount radiative kernel. The observational error on cloud amount feedback

(CAF) can therefore be written as sCAF/CAF5sDc/DC. From Eq. (4), CAF5kDc/DTs;

therefore, sCAF 5sDc(k/DTs), where k is averaged over the boxed region and DTs is the

tropical mean SST change (0.468C); also, sDc represents the 90% confidence range and is

computed as the standard error on the estimate of the cloud amount trend multiplied by the

t value at the 90% probability level of a two-tailed Student’s t test with degrees of freedom

equal to the number of observations adjusted to account for the autocorrelation at lag 1.
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The decrease in cloud amount and the resulting pos-

itive cloud amount feedback over the northeast Pa-

cific stratocumulus region is instead consistent with

a stratocumulus-to-cumulus (Sc-to-Cu) transition hy-

pothesis (Bretherton and Wyant 1997). Eastman et al.

(2011) used the same dataset (EECRA) as in the present

study to look at changes in low-level cloud types over the

years 1954–2008. They found an increase in the frequency

of occurrence in cumulus and a decrease in stratocumulus

in the northeast Pacific and other subtropical stratocumu-

lus regions, which suggests a long-term Sc-to-Cu transition.

Cumulus cloud cover ismore scattered than stratocumulus,

so therefore cloud fraction decreases during the transi-

tion resulting in positive cloud amount feedback.

The only region where there is intermodel agreement

in cloud amount changes is the southeast Pacific, where

cloud amount increases in the historical simulations. The

subtropical southeast Pacific is a region where models

robustly simulate aminimum in SSTwarming in response

to climate change (Xie et al. 2010; DiNezio et al. 2011).

This minimum warming has usually been explained as

arising from a strengthening of the trade winds (Falvey

and Garreaud 2009). Our results suggest that negative

cloud amount feedback in the southeast Pacific could

contribute as well to enhance this minimum warming.

The observed and simulated changes in cloud amount

feedback are consistent with some of the mechanisms

explaining climate change cloud feedbacks in doubled-

CO2 (Zelinka et al. 2012b) and abrupt CO2 quadrupling

GCM experiments (Zelinka et al. 2013). Zelinka et al.

(2012b) split cloud feedback into contributions from

cloud amount, cloud altitude, and cloud optical depth

feedbacks. As in our study, they found a negative cloud

amount feedback over the central Pacific due to an in-

crease in cloud amount. This negative cloud amount

feedback, however, was largely compensated by a posi-

tive cloud altitude feedback, resulting in net positive

cloud feedback over the central Pacific. Their results were

consistent with the hypothesis of fixed-anvil-temperature

ofHartmann and Larson (2002), according towhich high-

level clouds in the tropics tend to rise as the climate

warms to conserve their cloud-top temperature. Our

findings support the cloud amount feedback part of this

mechanism. Over the northeast Pacific, Zelinka et al.

(2012b) found positive cloud amount feedback as in our

study. They also found positive cloud altitude feedback,

which along with positive cloud amount feedback is

consistent with the Sc-to-Cu transition hypothesis and

deepening of the marine boundary layer in response to

warmer SST.

The complexity of the mechanisms involved in cloud

changes, which is reflected by the observed north–south

and east–west asymmetries, suggests that regional dif-

ferences in mechanisms of cloud change need to be

FIG. 6. As in Fig. 5, but for cloud amount feedback averaged over the other two boxes regions of

Fig. 4: (a) northeast Pacific and (b) central Pacific.
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taken into account. Since observed cloud–environment

relationships are similar in all subtropical stratocumulus

regions on interannual time scales (e.g., Klein and

Hartmann 1993), some studies have suggested using

composites of cloud cover changes to explore mecha-

nisms of cloud change in regions characterized by the

same large-scale subsidence rates such as the northeast

and southeast subtropical stratocumulus regions (Bony

et al. 2004). While this technique has improved our un-

derstanding of the relative roles of the thermodynamic

and dynamic components of cloud changes under ide-

alized climate change scenarios (e.g., Bony et al. 2004;

Brient and Bony 2013), our results suggest that mecha-

nisms of cloud changes need to be studied regionally. In

fact, environmental conditions (e.g., SST, SLP, large-

scale subsidence, precipitation) can respond differently

to climate change in regions characterized by the same

large-scale subsidence regime (e.g., Vecchi and Soden

2007a). Regional differences can be therefore very large,

even within the same dynamic regime.

Soden and Vecchi (2011) showed that the subtropical

stratocumulus regions are among the regions of largest

intermodel disagreement in cloud feedback. Three of

the subtropical stratocumulus regions identified by Klein

and Hartmann (1993) are located in the Indo-Pacific

Ocean (northeast and southeast Pacific, and southeast

Indian). In this study we provide observational support for

positive cloud amount feedback relative to the tropical

mean over the northeast Pacific from the second half of

the twentieth century. We find positive but not statisti-

cally significant cloud amount feedback over the south-

east Indian Ocean. Over the southeast Pacific, instead,

cloud cover is found to increase in both observations

(Deser et al. 2010) and climate models (Fig. 1b), sug-

gesting negative cloud amount feedback, but there are

not sufficient data in EECRA to estimate cloud amount

feedback in this region.

We finally note that cloud feedback has been histori-

cally defined as the cloud-induced change in TOA ra-

diation per unit change in SST, all else being equal. To

diagnose cloud feedback, idealized model experiments

in which the only variable that is changing is SST (e.g.,

perturbed SST experiments) or the CO2 concentration

(e.g., abrupt 43CO2 experiments) are commonly used.

In our study, however, we examine historical simula-

tions and observations. In these experiments and in the

real world cloud cover is also responding to changing in

other variables in addition to planetary warming—for

example, changes in anthropogenic aerosols, which have

direct and indirect effects on clouds (cf. Booth et al.

2012; Allen et al. 2012), and the ozone hole (Grise et al.

2013), which along with changes in aerosols has affected

the large-scale atmospheric circulation and therefore

cloud patterns in ways that differ from the response to an

increase in SST alone. Moreover, trends may be influ-

enced by the timing of ENSO or other sources of internal

climate variability, thereby giving a single estimate of

cloud feedback that is valid, but possibly biased on one

direction or another relative to the ‘‘true’’ value.

We are unable to separate the temperature-mediated

cloud changes (those that feed back on the warming)

from those cloud changes that arise due to other forcing

agents included in the historical runs and observations.

Nevertheless, some large-scale features such as and

east–west asymmetry in the western Pacific, positive

cloud amount feedback in the northeast Pacific, and the

robust negative cloud amount feedback in the southeast

Pacific, are also simulated by idealized climate change

experiments (Zelinka et al. 2012b; Soden and Vecchi

2011), which suggests that some of the mechanisms ex-

plaining cloud changes in idealized increasing CO2 ex-

periments may be already evident in the available

observations.

6. Conclusions

In this study we have examined the problem of con-

straining cloud feedback in climate models by taking

a long-term perspective from cloud observations. Syn-

optic reports of cloud cover from ships contained in the

EECRA dataset are the longest record of cloud in-

formation over the ocean, and could potentially be used

to constrain cloud feedback in climate models. To

remove spurious variability in this dataset, we sub-

tracted the annual tropical mean from each grid box.

Then, we compared the corrected interannual cloud

cover anomalies with two satellite products (ISCCP and

PATMOS-X), from which the tropical mean was also

removed. During the overlapping years of coverage,

EECRA and the two satellites showed good degree of

agreement over most part of the Indian and Pacific

Oceans, although a reduced degree of agreement was

found in the western Indian Ocean among all datasets.

We showed that long-term cloud changes relative to

the tropical mean in EECRA were similar to the mul-

timodel mean of 42 CMIP5 historical simulations over

the years 1954–2005 but smaller in magnitude. Models

and observations displayed a north–south asymmetry in

cloud change in the eastern Pacific, with decreases in

cloud cover over the northeast Pacific and increases over

the central and southeast Pacific, and an east–west di-

pole, with decreases in cloud cover over the equatorial

western Pacific, and increases over the central Pacific.

The east–west dipole in the western Pacific is reminis-

cent of cloud cover changes during El Ni~no events,

and consistent with eastward shift in precipitation and
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reduced strength of the Walker circulation observed

over the last century.

We estimated cloud amount feedback relative to the

tropical mean associated with these cloud changes.

Observational estimates showed statistically significant

cloud amount feedback over four regions: cloud amount

feedback was found to be positive over the northeast

Pacific subtropical stratocumulus region and equatorial

western Pacific, and negative over the southern central

Pacific and western Indian. Compared to observations,

the multimodel mean displayed consistent but weaker

cloud amount feedback over these regions and similar

large-scale features. Although themultimodel meanwas

found to be significantly smaller than in observations,

some models simulated cloud amount feedback of the

same strength if not stronger than in observations.

We proposed a method to estimate cloud amount

feedback that can be easily used to comparemodels with

observations. As more years of data from satellite-based

cloud observations become available, this method can

be used to corroborate the observational estimates of

cloud amount feedback provided here. Finally, since

climate models and observations showed similar large-

scale patterns of cloud changes, we suggest that mech-

anisms responsible for cloud changes in models could

help explain the observed changes.
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