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1. Introduction 

 

The purpose of this note is to describe a new global sea surface salinity (SSS) product. The 

product combines observations from NASA’s Aquarius/SAC-D and Soil Moisture Active-

Passive (SMAP) satellite missions into a continuous and consistent multi-satellite SSS data 

record.  

 

The new dataset covers the period from September 2011 to the present. The beginning 

segment, from September 2011 to June 2015, utilizes data from the Aquarius satellite and 

is based on Optimum Interpolation analysis (OI SSS; Melnichenko et al., 2016). The 

analysis is produced on a 0.25-degree grid at a 4-day interval and uses a dedicated bias-

correction algorithm to correct the satellite retrievals for large-scale biases with respect to 

in-situ data. The time series is continued with the SMAP satellite-based SSS data provided 

by Remote Sensing Systems (RSS). SMAP SSS fields are produced from Level-2 (swath) 

data using the OI algorithm. To ensure consistency and continuity in the data record, SMAP 

SSS fields are further adjusted using a set of optimally designed spatial filters to reduce 

small-scale noise and, at the same time, to ensure that the data record is consistent across 

the scales. For the overlap period (April-May 2015), the data from the two satellites are 

averaged together to ensure a smooth transition from one dataset to another. Measurements 

from ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite are used to fill the gap in 

SMAP observations during June-July 2019, when the SMAP satellite was in a safe mode 

and did not deliver scientific data.  

 

The consistency and accuracy of the new SSS dataset have been evaluated against in situ 

salinity from Argo floats and moored buoys. The mean root-mean-square difference 

(RMSD) between the Aquarius/SMAP OI SSS dataset and concurrent in-situ data globally 

is around 0.19 psu. The product bias is around zero. 
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2. Major processing steps and the algorithm flow  

 

Figure 1 shows a schematic diagram of the Aquarius/SMAP sea surface salinity optimum 

interpolation analysis (OI SSS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Schematic diagram of the Aquarius/SMAP sea surface salinity optimum interpolation 

analysis (OI SSS) 

 

The input data are Level-2 SSS retrievals from the Aquarius and SMAP satellites. SMOS 

data are used to replace SMAP observations during 19 June – 24 July, 2019, when the 

SMAP satellite was not operational. The input data are described in Section 3.1. The first 

step in the processing algorithm is to check the Level-2 data for quality. Quality control 

flags and other related information (e.g., SST, surface winds) provided in the data files are 

used for this purpose. The quality control procedures are described in Section 3.2.  The 

next step in data processing consists of a large-scale adjustment of the satellite SSS data 

relative to in-situ data. The algorithm corrects the satellite data for only persistent (time-

mean) biases which are determined independently for Aquarius and SMAP observations. 

The bias correction algorithms are described in Section 3.3. Finally, gridded SSS fields are 

obtained with the Optimal Interpolation algorithm described in Section 4. Over the 

overlapping period (April-May 2015), the data from the Aquarius and SMAP satellites are 

combined together to ensure a smooth transition from one dataset to another. The output 

(Section 5) is a sequence of SSS fields processed with a unified algorithm.  

 

3. Satellite SSS data, data quality control and correction for satellite biases 

 

3.1 Satellite SSS data 

 

3.1.1. Aquarius SSS data 

 

The Aquarius/SAC-D satellite mission provided observations of SSS from August 2011 to 

June 2015. The satellite was positioned on a polar sun-synchronous orbit crossing the 
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equator at 6 pm (ascending) and 6 am (descending) local time with a repeat cycle of 7 days. 

The Aquarius instrument consisted of three microwave radiometers that generated three 

beams at different angles relative to the sea surface. The beams had elliptical footprints on 

the sea surface (76 x 94 km, 84 x 120 km, and 96 x 156 km) aligned across a ~390-km-

wide swath (Figure 2a). The emission from the sea surface, measured by the radiometers 

as an equivalent brightness temperature (Tb), was converted to SSS, subject to corrections 

for various geophysical effects. A detailed description of the Aquarius/SAC-D satellite 

mission and the Aquarius instrument can be found in Le Vine et al. (2007). 

 

The Aquarius observations of SSS have been obtained from Level-2 (L2) version 5.0 (end-

of-mission) Aquarius data produced by the NASA Goddard Space Flight Center’s Aquarius 

Data Processing System (ADPS). The L2 data files, distributed by the Physical 

Oceanography Distributed Active Archive Center (PO.DAAC) of the Jet Propulsion 

Laboratory (JPL), contain retrieved SSS, navigation data, ancillary fields, quality flags, and 

other related information such as surface winds. The data are structured as a sequence of 

files, each corresponding to one orbit of Aquarius. An orbit is defined as starting when the 

satellite passes the South Pole. Individual observations along each orbit consist of a 

sequence of data points sampled at a 1.44-second (~10 km) interval. Each individual 

observation represents the average salinity in the upper 1-2 cm layer and over a ~100 km 

footprint (Le Vine et al., 2007; Lagerloef et al., 2008). A detailed description of Aquarius 

data can be found in the Aquarius User Guide (Aquarius Dataset Version 5.0). The retrieval 

algorithm is descried in  Meissner et al. (2017, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. (a) Aquarius measurement geometry. (b) Example pattern of Aquarius ground tracks over 

the North Atlantic over a 7-day period. Colors indicate the three Aquarius beams. Ascending passes 

are from southeast to northwest. (c) Example of Level-2 SSS (three beams; 390-km-wide swath) 

passing through the subtropical North Atlantic on September 14, 2012 (thick lines in (b)). Thin 

curves – raw data; thick curves – smoothed with a running Hanning filter of half-width of ~60 km 

(approximately half-width of the Aquarius footprint). Colors indicate the three Aquarius beams.  

(a) (b) 

(c) 
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An example of Aquarius L2 SSS data is shown in Figure 2. Figure 2 demonstrates that 

there are at least two types of errors in the SSS retrievals. One significant source of error 

is the accuracy of individual measurements along the satellite tracks. The instrument noise 

is essentially ‘white’ in nature and can be suppressed by filtering the data along track such 

as shown in Figure 2c (heavy lines). Of much greater concern are differences between the 

three beams, which can be as large as 0.5-0.8 psu and appear to be correlated over large 

distances along the satellite tracks. The inter-beam biases are likely a manifestation of 

residual geophysical corrections.      

 

3.1.2. SMAP SSS data 

 

NASA's SMAP satellite, launched on January 31, 2015, started collecting SSS 

observations in April 2015, overlapping with Aquarius observations for about three month 

period (April-June 2015). The satellite is positioned on a polar sun-synchronous orbit 

crossing the equator at 6 pm (ascending) and 6 am (descending) local time with a repeat 

cycle of 8 days. Similar to Aquarius, the measurement principle of SMAP is based on the 

response of the L‐band sea surface brightness temperature (Tb) to SSS. The measuring 

instrument is a large rotating antenna which provides Tb observations within 

approximately 1000-km wide swath with nominal resolution of about 40-km and a near 

global coverage in 3-4 days (Figure 3a).  

 

SMAP observations of SSS have been obtained from Level-2 version 4.0 SMAP data 

produced by the Remote Sensing Systems (RSS; www.remss.com). SSS is retrieved on a 

0.25o Earth grid using the 40-km spatial resolution Backus Gilbert optimum interpolation 

from the original Level-1 footprint measurements (Meissner et al., 2019). The L2 data files 

contain retrieved SSS (variable ‘sss_smap_40km’), navigation data, ancillary fields, 

quality flags, and other related information such as surface winds, sea surface temperature, 

etc. Each file corresponds to one orbit of SMAP. A detailed description of SMAP data and 

the retrieval algorithm can be found in Meissner et al. (2018, 2019).  An example of SMAP 

L2 SSS data is shown in Figure 3b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. (a) SMAP measurement geometry. Credit: NASA. (b) Example of SMAP Level-2 SSS 

for the orbit passing through the Indian Ocean on April 1, 2015.  

(a) (b) 

http://www.remss.com/
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3.1.3. SMOS SSS data 

 

In the current version of the multi-satellite SSS dataset, SMOS data are used only to fill 

the gap in SMAP observations during the period from June 19 to July 23, 2019, when the 

SMAP satellite went into a safe mode and data collection was disrupted.   

 

The SMOS satellite, launched on November 2, 2009, operates on a sun-synchronous polar 

orbit crossing the equator at 6 am (ascending) and 6 pm (descending) local time. The 

measuring instrument is MIRAS (Microwave Imaging Radiometer using Aperture 

Synthesis), a two-dimensional L-band interferometric radiometer, which consists of an 

array of 69 receivers arranged in a Y-shape structure. The instrument provides 

measurements of Tb in an approximately 1000-km wide swath with spatial resolution of 

~45 km and revisit time of 3-5 days.  

 

SMOS observations of SSS have been obtained from the SMOS Level-2 SSS data products 

generated by version 662 of the Level 2OS Operational Processor (L2OS).  SSS is retrieved 

on a 25-km Equal-Area Scalable Earth (EASE) grid from Tb recorded by the MIRAS 

radiometer. The L2 data are structured as a sequence of files, each file containing half-orbit 

data (from pole to pole). The files contain retrieved SSS, navigation data, ancillary fields 

(surface winds, sea surface temperature, etc.), quality flags, and other related information. 

A detailed description of SMOS data and the retrieval algorithm can be found in SMOS L2 

OS ATBD, https://earth.esa.int/documents/10174/1854519/SMOS_L2OS-ATBD. The 

data are available from the ESA SMOS online dissemination service at https://smos-

diss.eo.esa.int/oads/access/.  ESA SMOS Online Dissemination Service 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. (a) SMOS measurement geometry. Bottom panel shows the shape of a Tb image as 

reconstructed from SMOS observations. Colors show incidence angle. Credit: ESA and Reul et al. 

(2020). (b) Example plot of SMOS Level-2 SSS for the orbit passing through the Indian Ocean on 

August 26, 2011. 

(a) (b) 

https://earth.esa.int/documents/10174/1854519/SMOS_L2OS-ATBD
https://smos-diss.eo.esa.int/oads/access/
https://smos-diss.eo.esa.int/oads/access/
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An example of SMOS L2 SSS data is presented in Figure 4. Individual measurements along 

the orbit are very noisy. Retrievals near the edge of the swath typically have larger 

uncertainties due to a smaller number of observations and contaminations from various 

sources (Reul et al., 2017). SMOS SSS observations are also subject to significant large-

scale biases which arise due to contamination from land or sea-ice emission, which are 

visible as far as 1000 km from the coastline or sea-ice edge, radio frequency interference 

(RFI), uncertainties in the retrieval algorithm, and other sources (Boutin et al., 2018). 

Biases also depend on the orbit orientation. Ascending orbits typically have smaller biases 

than descending orbits, particularly during January-March and October-December periods 

(Reul et al., 2017).  

 

 

3.2. Data quality control 

 

Level-2 data from each of the three satellites were first processed to identify and quality 

control (Q/C) issues.  This Q/C process was different for each sensor, as described below.  

 

3.2.1. Aquarius SSS data 

 

Observations are discarded if the bits for any quality checks are set: 7 (direct solar flux 

contamination), 8 (reflected solar flux contamination), 9 (sun glint), 12 (non-nominal 

navigation), 13 (radiometer telemetry), 14 (roughness correction failure), 16 (pointing 

anomaly), 17 (brightness temperature consistency), 19 (radio-frequency interference 

(RFI)), and 21 (reflected radiation from Moon or Galaxy). In the case of flags 19 and 21, 

the data are excluded from the analysis if the conditions indicated by the flags are either 

moderate or severe. For other flags, only severe conditions are taken into account. Also 

excluded from the analysis are data points that are contaminated by land (land fraction > 

0.01), sea ice (sea ice fraction > 0.0025), sampled during high wind (wind speed > 18 m/s) 

and/or in cold water (SST < 0oC). A detailed description of the Aquarius quality flags 

including recommended thresholds can be found in the Aquarius User Guide (Aquarius 

Dataset Version 5.0).   

 

3.2.2. SMAP SSS data 

 

Observations are discarded if the bits for any of the following quality checks are set: the 

sun glint (bit 5 in Q/C flag, Table 4 in Meissner et al., 2019), moon glint (bit 6), reflected 

galactic radiation (bit 7), and Tb consistency (bit 10). Also excluded from the analysis are 

data points that are contaminated by land (gain weighted land fraction > 0.008 or land 

fraction in 3-dB footprint >0.0005), sea ice (sea ice fraction > 0.0025), sampled during 

high wind (wind speed > 18 m/s) and/or in cold water (SST < 0oC). A detailed description 

of the SMAP quality flags can be found in Meissner et al. (2019).   

 

3.2.2. SMOS SSS data 

 

Observations are discarded if the following Quality Flags are set (Table 4-20 in SMOS 

Level 2 and Auxiliary Data Products Specifications document): outside range (bit 2), high 
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retrieval sigma (bit 3), poor fit quality (bits 4 and 5), sun glint (bit 7), moon glint (bit 8), 

high galactic noise (bit 9), low number of measurements (bit 13), too many outliers (bit 

14), and high Marquardi increment (bit 15).    

 

Observations are discarded if the following Science Flags are set (Table 4-21 SMOS Level 

2 and Auxiliary Data Products Specifications document): high TEC gradient (bit 3), grid 

point with maximum extend of sea ice (bit 4), high ice concentration (bit 5), suspect ice in 

grid point (bit 6), and high rain rate (bit 7). Also excluded from the analysis are data points 

that are near the edge of the swath (x_swath > 400 km), near a coastline (distance to the 

nearest coast < 75 km), measured during high wind (wind speed > 15 m/s) and/or in cold 

water (SST < 0oC). A detailed description of the SMOS quality flags can be found in the 

SMOS Level 2 and Auxiliary Data Products Specifications document 

(https://earth.esa.int/documents/10174/1854583/SMOS_L2_Aux_Data_Product_Specific

ation).   

 

3.3. Bias correction 

 

The next step in data processing consists of a large-scale adjustment of the satellite data 

relative to in-situ data. Only static (time-mean) biases are taken into account. 

 

Generally, the bias-adjusted satellite observations adjS  are determined from the retrieved 

values  obsS  as  

                                            SSS obsadj  ,                                               (1) 

 

where the bias S  is determined by interpolating the bias fields into the locations of the 

satellite measurements. Specific procedures, however, are slightly different for Aquarius, 

SMAP and SMOS data. 

 

3.3.1. Aquarius SSS data 

 

Analysis of long time series of Aquarius SSS data indicate that satellite retrievals have 

large-scale biases relative to in-situ observations (Kao et al., 2018). The causes of the biases 

in Aquarius SSS data are only partially understood, but may be related to SST-dependent 

errors in the dielectric constant and the model for atmospheric absorption, which are part 

of the retrieval algorithm (Meissner et al., 2017; 2018).  

 

In the OI SSS analysis, the large-scale biases in satellite SSS are corrected with respect to 

in-situ salinity data.  To adapt to the Aquarius measurement geometry, the bias fields are 

constructed on a repeat track basis. To construct the bias fields, satellite observations along 

each repeat track are averaged over a 3-year period from September 2011 through August 

2014 and compared to in-situ salinity averaged over the same period. The in-situ salinity, 

which we regard as the “ground truth” at large spatial scales, is a compilation of four Argo-

based products. These products are: 

 

https://earth.esa.int/documents/10174/1854583/SMOS_L2_Aux_Data_Product_Specification
https://earth.esa.int/documents/10174/1854583/SMOS_L2_Aux_Data_Product_Specification
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 APDRC of the University of Hawaii Argo-derived salinity product 

(http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_standard_levels/index-

1.html);  

 Scripps Institution of Oceanography Argo-derived salinity product (http://sio-

argo.ucsd.edu/RG_Climatology.html; Roemmich, D. and J. Gilson, 2009);  

 Met Office Hadley Center objective analysis from the profile data, version EN.4.2.1 

(http://hadobs.metoffice.com/en4/index.html; Good et al., 2013); and  

 ISAS-15 salinity gridded fields (http://www.seanoe.org/data/00412/52367/; 

Kolodziejczyk et al., 2017). 

 

The average of the four products is assumed to better represent the ‘ground truth’ (at large 

spatial scales) provided that the mapping errors of the products are not correlated. The 

‘ground truth’ was interpolated into the ground track locations; thus, there are two bias 

fields, one for ascending and one for descending ground tracks. The bias fields are shown 

in Figure 5 (note that the bias fields are constructed on a specific (irregular) grid, which 

corresponds to the ground track segments). Correcting for the large-scale satellite biases 

on a repeat track basis separately for each of the three Aquarius beams helps eliminate 

residual inter-beam biases which otherwise persist even after applying a multi-year 

average.  

 

   

 

 

 

 

 

 

 

 
Figure 5. Mean spatial bias correction fields (psu) for Aquarius ascending (a) and descending (b) 

SSS data. 

 

 

3.3.2. SMAP SSS data 

 

Persistent large-scale biases have been present in all versions of SMAP SSS data and are 

characterized as biases that manifest in the long-term mean. To construct the bias field, 

satellite observations at each grid point were averaged over a 3-year period from April 

2015 through March 2018 and compared to the ‘ground truth’ averaged over the same 

period. The “ground truth” was assessed as a compilation of the following four Argo-based 

products: 

 

 APDRC of the University of Hawaii Argo-derived salinity product 

(http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_standard_levels/index-

1.html);  

(b) 

Descending Ascending 

(a) 

http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_standard_levels/index-1.html
http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_standard_levels/index-1.html
http://sio-argo.ucsd.edu/RG_Climatology.html
http://sio-argo.ucsd.edu/RG_Climatology.html
http://hadobs.metoffice.com/en4/index.html
http://www.seanoe.org/data/00412/52367/
http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_standard_levels/index-1.html
http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_standard_levels/index-1.html
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 Scripps Institution of Oceanography Argo-derived salinity product (http://sio-

argo.ucsd.edu/RG_Climatology.html; Roemmich and Gilson, 2009);  

 Met Office Hadley Center objective analysis from the profile data, version EN.4.2.1 

(http://hadobs.metoffice.com/en4/index.html; Good et al., 2013); and  

 JAMSTEC MOAA GVP global gridded salinity product produced by optimal 

interpolation of all available observations including ARGO (Hasoda et al., 2008; 

http://www.jamstec.go.jp/ARGO/argo_web/argo/?page_id=223&lang=en).  

 

The SMAP bias field is shown in Figure 6. As there are almost no ascending-descending 

differences, the bias field is the same for ascending and descending data. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. SMOS SSS data 

 

As stated in section 3.1.3, SMOS SSS data are used only to fill the gap in SMAP 

observations from June 19 to July 23, 2019. Because the biases in SMOS satellite 

observations are of a very complex nature and because of a relatively short duration of the 

period over which SMOS data are used in the analysis, the bias correction is not applied 

explicitly to SMOS observations.  

 

Instead, the impact of the large-scale biases in SMOS SSS data is reduced using a multi-

scale filtering approach (Sakurai et al., 2005). Specifically, the SSS observations collected 

over a 4-day period are split into two layers, a large-scale part and a high-resolution part 

(including noise), by applying a low-pass filter.  The filter is a 2D Hanning window with 

cut-off wavelength adjusted to match the spatial resolution of a first guess filed. The large-

scale part is discarded and the high-resolution part, extracted from SMOS SSS 

observations, is used to correct the first guess field in the OI algorithm.  

 

 

3.4. Filtering 

 

The final step in data preparation consists of additional filtering to remove outliers and 

reduce noise. 

 

3.4.1. Aquarius SSS data 

 

Figure 6. Mean spatial bias correction 

field (psu) for SMAP SSS data.  

http://sio-argo.ucsd.edu/RG_Climatology.html
http://sio-argo.ucsd.edu/RG_Climatology.html
http://hadobs.metoffice.com/en4/index.html
http://www.jamstec.go.jp/ARGO/argo_web/argo/?page_id=223&lang=en
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Aquarius SSS data are filtered along track as described in Melnichenko et al. (2014). The 

filter is a subsequent application of a 5-point Median filter and 6-point Hanning filter, 

which has been found to perform quite efficiently to considerably reduce high-frequency 

instrument noise, yet preserve the ocean signal from over-smoothing. An example is 

presented in Figure 1b. According to the degree of filtering, the SSS data are then sub-

sampled every third point along track. 

 

3.4.2. SMAP SSS data 

 

A standard statistical test based on the standard deviation (STD) is applied to SMAP SSS 

data. Data points are rejected if the SSS anomalies, determined relative to the first guess, 

exceed 5, 4 and 3 STDs in the areas of low variability, STD<0.1, moderate variability, 

0.1<STD<0.2, and high variability, STD>0.2 psu, respectively. The geographical 

distribution of the standard deviation of SSS for this analysis is obtained from weekly time 

series of Aquarius OI SSS fields for the period from September 2011 to June 2015 (first 

segment in the Aquarius/SMAP data record).  

 

3.4.2. SMOS SSS data 

 

SMOS SSS data are processed in the same way as SMAP SSS data (sec. 3.4.2). 

 

 

4. Optimum Interpolation (OI) algorithm 

 

4.1 General description 

 

The interpolation expression for OI with N  observations can be written as (Bretherton et 

al., 1976; Le Traon et al., 1998):  

 

                                      
 

 
N

i

N

j

i
obs
ixjijxx SSCASS

1 1

010 )(ˆ ,                                (2) 

where xŜ  is the interpolated value (or estimate) at the grid point x ;  0
xS  is the forecast (or 

“first guess”) value at the grid point x ; obs
iS  is the measured value at the observation point 

i : ii
obs
i SS  , where i  is random measurement error; 0

iS  is the forecast value at the 

observation point i ; A  is the NN   covariance matrix of the data  

 

                                          jijjiiij SSSSA ))(( 00 ;                       (3) 

 

and C  is the joint covariance of the data and the field to be estimated 

 

                                           ))(( 00
jjxxxj SSSSC .                                      (4) 
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In (3) and (4), it is assumed that the errors and the field are not correlated. 

 

The OI analysis is determined relative to the first guess field, which is assumed to be a 

good approximation of the true state. The estimate and the observations are then equal to 

the first guess plus small increments. In this way, the grid point analysis consists of 

interpolation of the first-guess field to the observation points followed by interpolation of 

the differences between the observed and first-guess values back to the grid point. The grid 

point analysis is completed by adding the analysis increment to the first guess. 

 

 

4.2. Specifics 

 

The OI method assumes that the first guess and statistics of the field to be analyzed are 

known a priory.  These parameters are the following. 

 

4.2.1. First guess 

 

The first guess fields are assessed from a compilation of four Argo-derived products 

(monthly-mean SSS fields).  The products are the same as have been used to evaluate the 

satellite biases (see section 3.3.1 and 3.3.2 for a list of products). An example for the first 

week of September 2011 is presented in Figure 7. The Argo-derived SSS fields are chosen 

because they are independent of the analysis of the satellite data and provide an unbiased 

estimate of the first guess.  

 

 

 

 

 

 

 

 

 

 

 

4.2. Signal statistics 

 

The normalized spatial covariance of SSS anomalies is described by the Gaussian function 

of the form  

                                     )///exp(),,( 222222 TtRrRrtrrC yyxxyx  ,                   (5) 

where  xr  and yr  are spatial lags in the zonal and meridional directions, respectively, t  is 

time lag, xR  and yR  are the zonal and meridional correlation scales, and T  is the 

correlation time scale. This particular form of the correlation structure is chosen because 

the associated spectrum is positive everywhere and because the resulting covariance 

matrixes are always positive definite (Weber and Talkner, 1993), which is a strict 

Figure 7. First guess SSS field for the 

week September 2-8, 20011.  
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requirement on the choice of a possible analytical form of the correlation function in the 

OI analysis (Bretherton et al., 1976).  

 

The zonal and meridional correlation scales in Eq. (5) are allowed to vary with latitude. 

The meridional scales have been determined by fitting the Gaussian model to the sample 

covariances estimated in 10o latitude bins from the Aquarius L2 data as described in 

Melnichenko et al. (2014).  Based on the observed structure (Figure 8), the latitudinal 

dependency of  yR  [km] is modeled by the following functional form  

                                92))225/)4(exp(14)( 2  yyRy ,                       (6)  

where y  is latitude in degrees. Thus, the meridional scales are somewhat larger in the 

tropics (106 km at 4oN) than at high latitudes (92 km). 

 

The zonal correlation scales at mid- and high latitudes are set to equal the meridional scales, 

while in the tropics they are scaled to represent the zonal elongation of correlation as 

follows 

                                     )1)25.56/)4(exp(5.0)(()( 2  yyRyR yx .              (7) 

 

Near the equator, the aspect ratio yx RR /  equals 1.5 ( xR  160 km at 4oN) and gradually 

decreases toward higher latitudes (Figure 8). Poleward of about 20o, the correlation 

function (5) becomes isotropic (  yx RR 92 km). We note, however, that our 

assumptions of the zonal correlation scales are somewhat arbitrary and are mostly based 

on previous observational studies (e.g., Delcroix et al., 2005; Reverdin et al., 2007).   

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8. Meridional (blue) and zonal (red) correlation scales applied in the OI SSS analysis. The 

green curve shows the along track correlation scales determined by fitting the Gaussian model to 

the sample covariances estimated in 10o latitude bins from the Aquarius L2 data as described in 

Melnichenko et al. (2014).  

 

 

The temporal correlation scale is set to T =7 days. This provides a smooth map-to-map 

transition while preventing the time series from over-smoothing. 
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4.3. Error statistics 

 

4.3.1. Aquarius SSS data 

 

Analysis of Aquarius along track SSS data reveals that there are long-wavelength errors, 

referred to here as inter-beam biases, which are correlated over long distances along the 

satellite tracks. To incorporate statistical information on these errors into the OI scheme, 

the following error covariance model for the Aquarius data is introduced (Melnichenko et 

al., 2014):     

  22
Lwijji     -if data points ji,  are on the same track and 

beam, and in the same cycle, and 

  2
wijji               -otherwise,  

where ij  is the Kronecker delta, 2
w  is the variance of the uncorrelated (white) noise, and 

2
L  is the variance of the long-wavelength (along-track) error.  

 

Given prior filtering of Aquarius L2 SSS data (section 3.4.1), the variance of the white 

noise is assumed to be 10% of the signal variance, independent of the geographical 

location. The long-wavelength error correlation structure is represented by the exponential 

function of the form 

                                             )/exp()( LL RllC                                        (8) 

where l  is the along track separation distance and LR 500 km is the exponential decay 

scale. The estimate of LR  is obtained by fitting the curve (8) to the inter-bean bias statistics 

evaluated by comparison of the covariances of the inter-beam differences for Aquarius and 

ancillary SSS data as described in Melnichenko et al. (2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. (a) Variance of long-wavelength error (psu2) in 20o longitude x 20o latitude boxes and 

(b) the zonal average of the variance.   
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Variance, psu2 
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The variance of the long-wavelength error varies with latitude from about 0.04 psu2 in the 

tropics to 0.1 psu2 at high latitudes (Figure 9). Following the latitudinal changes in both 

the error and signal variances (not shown in figure), the ratio of the error variance to the 

signal variance, ,  is approximated by the following analytical curve 

                             3.0)43.1/))400/exp(1(*2 2  y .                         (9) 

Thus, the relative variance of the long-wavelength error is set to vary from 30% in the 

equatorial region, where the signal variance is large, to more than 150% at high-latitudes, 

where the error variance is large.   

 

4.3.1. SMAP SSS data 

 

The error covariance matrix consists of one part, ,2
wji    and represents uncorrelated 

errors. The variance of the uncorrelated error is assumed to be 50% of the signal variance, 

independent of the geographical location. 

 

4.3.1. SMOS SSS data 

 

Similar to SMAP, random errors in SMOS SSS data are assumed to be uncorrelated. The 

variance of the uncorrelated error is assumed to be 50% of the signal variance, independent 

of the geographical location. 

 

 

4.4. Implementation 

 

The OI SSS analysis is performed on a 0.25o longitude x 0.25o latitude grid at a 4-day 

interval starting from September 2011. The OI SSS analysis is run in a local approximation; 

that is, only data points in a smaller sub-domain around the analysis grid point are used. 

The radius of the sub-domain is defined to be 4 times the spatial correlation scale and 7
days, which allows for accommodating both the signal and error correlation (in the case of 

Aquarius data; section 4.3.1). The local approximation also helps reduce the effect of 

spatial inhomogeneity in the signal and error statistics (Weber and Talkner, 1993). 

Likewise, to reduce the computational load, SMAP and SMOS data are grouped into 4-day 

intervals as shown schematically in Figure 10.  At each time step t=t0, the OI SSS analysis 

utilizes data points at t=t0-4 days, t=t0, and t=t0+4 days.   

  

 

 

 

 

 

 
Figure 10. SMAP and SMOS data processing. Observations are grouped into 4-day intervals and 

time averaged within each group. OI SSS analysis at time t=t0 utilizes data points at t=t0-4 days, 

t=t0, and t=t0+4 days.   
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Additionally, SMAP (SMOS) OI SSS fields are produced in two steps. The observations 

at each time interval (Figure 10) are subsampled every other data point (even and uneven 

indexes) and two SSS maps are produced from the subsampled data using the OI algorithm. 

The final map is then the average of the two. This procedure helps reduce noise in the SSS 

maps and also match the spatial resolution of SMAP (SMOS) OI SSS analysis to that of 

Aquarius. In this regard, a relatively low level of noise in SMAP (SMOS) SSS maps is 

achieved at the expense of reduced spatial resolution.     

 

4.5. Uncertainty estimate 

 

The uncertainty is estimated empirically by comparing weekly SSS maps with concurrent 

Argo buoy data. Argo buoy salinity measurements in the near-surface layer (depth <10 m) 

are assumed to represent in-situ SSS. The error statistics are computed by comparing buoy 

measurements for a given week with SSS values at the same locations obtained by 

interpolating the corresponding SSS maps. Uncertainties are estimated in 8o-longitude x 

8o-latitude bins as the RMSDs between the SSS maps and the corresponding buoy data. 

The coarse resolution RMSD map is then interpolated onto the analysis grid to provide 

estimates of the uncertainty. In the areas lacking buoy observations, the uncertainties are 

estimated by extrapolating from adjacent regions. The estimated uncertainty includes the 

so-called sampling error which arises due to unresolved small-scale SSS variability (see 

Sec. 5.2)  

   

 

  

5. Global OI SSS fields 

 

5.1. Spatial coverage and resolution 

 

Figure 11 presents example plots of Aquarius and SMAP OI SSS in several regions. The 

plots in the center (Figures 11a, b) are global and show the product spatial coverage. 

Aquarius/SMAP OI SSS dataset covers the full global ocean including the Arctic and 

Antarctic in the areas free from ice. The coverage includes coastal areas and marginal seas, 

such as the South China Sea and the Gulf of Mexico, but does not include internal seas, 

such as the Mediterranean and the Baltic Sea, which require special treatment.   

 

The resolution capabilities of the Aquarius/SMAP OI SSS analysis can be inferred from 

the regional maps shown in Figure 11. In particular, Figures 11c (Aquarius) and 11d 

(SMAP) show zooms on a large area in the North Atlantic. Among the many features 

represented in the maps is a frontal structure associated with the Gulfstream and Gulfstream 

Extension, which separates low-salinity slope water from salty Sargasso Sea. The front 

extends further north into the Labrador with local salinity gradients as large as 1 psu/100 

km. Both the Aquarius and SMAP maps show a double front near where the Gulfstream 

separates from the coast (the area is circled in the figures).  
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Figure 11. Example plots of Aquarius/SMAP OI SSS. 

 

 

Another example is in the eastern tropical Pacific. Figures 11e (Aquarius) and 11f (SMAP) 

show the SSS field for one week in September 2011 and September 2017, respectively. 

September is time of year when the Intertropical Convergence Zone (ITCZ) is at its 

northernmost annual position and the eastern Pacific fresh pool (EPFP), delineated by the 

34 psu isohaline, reaches its greatest westward extent at around 170oW (Melnichenko et 

al., 2019). The resolution capabilities of the OI SSS maps are illustrated by the 

corresponding maps of the SSS gradient. Embedded in a fine‐scale structure of SSS fronts 

in the region is a sharp SSS front along the southern boundary of the low salinity belt along 

~10°N. Another prominent feature is a sharp front along the equator, which originates from 

the coast of South America and extends westward to nearly 120°W, delineating the 

boundary between the fresh pool (SSS < 34 psu) to the north and saltier water (SSS > 34 

psu) to the south. The gradients across the front are as large as 0.7psu/100 km. 

 

Finally, Figure 11g shows the SSS signature of Tropical Instability Waves (TIWs) in the 

eastern tropical Pacific, clearly seen as cusp-like features between ~0° and 5°N with 

wavelength of ~1,000 km (~10° of longitude).  The waves have a dominant period of about 

30 days and propagate westward at a speed of about ~0.5 m s-1 (not shown in figure). These 

examples show that the spatial resolution of the Aquarius/SMAP OI SSS analysis allows 

observing large mesoscale features and fronts.   

 

 
 



 

 18 

 

 

 

 

 

 

 

 

 
Figure 12. The standard deviation of SSS computed from weekly time series of OI SSS fields for 

the period (a) September 2011 through May 2013 and (b) June 2015 through November 2020. 

Black boxes show regions selected for the spectral analysis. 

 

 

To quantify the magnitude and spatial distribution of SSS variability in the OI SSS analysis, 

Figure 12 shows the standard deviation of SSS computed from the time series of weekly 

OI SSS maps over two periods. The first period is from September 2011 through May 2015 

and consists of Aquarius OI SSS maps (Figure 12a). The second period is from June 2015 

through November 2020 and consists of SMAP OI SSS maps (Figure 12b).  Comparing 

the maps of the standard deviation, we can see that the two time periods, based on different 

satellite data, are consistent by this metric. Apparently, there are no spurious jumps or 

differences in the SSS variance between the two segments. Several regions stand out as 

having the largest SSS variability: the rainy belts (low local salinity) associated with the 

ITCZ in the North Pacific and North Atlantic (standard deviations around 0.3-0.5 psu), the 

South Pacific convergence zone, the eastern equatorial Pacific, the tropical Indian Ocean, 

the western boundary current regions of the Kuroshio and Gulfstream, the Southern Ocean, 

as well as the areas near outflows of major rivers, such as the Amazon.  Maximum values 

of the SSS standard deviation, exceeding 1 psu, are observed in the far eastern equatorial 

Pacific, the Bay of Bengal, and the western part of the tropical North Pacific. Apart from 

the regions of high SSS variability, the standard deviation of SSS has typical values of 

around 0.1-0.15 psu. 

 

  

 

 

 

 

 

 

 

 
Figure 13. Meridional wavenumber spectra of SSS computed from the weekly Aquarius (blue) and 

SMAP (red) OI SSS fields in (a) South Indian Ocean (box 1), (b) western North Pacific (box 2), 

and (c) eastern tropical Pacific (box 3). The vertical dashed line in (b) corresponds to wavelength 

of 560 km. 
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The consistency between the two segments in the Aquarius/SMAP OI SSS dataset is further 

verified by comparing the associated wavenumber spectra. Examples for a few selected 

regions are shown in Figure 13.  The examples demonstrate that the Aquarius and SMAP 

OI SSS spectra are very similar in shape with nearly equal distribution of variance. For 

wavenumbers higher than about 0.002 km-1, the spectra start to quickly roll off, from which 

we conclude that the effective resolution of the product is about 500-600 km in terms of a 

wavelength (length scale larger than about 125 km). 

 

       

5.2. Validation 

 

Salinity from Argo buoy observations in the near-surface layer are used to estimate the 

error statistics for the OI SSS analysis. The Argo buoy network provides quasi-random 

geographical distribution of about 1100 in-situ salinity measurements for each week. Only 

measurements shallower than 10 m depth and flagged as good from each Argo profile are 

used in this analysis. The error statistics for the OI SSS analysis are calculated by 

comparing buoy measurements for a given week with SSS values at the same locations 

obtained by interpolating the corresponding SSS maps.  

 

Figure 14 shows the time series of the bias (average of the differences between the product 

and buoy data over all buoy locations) and root-mean-square difference (RMSD) of the 

Aquarius/SMAP OI SSS analysis evaluated against concurrent Argo buoy observations. 

The product yields the time-series of the global bias oscillating around zero (Figure 14a). 

The standard deviation of the weekly biases is 0.008 psu. The RMSD between the OI SSS 

analysis and concurrent buoy data is oscillating around 0.2 psu (Figure 14b). The mean 

RMSD of the analysis over the period September 2011 – November 2019 is 0.19 psu.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 14. (a) Weekly mean differences and (b) RMSD between Argo buoy data and 

Aquarius/SMAP OI SSS analysis. The error statistics are computed by comparing Argo buoy 

measurements for a given week with SSS values at the same locations obtained by interpolation of 

the corresponding OI SSS maps.  

 

 

The effect of the bias correction and a smooth transition from Aquarius to SMAP in the 

Aquarius/SMAP OI SSS dataset can be seen in the zonally averaged differences between 

(a) (b) 

Bias RMSD 
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the weekly OI SSS maps and the corresponding buoy data shown in Figure 15. The zonally 

averaged biases were calculated weekly by averaging these statistics over 5-degree latitude 

bands. The bias distribution for the OI SSS fields shows nearly zero bias throughout the 

10-year period of comparison. Very small residual biases (<0.05 psu), varying with a 

seasonal cycle, can be observed at high latitudes during 2011-2015 and in the tropical belt 

during 2015-2020.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geographical distribution of the RMS error for the OI SSS analysis is shown in Figure 

16 separately for the two time periods, covering different satellite data. The RMS error was 

computed in 8-degree spatial bins from the differences between the weekly SSS maps and 

the corresponding in-situ observations. The bin size was selected to ensure an adequate 

number of collocations (>100) in each bin. Figure 16 demonstrates that the error statistics 

are very similar for the two segments of the analysis.  

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Geographical distribution of the RMS differences (psu) between the weekly OI SSS 

analysis and in-situ buoy data over the period (a) September 2011 through May 2013 (Aquarius OI 

SSS) and (b) June 2015 through November 2020 (SMAP OI SSS). The error statistics are computed 

in 8o bins by comparing Argo buoy measurements for a given week with SSS values at the same 

locations obtained by interpolation of the corresponding OI SSS maps. 

 

 

(a) (b) 

RMSD, Aquarius OI SSS RMSD, SMAP OI SSS 

Figure 15. Latitude-time distribution of the 

zonally averaged differences (psu) between the 

weekly OI SSS maps and the corresponding 

Argo buoy data. The error statistics were 

computed by comparing Argo buoy 

observations for a given week with SSS values 

at the same locations obtained by interpolation 

of the corresponding SSS maps. The zonally 

averaged biases were computed by averaging 

these statistics over 5-degree latitude bands. 
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The largest RMS errors, exceeding 0.2 psu, are found in the regions of strong variability in 

SSS (see Figure 12), such as along the North Pacific and North Atlantic ITCZ, the South 

Pacific convergence zone, the Gulfstream, and near the outflows of major rivers, such as 

the Amazon in the North Atlantic. However, these relatively large discrepancies between 

the satellite SSS maps and buoy data are not necessarily due to errors in satellite 

observations or errors in the mapping procedure. Large RMS differences between the 

mapped SSS and in-situ observations can be due to 

1) Strong vertical gradients of salinity in the near-surface layer, such that salinity at ~5 

m depth, sampled by a typical Argo buoy, differs significantly from the surface 

salinity, sampled by satellites. Such conditions are frequently observed in the 

tropics, particularly in the rainy belts associated with the ITCZ (Henocq et al., 2010).  

2) Unresolved small-scale variability. In the presence of strong SSS gradients, the 

difference between a point measurement by a buoy and the area averaged SSS 

sampled by a satellite (or the grid cell of the OI SSS analysis) can readily exceed 

0.2 psu (Vinogradova and Ponte, 2013).  

3) Unresolved temporal variability (Vinogradova and Ponte, 2012). 

4) Errors in the SSS maps.  

5) All of the above. 

 

 

The histogram distribution of the differences between the buoy data and OI SSS analysis 

over the whole period from September 2011 to November 2020 is shown in Figure 17a.  

The OI SSS estimates have an overall good agreement with the buoy data such that the 

histogram of the differences is very narrow. About 55% of the differences are smaller than 

0.1 psu and more than 80% are smaller than 0.2 psu. The number of outliers, defined as the 

differences larger than 0.5 psu, is less than 3%. Their geographical distribution is shown in 

Figure 17b. The majority of ‘outliers’ are located in the areas of strong variability in SSS 

(see Figure 12), generally consistent with the distribution of sampling error (Vinogradova 

and Ponte, 2013; their Figure 2). 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. (a) Statistics of the differences between Argo buoy data and Aquarius/SMAP OI SSS 

analysis. (b) Locations of ‘outliers’, defined as the differences large than 0.5 psu. The error statistics 

are computed by comparing Argo buoy measurements for a given week with SSS values at the 

same locations obtained by interpolation of the corresponding OI SSS maps.  

 

 

(b) (a) 



 

 22 

To further verify the consistency in the new dataset, the OI SSS fields are compared to time 

series of in-situ SSS at moored stations from the global tropical moored buoy array 

(https://www.pmel.noaa.gov/gtmba/). An example is presented in Figure 18. The time 

series show a smooth transition from one satellite to another without spurious jumps and 

trends. Few stations showed suspiciously large differences and RMSDs (Figure 19). Their 

visual inspection, however, showed (not shown in figures) that the large differences were 

rather due to errors in buoy measurements than errors in the satellite data. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 18. Time series of moored buoy SSS and Aquarius/SMAP OI SSS at buoy location 10oW, 

6oS. The blue curve shows buoy measurements at 1-m depth (measurements are not available after 

2017). The time series is smoothed with a 7-day running mean. The red and green curves are 

Aquarius and SMAP OI SSS, respectively. The period filled with the SMOS data is shown by 

magenta.    

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19. (a) Mean differences and (b) RMSD between moored buoy observations and the 

Aquarius/SMAP OI SSS.  The error statistics were computed by comparing buoy observations for 

a given week (running mean) with SSS values at the same locations obtained by interpolation of 

the corresponding SSS maps. 
 

 

Despite significant effort taken to reduce errors and biases in the satellite SSS data, the 

resulting OI SSS maps may still have errors and biases, both globally and regionally. We 

encourage users to continue to validate the Aquarius/SMAP dataset and quantify 

(a) Bias (b) RMSD 

https://www.pmel.noaa.gov/gtmba/
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noise and errors in their research. We are especially interested in receiving feedback 

on the utility of the product and potential issues relevant to noise and biases especially 

from regional studies, which may have access to higher quality and enhanced 

resolution in-situ data sets. 

 

6. Access to the data 

 

The Aquarius/SMAP OI SSS analysis can be accessed from the APDRC webpage 

http://apdrc.soest.hawaii.edu/ either through the Live Access Server or OPeNDAP.  

 

Digital data of the weekly OI SSS analysis (netCDF files) are also available at 

http://iprc.soest.hawaii.edu/users/oleg/oisss/GLB/Aquarius_SMAP_OISSS/.  

 

 

7. Copyright and terms of use 

 

The Aquarius/SMAP OI SSS dataset is open for free unrestricted use. The dataset is a 

research quality product. Errors reported to the authors by users will be published and 

corrected in the next update of the dataset.  

 

Use of the dataset should be acknowledged as follows: 

“Aquarius/SMAP combined dataset is produced by International Pacific Research Center 

(IPRC) of the University of Hawaii, in collaboration with Remote Sensing Systems (RSS), 

Santa Rosa, CA, and sponsored by the NASA Ocean Salinity Science Team.  

 

Reference to this technical paper:   

Melnichenko, O., P. Hacker, J. Potemra, T. Meissner, and F. Wentz: Aquarius/SMAP sea 

surface salinity optimal interpolation analysis, IPRC Technical Note No. 7, May 7, 2021, 

24p. 

 

Comments, questions regarding the Aquarius OI SSS dataset and requests for the data can 

be directed to  

 

Oleg Melnichenko 

Email: oleg@hawaii.edu 

Tel: 1-808-956-0747 
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