Radar Scientist

Flight ID 1609211 Storm Karl Radar Scientist Reason

The on-board radar scientist is responsible for data collection from all radar systems on his/her assigned aircraft. Detailed operational procedures and checklists are contained in the operator's manual. General supplementary procedures follow. (Check off or initial.)

Preflight

___ 1. Determine status of equipment and report results to lead project scientist (LPS).
___ 2. Confirm mission and pattern selection from the LPS.
___ 3. Select the operational mode for radar system(s) after consultation with the LPS.
___ 4. Complete the appropriate preflight check list.

In-Flight

___ 1. Monitor the Tail Doppler Radar function regularly, using the realtime TDR display, to make sure the Doppler radar is scanning and working normally.
___ 2. Maintain the Doppler Wind Parameter form as well as a written commentary in the Radar Event Log of event times, such as ending and restarting of radar recording. Also document any equipment problems or changes in R/T, INE, or signal status.

Post flight

___ 1. Complete the summary checklist and all other appropriate forms.
___ 2. Download all Tail (TA) radar data files to thumb drive.
___ 3. Brief the LPS on equipment status and turn in completed forms and thumb drives to the LPS.
___ 4. Debrief at the base of operations.
___ 5. Determine the status of future missions and notify HFP Director as to where you can be contacted.
HRD Radar Scientist Check List

Flight ID: 160921 D

Aircraft Number: NY2

Radar Scientist: Reason

Radar Technician: Mascaro

Component Systems Status (Up ↑, Down ↓, Not Available N/A, Not Used O):

Radar Computer

Lower Fuselage (LF) Antenna

Tail (TA) Antenna

Radar Post flight Summary

Significant down time:

Radar LF

Radar TA

Other Problems:
<table>
<thead>
<tr>
<th>Leg Start Time</th>
<th>Leg End Time</th>
<th>Storm Motion</th>
<th>Center Fix</th>
<th>Inbound</th>
<th>Outbound</th>
<th>Max Radius (km)</th>
<th>Horz. Res (km)</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHMMSS</td>
<td>HHMMSS</td>
<td>Degrees</td>
<td>Time</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Default = 245</td>
<td>Default = 5</td>
<td>(Y/N)</td>
</tr>
<tr>
<td>072321</td>
<td>080545</td>
<td>270</td>
<td>074450</td>
<td>20 01</td>
<td>56 58</td>
<td>45 45</td>
<td>245</td>
<td>5 Y</td>
</tr>
<tr>
<td>080700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>083651</td>
<td>091857</td>
<td>270</td>
<td>085251</td>
<td>14 59</td>
<td>57 12</td>
<td>135 135</td>
<td>245</td>
<td>5 Y</td>
</tr>
<tr>
<td>093416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101913</td>
<td>100253</td>
<td>270</td>
<td>100253</td>
<td>20 00</td>
<td>57 49</td>
<td>270 270</td>
<td>245</td>
<td>5 Y</td>
</tr>
<tr>
<td>104338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104517</td>
<td>113301</td>
<td>270</td>
<td>110357</td>
<td>20 19</td>
<td>57 48</td>
<td>0 0</td>
<td>245</td>
<td>5 Y</td>
</tr>
</tbody>
</table>