Improving the Validation and Prediction of Tropical Cyclone Rainfall

> Robert Rogers NOAA/AOML/HRD

Tim Marchok NOAA/GFDL

Bob Tuleya NCEP/EMC/SAIC

Funded by NOAA Joint Hurricane Testbed

Rainfall forecasts from landfalling TC's

standard forecasting tools

- Kraft rule of thumb
- numerical model guidance
- R-CLIPER

standard validation tools

- bias score
- equitable threat score
- pattern correlation

Factors impacting rainfall distributions in landfalling TC's

- storm track
- topography
- interaction with synoptic-scale features
- storm intensity
- land-surface boundary

Track errors for all Atlantic and U.S. landfalling cases

U.S. Landfalling Cases for Model Evaluation

<i>1998</i>	1999	2000	2001	2002	2003	2004
Bonnie 95	Bret 100	Gordon 55	Allison 45	Bertha 35	Bill 50	Bonnie 45
Charley 40	Dennis 60	Helene 65	Barry 60	Edouard 35	Claudette 75	Charley 125
Earl 70	Floyd 90		Gabrielle 60	Fay 50	Grace 35	Frances 95
Frances 45	Harvey 50			Hanna 45	Henri 30	Gaston 65
Georges 90	Irene 70			Isidore 55	Isabel 90	Ivan 110
Hermine 35				Kyle 35		Jeanne 105
				Lili 85		Matthew 40

Storms Included in this study

U.S. Landfalling Tropical Cyclones, 1998-2004

Models included in this study

Regional 1/2°, 1/6° (2-nest) 42 levels 2003 version

GFDL

NCEP/GFS Global T254 (~0.6°) 64 levels

NCEP/Eta Regional 12 km 60 levels

Rainfall-CLIPER Climatologybased parametric model

Isabel 24-hr rain from 12 UTC 18 to 12 UTC 19 September 2003 (12 UTC 17 forecasts)

Parameters describing skill of TC QPF forecasts

- Pattern
- Volume
- Extreme amounts
- Sensitivity to track errors

Matrix of TC QPF Metrics

	Dependence on Track Error		Pri	Primary QPF attribute described				
Index	Dependent	Independent	Pattern	Volume	Maximum	Impact of Track Error		
Large Scale ETS	?		Ŕ					
Pattern Correlation	?		Ŕ					
Mean Rainfall Error Index		?	Ŕ	Ŕ				
Large-Scale CDF Median Value		?		Ŕ				
Large-Scale CDF % in 95th percentile		?			×			
Track-Relative CDF % in 95th percentile		?			×			
Grid-Shifted Pattern Correlation		?				×		
Grid-Shifted ETS		?				K		

Pattern

Pattern comparisons for U.S. landfalling storms

Equitable Threat Score

Volume

Distributions of rain flux in bands surrounding storm track

Observed PDF for all storms in selected bands

Distributions of model rain flux in bands surrounding forecasted storm track

300-400 km

Extreme amounts

Top 5% of rain flux comparisons

Sensitivity to track error

Example of grid-shifting of rain field

Lili Stage IV

Eta shifted

r increased from 0.36 (unshifted) to 0.85 (shifted)

ETS improvements due to grid shifting

Summary comparison for all models

Pattern

- GFS performs best
- all models show skill relative to R-CLIPER
- GFDL worst among numerical models

<u>Volume</u>

- All models essentially equivalent
- GFS slightly better
- all show skill over R-CLIPER

Summary comparison for all models (cont.)

Extremes

• GFS best

- GFDL produces too much of heaviest rain
- both show skill over R-CLIPER
- Eta shows no skill over R-CLIPER

Sensitivity to track error

- GFS least sensitive to track error
- GFDL, Eta more sensitive to track error than R-CLIPER

Future work

- finish development of a set of metrics that synthesizes various aspects of TC QPF
- determine way of picking out other contributors to rainfall variability other than track (e.g., topography) in validation scheme
- develop parametric rainfall model that accounts for vertical shear; validate this model using same metrics
- add other sources of variability to new parametric model (e.g., topography, synoptic environment)

New forecasting tools for TC rainfall

Example of footprint: Hurricane Ivan

a) Wavenumber 0

b) Wavenumber 1,2

06 UTC 09/23/2004

The Footprint is "stamped" on a lon/lat grid every 15 minutes, providing a storm total accumulation

Impact of shear on accumulated rain

Only Wave numbers 1,2 included

Impact of shear on total accumulated rain

Ivan – R-CLIPER control run

Ivan – R-CLIPER run including shear

QPF Equitable Threat Score

