
Use of ecological niche modelling to predict
distributions of freshwater fish species in Kansas

Un resumen en español se incluye detrás del texto principal de este artı́culo.

Introduction

Fisheries biologists, ichthyologists, and policy-makers
have an ever-increasing need to understand distribu-
tions of aquatic species on local, regional and global
scales and to better understand the parameters that
influence those distributions. Response of species to
human-altered landscapes, climate change and conser-
vation management strategies are just a few of the
immediate concerns (Tonn 1990; Fausch et al. 2002).
An essential innovation is a robust approach to
accurately predict potential distributions under a
variety of scenarios of present and future conditions.
One primary need, access to information regarding the
actual localities in specimen records, is being
addressed through distributed database technology
systems that tie data providers into a cooperative
information network such as The Species Analyst and
FishNet (Vieglais et al. 2000). These networks provide
access to millions of specimen records stored remotely
at partner institutions and return data in a timely

manner (seconds to a few minutes). Records can be
used in a geographic information system (GIS)
environment to generate species distribution maps.
However, these maps are based entirely on the often
limited and incomplete data available as point occur-
rences (Krohn 1996).

Several approaches have been used to predict
potential distributions based on models of a species’
ecological niche. For example, BIOCLIM (Nix 1986)
tallies frequencies of occurrences of a taxon in
environmental categories, trims the extreme 5% of
the distribution, and then finds the conjunction of
appropriate areas across all environmental categories.
BIOCLIM, however, only predicts where a species
does not occur, not where it does occur, resulting in
numerous false predictions of occurrence (Stockwell
& Peters 1999). Logistic regression has been shown to
be a more effective approach to modelling ecological
niches (Austin et al. 1990), although generating useful
results with categorical data (e.g. land cover type) is
problematic (Peterson et al. 2002), and it is sensitive
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to numbers of occurrences relative to total area
considered (Cumming 2000). In addition, areas of
absence must be known although that data is most
often unavailable for a given taxon (Peterson &
Cohoon 1999; Stockwell & Peterson 2002). Recently,
a variety of artificial intelligence approaches have been
applied to the problem of predicting aquatic species
distributions, i.e. artificial neural networks (Olden
2000; Olden & Jackson 2001, 2002; Vander Zanden
et al. 2004) and genetic algorithms. For example, The
Genetic Algorithm for Rule-Set Prediction (GARP)
has been used successfully to predict species distribu-
tions in marine systems (Wiley et al. 2003). GARP
uses a super-set of rule-building methods (logistic
regression, range rules, negated range rules and atomic
rules) in a machine-learning (artificial intelligence)
environment to build heterogeneous rule-sets that
describe ecological niches (Stockwell & Noble 1992;
Stockwell & Peters 1999). The heterogeneous nature
of the rule-set is critical because it allows niche
parameters to vary over the known range of the species
(Dunham et al. 2002). Input into GARP consists of
point-occurrence data (latitude-longitude pairs) and
environmental data in the form of raster grids. GARP
uses an iterative learning process to develop a rule-set
defining a species’ niche relative to the environmental
data sets. This niche model is then projected back onto
the landscape, generating a prediction of potential
distribution for that taxon. The predictions are robust
and accurate generally across many terrestrial taxa
(Peterson 2001; Peterson et al. 2002; Stockwell &
Peterson 2002). GARP models should be understood
as partial niche models, as it is unlikely that all the
relevant niche parameters are included in any given
analysis (Wiley et al. 2003).

There is a long history of analyses of habitat
associations and classifications in freshwater fishes,
especially on local or regional scales (Grossman et al.
1999). Research related to correlations between eco-
logical factors and community structure or abundance
are particularly prevalent (e.g. Hughes et al. 1987;
Lyons 1989; Douglas & Matthews 1992; Nelson et al.
1992; Taylor et al. 1992; Lamouroux et al. 1999;
Jackson et al. 2001). Analyses attempting to predict
individual fish species distributions based on ecolog-
ical niche models are few (Olden & Jackson 2001;
Wiley et al. 2003; Iguchi et al. 2004; Vander Zanden
et al. 2004). Most researchers in the field of predictive
modelling work on terrestrial taxa and the nascent U.S.
Aquatic GAP programs (http://www.gap.uidaho.edu/
Projects/Aquatic/default.htm) have yet to produce
published results of this nature. D’Angelo et al.
(1995) successfully used a genetic algorithm to predict
trout distributions within stream reaches, and Wiley
et al. (2003) demonstrated the capability of ecological
niche modelling using GARP to predict marine fish

distributions. Kluza & McNyset (2005) used GARP to
predict potential invasions of a freshwater mussel and
an estuarine crab. However, there have been no tests of
GARP for predicting landscape-scale distributions of
freshwater fishes.

Several concepts of ecological niches have been
developed. For the purposes of this analysis, an
ecological niche is conceptualised as the combination
of ecological parameters within which a species can
maintain populations without immigration (Grin-
nell 1917). This niche can be visualised as an
N-dimensional hypervolume, the dimensions of which
are ecological parameters (Hutchinson 1957). What
qualifies as a relevant niche parameter is dependent on
the spatial scale being discussed, as different para-
meters are relevant only at the appropriate spatial scale
(e.g. local vs. regional vs. worldwide; see Chapters
9–20 in Scott et al. 2002).

Herein, I conduct an analysis to test the efficacy of
the ecological niche modelling using GARP for
predicting potential distributions of 12 freshwater fish
species in Kansas.

Materials and methods

Twelve fish species occurring in Kansas were selected
for analysis (Table 1) from across the phylogenetic
spectrum and that represent a range of distributions
and a variety of habits. Collection information for each
taxon was acquired from the University of Kansas
Natural History Museum Fish Collection database
using FishNet and The Species Analyst (http://
speciesanalyst.net/fishnet). Textual locality informa-
tion was assigned latitude and longitude in decimal
degrees using the Geographic Names Information
System of the U.S. Geological Survey (USGS)
(http://geonames.usgs.gov); township-section-range
data were converted to decimal degrees using a
conversion engine developed by the Montana State
University Environmental Statistics Group (http://
www.esg.montana.edu/gl/trs-data.html). Records with
ambiguous or incomplete locality information were
excluded from analysis. As many unique collection
localities as were available per taxon were included.
The number of unique records per taxon ranged from
38 for Etheostoma flabellare to 141 for Gambusia
affinis; varying approximately proportionate to the size
of the actual geographic distribution. Collection dates
ranged from 1946 to 2001.

A subsetting protocol was chosen to mimic a
common pattern of data availability for fisheries
researchers. That is, collection data is often available
only in a patchy mosaic across a given region; some
areas have been well collected while no collection
information exists for others. To that end, point-
occurrence data for each species were subset by
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county and grouped in two datasets. County inclusion
into either dataset was random. The data from half of
the counties were used in GARP to build niche
models. Data from the other half of the counties were
withheld from analysis and used later as an independ-
ent validation data set to evaluate the resulting models
(Copas & Corbett 2002).
An initial environmental coverage set characteris-

ing climate, physiographic and hydrologic para-
meters included 29 variables in the form of raster
grids with a 0.01 · 0.01 pixel resolution available
from USGS (http://www.usgs.gov), the Hydro1k
dataset (http://edcdaac.usgs.gov/gtopo30/hydro/) and
the Intergovernmental Panel on Climate Change
worldwide climate data (http://ipcc-ddc.cru.uea.ac.
uk/index.html) were used in the analysis (Table 2).
Strahler stream order was derived from a stream map
for Kansas available from the Kansas Geospatial
Community Commons (http://gisdasc.kgs.ku.edu).
This coverage set was subjected to a jackknife
procedure for all taxa: an analysis designed to
maximise predictive accuracy and cull variables
prone to spurious over-fitting (Peterson & Cohoon
1999; Guisan & Zimmermann 2000). I optimised
environmental variable inputs for each species’s
niche model by minimising model omission error
(error of failing to predict known presence; Bowden
et al. 2003) in the following manner: 20 niche
models were generated for each taxon iteratively
using N ) 1 variables (i.e. excluding a single
variable from the coverage set in each model set
iteration). Omission error (discussed below) was
calculated across each 20 model set and a correlation
matrix relating omission error and individual variable
inclusion and exclusion was generated. Variables
whose inclusion increased omission error for more
than 50% of the taxa were excluded from the final
coverage set. This process resulted in a coverage set
including 13 of the original 29 variables. The

13 variables included in the final coverage set are
indicated in Table 2.

Distributional predictions were generated using
DesktopGARP, a beta-version program developed
at the University of Kansas (R. Scachetti-Pereira
www.lifemapper.org/desktopgarp/). DesktopGARP is
based on the GARP algorithm originally developed by
David Stockwell (Stockwell & Noble 1992; Stockwell
& Peters 1999). GARP is a genetic algorithm, a class
of algorithms in which a rule-set is ‘evolved’

Table 1. List of Kansas fish taxa included in this analysis.

Taxon N to build N to test AUC Omission (%) Total % commission Average % commission

Lepisosteus osseus 32 30 0.8502* 6 39.9 31.1
Cyprinella camura 18 29 0.8474* 17 27.9 22.2
Notropis topeka 53 27 0.9167* 4 68.7 42.2
Luxilus cornutus 23 17 0.8236* 0 75.2 45.1
Phoxinus erythrogaster 15 23 0.6985* 8 67.5 45.4
Noturus exilis 22 27 0.8734* 12 49 37.0
Noturus flavus 37 40 0.7923* 9 76.1 49.5
Fundulus zebrinus 34 24 0.7588* 6 86.3 72.8
Gambusia affinis 72 69 0.7571* 5 82.9 70.5
Etheostoma cragini 44 46 0.876* 7 60.5 39.8
Etheostoma flabellare 30 10 0.7652* 7 57.9 43.3
Morone chrysops 24 27 0.776* 8 53.4 46.0

Numbers of individuals for each taxon used to build and test the model sets are indicated. Area under the curve (AUC) derived from the receiver operating
characteristic analysis are shown.
*Significance in a z-test at P < 0.01.

Table 2. Description of environmental variables in the coverage set.

Description Included

Annual average high in precipitation
Annual average high temperature X
Annual average radiant energy
Annual average runoff
Annual average snowfall
Aquifer
Aspect X
Average annual frost free days
Average surface slope X
Bulk soil density
Depth to seasonally high water table X
Elevation X
Flow accumulation X
Flow direction
Geologic unit
Groundwater region
High value in range for surface slope
January average high temperature X
January average precipitation
July average high temperature X
July average precipitation X
Low values in range for surface slope
Potential vegetation coverage X
Soil organic matter content X
Soil permeability
Soil thickness
Soil wind erodibility
Strahler stream order X
Wetness index {¼ln[flow accumulation/tan(slope)]} X

Variables included in the final analysis are indicated with an X.
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iteratively following a molecular model of evolution
(Holland 1975; see Wiley et al. 2003; or Kluza &
McNyset 2005 for a more detailed explanation of
GARP). This process is repeated until either a user-
defined maximum of iterations is reached (¼1000) or
until a user-designated convergence criterion for
predictive accuracy is reached (¼0.01). The resulting
model is a rule set in the form of logic strings
describing a species’ niche as a multi-dimensional
hypervolume in ecological space (Hutchinson 1957;
Stockwell & Peters 1999).

The model is then projected onto geography,
highlighting areas in which the modelled niche
parameters are realized, resulting in a GIS grid
(ArcView v3.2, Environmental Systems Research
Inc, 2003). At the beginning of each model building
process, the locality data are randomly subset into a
training and ‘intrinsic’ testing dataset in operator
determined proportions (80% training and 20% test-
ing, herein). Each model is tested internally using the
intrinsic testing data set, to give an estimate of
predictive accuracy in the form of a ‘confusion
matrix’, a 2 · 2 square matrix in which a is the
number of points correctly predicted present (true
positives), b is the number of points incorrectly
predicted as present (false positives), c is the number
of points incorrectly predicted as absent (false negat-
ives), and d is the number of points correctly predicted
absent (true negatives).

Model evaluation and choice

As there is a stochastic element inherent in GARP
model generation, models can differ markedly in their
characteristics of omission and commission. Metrics
based on the confusion matrix were used to choose a
‘best subset’ of the models generated. In this study,
200 models were generated for each species from
which a 10-model best subset was chosen (limited
experimentation with greater initial numbers of models
did not indicate marked improvement in the best-
subset quality), as described below. Ten best subsets
models were developed as no change in accuracy
metrics was observed when more models were inclu-
ded.

For each model, omission error [c/(a+c)] was
calculated for the intrinsic test data and all models
with omission error >0 were eliminated. For this
analysis, we have no reason to accept models which
fail to predict areas where we know the taxon
occurs. For remaining (zero omission) models, a
commission index (¼pixels predicted present/all
pixels) was calculated. As these metrics are calcu-
lated using pixels-predicted-present, and a pixel
corresponds to actual area on the landscape
(approximately 1 km2), the commission index is a

measure of the proportional geographic area predic-
ted present by the model (Anderson et al. 2002a). It
includes both true commission error (over-prediction
into unsuitable habitat), and correct prediction of
areas not known to be inhabited (for reasons of
under-sampling, historical constraint, competitive
exclusion, etc.). The median commission index
across all low-omission models was calculated; this
median has been shown to be the best estimate of
the actual geographic area occupied by a given
taxon (Anderson et al. 2003). The 10 zero-omission
models with commission indices closest to the
median were chosen as the best subset, and resulting
maps summed.

Statistical analysis

The 10 best model set for each taxon was evaluated
using the area under the curve (AUC) in a Receiver
Operating Characteristic (ROC) analysis following
Wiley et al. (2003). A ROC analysis evaluates the
specificity (absence of commission error) and sensi-
tivity (absence of omission error) of a model set
(DeLong et al. 1988; Zweig & Campbell 1993;
Fielding & Bell 1997). A line for the model set is
graphed on a sensitivity (true positive rate) versus
1-specificity (true negative rate) plot, and the AUC is
calculated. This AUC is compared with the AUC of a
random prediction using a z-test. No difference
between the two AUCs indicates that the model set
is predicting presence no better than random (Centor
1991). The higher the test AUC, the better the model
set; a perfect prediction would have an AUC ¼ 1.0
(Hanley & McNeil 1982). A model set achieves a
higher AUC as more of the validation data points fall
in pixels where more models predict presence. For
example, if all of the validation data points occur in
pixels where all 10 of the best models predict
presence, the maximum AUC for those data is
achieved.

Omission error and commission indices were also
calculated using the validation data. Omission error
was taken as the average percentage across all 10
models of the independent validation points falling in
pixels predicted as absent. Commission indices were
calculated two ways. First, the percentage of the total
area predicted present by the intersection of all 10 of
the best models was calculated (‘Total Commission’),
then the average percentage of each individual model
in the best set was calculated (‘Average Commission’;
Table 1).

Results

Model generation across all taxa reached accuracy
convergence (0.01) before reaching the designated
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maximum iterations (¼1000). Across all 12 species,
AUCs in ROC analyses ranged from 0.69 for Phoxi-
nus erythrogaster to 0.92 for Notropis topeka
(Table 1). All species’ AUCs were significantly
different from a line of no information (P < 0.01).
Omission errors ranged from 0% for Luxilus cornutus
to 17% for Cyprinella camura (Table 1). These results
were general: model sets were accurate regardless of
range size, habit, or taxon. Geographic predictions for
Lepisosteus osseus, C. camura, Fundulus zebrinus and
Morone chrysops are shown (Figs 1 and 2). The rule
set for one of the 10 best models for F. zebrinus is
shown in Appendix A.

Discussion

These results indicate that ecological niche modelling
using GARP generates accurate models and predictive
distributional hypotheses for the included freshwater
fishes. These results compliment others obtained with
terrestrial and marine taxa (Peterson 2001; Anderson
et al. 2002b; Papes & Peterson 2003; Peterson et al.
2003; Wiley et al. 2003; Anderson & Martinez-Meyer
2004). This is significant, particularly given that the
environmental variables used in this analysis are
publicly available: no specialised data sets or in situ
data collection is necessary. Many of the included

Fig. 1. Ten model best-subsets results for Lepisosteus osseus and Morone chrysops intersected with fourth order and higher streams. Red
indicates five or more of the 10 best-subset models predicting presence. Yellow circles indicate training data used to build models; green
circles indicate independent validation data. Black-and-white dashed lines denote known extent of ranges (Cross 1967; Cross & Collins 1995).
Ks ¼ Kansas River.
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grids extend worldwide. The ability to generate
accurate predictions for freshwater stream fishes using
such coverages broadens the scope of possible future
analyses to include almost any stream system on the
planet. This is not to suggest that better environmental
coverage sets are not possible. I endeavoured to
include a broadly applicable data set to be of
immediate use to the fish research community. There
are undoubtedly taxon-specific differences in how
important each individual variable is in the final
analysis. It is likely that models can be improved on a

taxon-by-taxon basis by including or excluding
various combinations of variables (Gonzalez-Rebelez
et al. 2002). That remains a potential area of inquiry.
Also, this analysis includes a single level of spatial and
temporal resolution and uses a data set only appropri-
ate for larger-scale analyses (Jackson et al. 2001;
Maurer 2002). If a researcher wants to investigate
distributional phenomena at a more local scale, a
different coverage set must be used (Ricklefs 1987;
see Chapters 9–20 in Scott et al. 2002). Ecological
niche modelling is flexible in this regard; there is

Fig. 2. Ten model best-subsets results for Fundulus zebrinus and Cyprinella camura intersected with fourth order and higher streams. Red
indicates five or more of the 10 best-subset models predicting presence. Yellow circles indicate training data used to build models; green
circles indicate test data. Black-and-white dashed lines denote known extent of ranges (Cross 1967; Cross & Collins 1995). Ak ¼ Arkansas
River; Wa ¼ Walnut River.
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nothing inherent in either the GARP algorithm or
DesktopGARP restricting the spatial resolution of an
analysis. Research is limited only by data availability.
Fish researchers face unique challenges in this regard.
Instream, aquatic data are frequently only available at
limited points along stream systems (e.g. at monitoring
stations), and data collected often vary in content and
completeness even from watershed to watershed. In
this analysis, I included a set of derived aquatic
variables (e.g. flow accumulation) along with what can
be referred to as landscape-level variables (e.g. climate
and physiographic variables). Landscape-level varia-
bles are most appropriate at regional and continental
scales, although a number of studies addressing factors
limiting fish species’ distributions at different spatial
scales have found landscape-scale variables to be as
important in limiting local fish distributions as
instream variables (Matthews 1987; Matthews &
Robison 1988, 1998; Schlosser 1995; Marsh-Mat-
thews & Matthews 2000). The continuous nature of
landscape-level coverages may, in fact, be better suited
than local scale variables when modelling distributions
of aquatic organisms on larger scales. However, the
use of these variables makes extracting directly
interpretable ecological inference at the local level
difficult and may prove dissatisfying to ecologists
interested in local-level niche characterisation. Devel-
opment of coverage sets at multiple scales is a long-
term goal, nonetheless the ability to produce robust
predictions based solely on the included variables
means that many analytical avenues are open imme-
diately. Future inclusion of more and higher-resolution
variables should only increase model accuracy and
predictivity.
Statistical tests of model-set sensitivity and specif-

icity also remains an area in need of further develop-
ment. ROC analysis has some properties that make it
particularly useful for model-set evaluation. It is a
nonparametric and threshold independent test (Hanley
& McNeil 1982). So, the data are not expected to
conform to a normal distribution, for example, and
designation of a decision threshold is unnecessary, as
all thresholds are evaluated. It is informative about not
only whether a given model set is better than random
at predicting presence but also how much better, for a
given taxon. However, AUC values are subject to an
area effect (Wiley et al. 2003). Although this area
effect will not change whether or not a given model set
is found to be significant, comparisons of model
quality across taxa are not possible. If a taxon is
broadly distributed across a landscape, AUCs will be
lower for a model set that is as sensitive and specific
for that taxon as a model set for a more narrowly
distributed taxon. This occurs for two reasons. First, it
is simply harder to distinguish a good model set from
random when more of the entire area of a given

landscape is occupied by a given species. This effect
can be mitigated by including larger potential areas in
the analysis that extend beyond the putative range of a
taxon, however AUCs for narrowly distributed taxa in
the same region will increase as well. With more area
to potentially predict as present, a small but correctly
predicted area is recognised as being more specific.
The second reason has to do with the nature of point
occurrence data relative to perceived commission
(specificity). Because we do not have a data point in
every pixel where that the taxon may actually occur,
perceived commission error increases and the AUC
decreases. This effect is amplified for broadly distri-
buted taxa where the proportion of data points to
actually occupied pixels is usually lower than for more
narrowly distributed taxa. This effect can be mitigated
by increasing the number of data points included in the
analysis, however an AUC of 1.0 will never be
achieved even by a highly sensitive and specific model
set. It should be noted that these are not failures of the
model sets to accurately predict, but limitations of the
statistics we use to evaluate them. It is important to
understand these limitations when interpreting the
results of multi-taxa analyses.

Although commonly used as a test of various
modelling systems, measures of commission are
problematic by their very nature. First, a direct
measure of commission error assumes that the true
range of a taxon is known for every pixel in the entire
range. Even for well-understood taxa occurring in
well-sampled areas, this is not true. Indeed, if it were
true the need for analyses of this nature would be more
limited. Because of this, commission error is over-
estimated. For example, the geographic prediction for
C. camura (Fig. 2) includes portions of the Walnut
River drainage. Cyprinella camura is known to occur
there, although this occurrence data set does not
happen to include any data points from that drainage.
The same is true for F. zebrinus in northern tributaries
of the Arkansas River (Fig. 2). In addition, commis-
sion as it is measured is actually a combination of true
error (that is, an incorrect characterisation of the actual
niche of the species) and a number of other historical
and taxon-specific factors. Peterson et al. (1999) made
the point that what are commonly called ‘distributional
models’ in the literature are correctly interpreted as
ecological niche models, and that as such model
results are not necessarily a prediction of the actual
distribution of the species (although distributions are
predicted accurately). In these models, areas may exist
in which niche requirements of a species are fulfilled,
but the species is absent. These absences from suitable
areas may be caused by a variety of factors: exclusion
by competition or other interspecific interactions, and
absence for historical reasons – either the species
never occupied the region because of dispersal
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constraints, a speciation event left a sister species in
the area, an extinction event occurred, or favourable
conditions in that area are ephemeral (Matthews &
Robison 1988). Some may see this as limiting the
usefulness of GARP analyses, while others will see
that this opens the door to a number of analytical
avenues. The phenomenon of historical causation can
indicate areas of potential range expansion, potential
areas for the successful establishment of exotic
species, and/or the effects of interactions between
species. So, the usefulness of commission to quantify
model quality is limited. I include two measures of
commission that must be compared with be truly
informative, ‘total’ and ‘average’ commission
(Table 1). Comparing these two numbers for each
taxon provides an understanding of the amount of
overlap between models within a given model set. It is
possible to have a best-model set in which the size of
the area predicted within the individual models is
similar, but the models have very little geographic
overlap. This would be evident in a large difference
between total and average commission. A model-set of
very low overlap, that is, one with bigger differences
between individual models, should be considered
suspect relative to a model-set of high overlap.
Presumably, there is a truth, and a model-set that
comes close to that truth, completely and accurately
modelling the niche, is one in which all the models are
in complete agreement.

While model agreement across best-model sets is
not strictly interpretable as highlighting ‘core’ habitat
across a region, it can be interpreted as areas of higher
probability of presence of some portion of the
fundamental niche. Because the training data is subject
to a random subsetting and resampling procedure
during each model-building process, the data points
used to build a given model may represent a popu-
lation occupying a specific, realized portion of the
fundamental niche for that taxon (Hutchinson 1957;
Malanson et al. 1992). This is not to say that areas
where only five of the ten best models agree, for
example, are somehow false or outside of the funda-
mental niche of a taxon. Rather, areas of higher model
agreement are areas of commonality across variation
in subpopulations and/or subsampled data. Including
data points distributed across the known range of a
taxon will increase the likelihood of capturing more of
the realized portions of a niche so that a better
understanding of the fundamental niche can be
achieved. Using a best model set rather than a single
best model allows for the identification of core areas of
agreement across all the realized portions of the niche.
This information can be used to identify suitable areas
for re-introduction, conservation priority or threat
assessment (Peterson et al. 2003; Anderson & Marti-
nez-Meyer 2004).

All of the metrics and statistics reported for each
model set have to be considered simultaneously when
assessing model set quality. For example, in Fig. 1 the
best-model sets for M. chrysops and L. osseus are
visualised along with the data points used to build and
test the model sets. The L. osseus model set has a high
AUC (0.85) and a low percentage of omission (6%)
with high model agreement (an 8.8% difference).
There are large portions of the central Kansas River
drainage predicted present for which we happen to
have no testing or training data points, however
L. osseus is know to have occurred there, at least
historically (Cross 1967). The M. chrysops model set
has a relatively low, although significant, AUC (0.78),
but also a low percentage of omission (8%) and one of
the highest model agreements across all the included
taxa (a 7.4% difference). I consider both of these to be
excellent model sets although the individual metrics
vary.

I subjected the data to a severe subsetting process
(randomly by county), in part to mimic a common
pattern of data availability and to test the modelling
system with less-than-ideal data. I also limited the area
to within political rather than zoogeographic bound-
aries (as will often be necessary for regional manag-
ers). In limiting the information available to GARP, I
am most likely impinging on the quality of the results.
This is necessary for testing, however, models should
only become more accurate with the inclusion of data
from across the entire range of the taxon. In future
analyses, I would recommend including more data in
the model-building process, while reserving a smaller
portion for statistical tests.

Herein, I sought only a test of ecological niche
modelling using GARP, however there are a number of
research avenues that can arise from this sort of
analysis. In terrestrial environments, ecological niche
modelling has been used in research into how
landscape-level phenomena affect species distributions
(Walker 1990; Scott et al. 1996; Anderson et al.
2002b). Other advances include identifying potential
distributional areas for poorly-known taxa (Peterson
et al. 2002), proposing areas of conservation priority
(Bojórquez-Tapia et al. 1995; Godown & Peterson
2000; Peterson et al. 2000; Loiselle et al. 2003),
predicting potential distributions of exotic invasive
taxa (Peterson & Vieglais 2001; Vander Zanden et al.
2004) and investigating evolutionary conservatism of
niche requirements (Peterson et al. 1999). Fisheries
researchers are often interested in what specific factors
are limiting species distributions at any given spatial
and temporal resolution. GARP niche models are a
potentially source of insight into that question for the
included variables. Rule-sets generated by GARP are
usually large and complex. It is common for a single
model to be made up of up to 50 individual rules with
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each rule including multiple variables relevant to
varying portions of a landscape (for an example, see
Appendix A). This indicates that the relationship
between distributions and the included variables is
complex and often interactions between variables are
more important than a value of a single variable in
limiting distributions. What information can be teased
out of these rule-sets remains unexplored.
Another area of future research should investigate

ways of manipulating GARP-derived potential distri-
butions down to actual distributions. This poses many
more challenges than the ones illustrated in the current
analysis. It would be necessary to include all of those
factors of historical causation and species interactions
discussed earlier. It may be appropriate to subject
ecological niche models to an a posteriori process to
capture the effects of these phenomena, such as, a
decision-tree approach incorporating life-history char-
acteristics (Kolar & Lodge 2002). Ecological niche
models can be used as is to predict potential distribu-
tions of invasive species by modelling the niche on its
native range, and projecting the niche model onto the
invaded landscape (Peterson & Vieglais 2001; Iguchi
et al. 2004; Kluza & McNyset 2005). They can also be
used to predict impacts of climate change on species’
distributions by projecting niche models onto climate-
changed landscapes (Peterson et al. 2001). More gen-
erally, this methodmay be able to illustrate the effects of
diverse factors on geographic distributions of freshwa-
ter fishes across landscapes.

Resumen

1. Una innovación esencial en la investigación sobre biodi-
versidad acuática consistirı́a en una aproximación robusta para
predecir con precisión la distribución potencial de las especies.
En este trabajo, analicé la eficacia de modelos de nicho
ecológico para predecir las distribuciones potenciales de
especies de peces utilizando un algoritmo de inteligencia
artificial, el algoritmo genético de ‘Rule-Set Prediction,
GARP’. Modelos de nicho ecológico de especies se desarro-
llaron utilizando GARP y fueron proyectados sobre geografı́a
para predecir distribuciones de las especies.
2. Para analizar la validez de esta aproximación utilicé datos
de distribuciones de peces de agua dulce de 12 especies que
ocurren en Kansas (USA). Se eligieron taxones que repres-
entan una diversidad filo-genética, de distribución y de
hábitat. Sub-seleccioné estos datos omitiendo la mitad de
los condados en la construcción del modelo y analicé modelos
utilizando los condados omitidos. Los modelos fueron anal-
izados utilizando análisis ‘Receiver Operating Characteristics,
ROC’.
3. De las especies analizadas todas fueron estadı́sticamente
significativas con los modelos mostrando una habilidad
predictiva excelente. La omisión de errores entre los taxones
varı́o entre 0 y 17%. Esta capacidad de inferencia abre puertas a
muchos análisis sintéticos basados en datos de ocurrencia
puntual.
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Appendix A

Rule set:
1 logit
IF ) elevation*0.0000 ) flow_acc*0.0156 )slope*0.0039 + wetness_ind*0.0313 ) precip_july*0.0039 ) temp_Jan*0.0000 )

temp_July*0.0039 ) depth_water_table*0.0000 ) strahler*0.0039 ) 0.5000
THEN sp ¼ PRESENCE
2 logit
IF ) aspect*0.0039 ) flow_acc*0.0039 + wetness_ind*0.0742 ) organic_mat*0.0039 ) precip_july*0.0039 ) potveg*0.0000 )

temp_Jan*0.0000 ) temp_July*0.0117 ) depth_water_table*0.0000 ) strahler*0.0039 ) 0.5000
THEN sp ¼ PRESENCE
3 negated range rule
IF NOT aspect¼[)1.00,35679.69] AND wetness_ind¼[383.91,1570.60] AND organic_mat¼[0.12,3.58]AND precip_july¼[50.59,199.41] AND

potveg¼[1.74,94.00] AND temp_Jan¼[0.00,5.00]AND temp_July¼[25.00,30.00] AND depth_water_table¼[2.35,6.35] AND strah-
ler¼[0.98,8.03]

THEN sp ¼ ABSENCE
4 range rule
IF flow_acc¼[0.00,0.00] AND slope¼[0.00,116.29] AND wetness_ind¼[368.59,1333.26]AND precip_july¼[99.80,200.00] AND pot-

veg¼[6.51,6.88] AND annual_temp¼[15.00,20.00]AND strahler¼[0.98,8.03]
THEN sp ¼ ABSENCE
5 logit
IF ) elevation*0.0000 + flow_acc*0.0195 ) slope*0.1250 + wetness_ind*0.0742 ) precip_july*0.0039 ) temp_Jan*0.0000 )

temp_July*0.0039 ) depth_water_table*0.0000 ) strahler*0.0039 ) 0.5000
THEN sp ¼ PRESENCE
6 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42]AND slope¼[0.00,87.84] AND wet-

ness_ind¼[422.19,1517.01] AND precip_july¼[99.80,101.58]AND potveg¼[92.90,94.37] AND temp_July¼[25.00,25.00] AND
annual_temp¼[15.00,20.00]AND strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
7 range rule
IF aspect¼[994.08,30277.83] AND elevation¼[235.74,1184.30] AND flow_acc¼[0.00,0.00]AND slope¼[0.00,120.00] AND

wetness_ind¼[391.56,1501.70] AND organic_mat¼[1.67,3.28]AND precip_july¼[55.34,200.59] AND pot-
veg¼[1.74,94.00] AND temp_Jan¼[0.00,5.00] AND temp_July¼[25.00,30.00] AND annual_temp¼[15.00,20.00] AND
depth_water_table¼[3.04,5.47]

THEN sp ¼ ABSENCE
8 range rule
IF elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42] AND slope¼[0.00,87.84]AND wetness_ind¼[422.19,1524.67] AND

organic_mat¼[0.24,3.56] AND precip_july¼[99.80,99.80]AND potveg¼[94.00,94.37] AND temp_Jan¼[0.00,5.00] AND temp_Ju-
ly¼[25.00,29.98]AND depth_water_table¼[2.93,6.11] AND strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
9 range rule
IF aspect¼[1278.39,30277.83] AND elevation¼[235.74,1184.30] AND flow_acc¼[0.00,0.00]AND slope¼[0.00,120.00] AND wet-

ness_ind¼[337.97,1524.67] AND organic_mat¼[1.67,3.28]AND potveg¼[1.74,94.00] AND temp_Jan¼[0.00,5.00] AND
temp_July¼[25.00,30.00] AND annual_temp¼[15.00,20.00] AND depth_water_table¼[3.04,5.47]

THEN sp ¼ ABSENCE
10 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42]AND slope¼[2.47,91.55] AND wet-

ness_ind¼[422.19,1517.01] AND organic_mat¼[0.24,3.56]AND precip_july¼[99.80,99.80] AND temp_Jan¼[0.00,5.00] AND
temp_July¼[25.00,25.00] AND annual_temp¼[15.00,20.00] AND depth_water_table¼[2.93,6.11]

THEN sp ¼ PRESENCE
11 range rule
IF elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42] AND organic_mat¼[0.24,3.56] AND precip_july¼[99.80,99.80] AND

temp_July¼[25.00,30.00] AND depth_water_table¼[2.93,6.11] AND strahler¼[1.01,7.81]
THEN sp ¼ PRESENCE
12 logit
IF ) aspect*0.0039 ) flow_acc*0.0039 ) slope*0.0039 ) potveg*0.0078 ) temp_Jan*0.0000 ) temp_July*0.0039 ) annual_

temp*0.0039 ) depth_water_table*0.0000 ) strahler*0.0039 ) 0.5000
THEN sp ¼ PRESENCE
13 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42] AND wetness_ind¼[422.19,1517.01]

AND organic_mat¼[0.24,3.56] AND precip_july¼[99.80,99.80]AND temp_Jan¼[0.00,5.00] AND temp_July¼[24.98,25.02] AND
annual_temp¼[15.00,20.00] AND depth_water_table¼[2.93,6.11]

THEN sp ¼ PRESENCE
14 range rule
IF aspect¼[)1.00,35395.38] AND flow_acc¼[0.00,14678.42] AND slope¼[0.00,87.84] AND wetness_ind¼[429.84,1517.01] AND

organic_mat¼[0.84,3.26] AND potveg¼[24.16,94.00] AND temp_Jan¼[0.00,5.00] AND temp_July¼[25.00,25.00] AND annual_
temp¼[15.00,20.00] AND depth_water_table¼[2.93,6.11] AND strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
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Appendix A (Continued)

15 logit
IF ) elevation*0.0000 ) flow_acc*0.0039 ) slope*0.1250 + wetness_ind*0.0313 + precip_july*0.0391 ) temp_Jan*0.0000 )

temp_July*0.0039 ) depth_water_table*0.0000 ) strahler*0.0039 ) 0.5000
THEN sp ¼ PRESENCE
16 range rule
IF elevation¼[249.17,1220.09] AND flow_acc¼[0.00,14678.42] AND slope¼[0.00,87.84] AND wetness_ind¼[422.19,1517.01] AND

potveg¼[22.69,94.00] AND temp_July¼[24.98,29.94] AND annual_temp¼[15.00,20.00] AND depth_water_table¼[2.93,6.11] AND
strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
17 logit
IF ) aspect*0.0039 + elevation*0.0078 ) flow_acc*0.0039 ) slope*0.0039 ) wetness_ind*0.0000 ) organic_mat*0.0039 )

potveg*0.4922 ) temp_Jan*0.0000 ) temp_July*0.0039 ) depth_water_table*0.0000 ) 0.5000
THEN sp ¼ PRESENCE
18 range rule
IF elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42] AND wetness_ind¼[429.84,1532.32] AND organic_mat¼[0.24,0.26]

AND precip_july¼[99.80,99.80] AND potveg¼[27.47,90.32] AND temp_Jan¼[0.00,5.00] AND temp_July¼[25.00,30.00] AND
annual_temp¼[15.00,20.00] AND depth_water_table¼[2.93,6.11] AND strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
19 range rule
IF elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42] AND slope¼[0.00,87.84] AND wetness_ind¼[422.19,1517.01] AND

precip_july¼[51.19,200.59] AND temp_Jan¼[0.00,5.00] AND temp_July¼[25.00,25.02] AND annual_temp¼[15.00,20.00] AND
depth_water_table¼[2.93,6.11] AND strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
20 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1211.14] AND flow_acc¼[0.00,14678.42] AND slope¼[0.00,87.84] AND

wetness_ind¼[422.19,1517.01] AND organic_mat¼[0.24,3.56] AND precip_july¼[99.80,99.80] AND potveg¼[22.69,94.00] AND
temp_Jan¼[0.18,5.02] AND temp_July¼[25.00,30.00] AND depth_water_table¼[2.93,6.11] AND strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
21 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42] AND slope¼[0.00,87.84] AND

precip_july¼[99.80,99.80] AND potveg¼[22.69,94.00] AND temp_July¼[25.00,25.00] AND annual_temp¼[15.00,20.00] AND
depth_water_table¼[2.93,6.11]

THEN sp ¼ PRESENCE
22 range rule
IF aspect¼[)143.15,35964.00] AND flow_acc¼[0.00,14678.42] AND wetness_ind¼[414.53,1494.04] AND organic_mat¼[0.24,3.56]

AND precip_july¼[99.80,99.80] AND potveg¼[22.69,94.00] AND temp_Jan¼[0.00,5.00] AND temp_July¼[25.00,25.00] AND
annual_temp¼[15.00,20.00] AND depth_water_table¼[2.93,6.11]

THEN sp ¼ PRESENCE
23 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1215.62] AND wetness_ind¼[422.19,1517.01] AND organic_mat¼[0.24,3.56]

AND precip_july¼[99.80,99.80] AND potveg¼[22.69,94.00] AND temp_Jan¼[4.98,5.00] AND temp_July¼[25.00,30.00] AND
annual_temp¼[15.00,20.00] AND depth_water_table¼[2.93,6.11] AND strahler¼[0.98,8.03]

THEN sp ¼ PRESENCE
24 range rule
IF aspect¼[)1.00,35395.38] AND precip_july¼[99.80,99.80] AND potveg¼[22.69,94.00] AND temp_Jan¼[0.06,5.00] AND

temp_July¼[25.00,30.00] AND depth_water_table¼[2.93,6.11] AND strahler¼[0.47,7.68]
THEN sp ¼ PRESENCE
25 atomic
IF aspect¼17483.96 AND elevation¼562.37 AND flow_acc¼0.00 AND slope¼40.83 AND wetness_ind¼751.40 AND precip_july¼99.80

AND potveg¼94.00 AND temp_July¼30.00 AND annual_temp¼15.00 AND depth_water_table¼5.98 AND strahler¼8.03
THEN sp ¼ PRESENCE
26 negated range rule
IF NOT elevation¼[226.79,1215.62] AND flow_acc¼[0.00,29356.84] AND slope¼[0.00,117.53] AND organic_mat¼[0.14,3.59] AND

potveg¼[1.00,94.00] AND temp_Jan¼[0.00,5.00] AND strahler¼[0.98,8.03]
THEN sp ¼ ABSENCE
27 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1215.62] AND flow_acc¼[0.00,14678.42] AND slope¼[0.00,87.84] AND

wetness_ind¼[422.19,1517.01] AND organic_mat¼[0.24,3.56] AND precip_july¼[99.80,99.80] AND potveg¼[22.69,94.00] AND
temp_Jan¼[0.00,5.00] AND temp_July¼[25.00,30.00] AND annual_temp¼[15.00,20.00]

THEN sp ¼ PRESENCE
28 range rule
IF aspect¼[)1.00,35395.38] AND elevation¼[258.11,1215.62] AND slope¼[0.00,87.84] AND wetness_ind¼[422.19,1517.01] AND

organic_mat¼[0.24,3.56] AND precip_july¼[99.80,99.80] AND potveg¼[22.69,94.00] AND temp_Jan¼[0.00,5.00] AND
depth_water_table¼[2.93,6.11]

THEN sp ¼ PRESENCE
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