Lead Project Scientist

1. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from $A O C$ flight director/meteorologist whether aircraft has operational fix responsibility and the mission designation.

4. Contact HRD members of crew to:

a. Assure availability for mission.
b. Review field program safety checklist
c. Arrange ground transportation schedule when deployed.
d. Determine equipment status.

5. Meet with AOC flight director and navigator at least 3 hours before take-off for initial briefing.
6. Meet with AOC flight crew at least 2 hours before take-off for crew briefing. Provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
7. Report status of aircraft, systems, necessary on-board supplies and crews to MGOC in Miami.
8. Before take-off, brief the on-board GPS dropsonde operator on times and positions of drop times.
9. Make sure each HRD flight crew member has a life vest.
10. Perform a headset operation check with all HRD flight crew members. Make sure everyone can hear and speak using the headset.

In-Flight

1. Confirm from AOC flight director that satellite data link is operative (information).
2. Confirm camera mode of operation.
3. Confirm data recording rate.
4. Check in with the flight director to make sure the mission is going as planned (ie. turns are made when they are
supposed to be made).

Post flight

- 1. Debrief scientific crew.
- 2. Gather completed forms for mission and tum in to data manager at HRD.
_ 3. Obtain a copy of the 10 -s flight listing from the $A O C$ flight director. Turn in with completed forms.
- 4. Obtain a copy of the radar DAT tapes. Turn in with completed forms.
__ 5. Obtain a copy of serial flight data on thumb drive. Turn in with completed forms
[Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
-6. Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to MGOC.
\qquad 7. Determine next mission status, if any, and brief crews as necessary

8. Notify MGOC as to where you can be contacted and arrange for any further coordination required
9. Prepare whiten mission summary using Mission Summary form

Lead Project Scientist Check List Storm or Project \qquad Experiment name
 Flight ID 20160808 I Mission ID \qquad
A. Participants:

B. Take-off and Landing Times and Locations:

Take-Off: $\frac{436}{2320}$ UTC Location: Harlingen, $\frac{\pi}{11}$
\qquad
\qquad
Number of Eye Penetrations: \qquad
C. Past and Forecast Storm Locations:

Date/Time	Latitude	Longitude	MSLP	Maximum Wind

D. Mission Briefing:

Storm or Project \qquad Ts Jevier Experiment name \qquad
Flight ID \qquad 206 ofor Mission ID \qquad
E. -Equipment Status (Up \uparrow, Down \downarrow, Not Available N/A, Not Used O)

Equipment	Pre-Flight	In-Flight	Post-Flight	\# DATs / CDs (Expendables/ Printouts
Radar/LF	-			
Doppler Radar/TA	\checkmark			
Cloud Physics				
Data System	\checkmark			
GPS sondes	\checkmark			
AXBT/AXCP	\checkmark			
Ozone instrument				
Workstation	\checkmark			
Cameras LIdar	\sim			

\square

Plan:
(1) Figure 4 thaod is Center. AXist Ir sonde combos
(7) uns 300 m
Qlead domina, suin.
Odeselzoom

heads to z © 10 l fr
(13) z^{\prime} ten $x+$ dore
(10) Sune 200 m
(1) desud 100 N
(5)5Mi~(C100~ (5) P3 head out \rightarrow Rangetes
(5) hack " $X^{\prime \prime}$ UAs
(3) Dor coopte (10kft "X"
(8) heal to Pt 100 m offshurt sh of TSEd
\qquad cend pts.

(ger Iskorgalon war

Lead Project Scientist Event Log
Flight ID \qquad 20160808 I LPS \qquad Clane

Notez: No BTs but car compare
Note: BTS faily camplay. Stops IR
drops (use Regsondor) unt.l Cosster
Noted: Propt ("centerfix" had 3 kt e lokft + 34 kto sfec

Mission Summary
Storm name
YYMMDDA\# Aircraft 4_RF
Scientific Crew (4 RF)

Mission Briefing: (include sketch of proposed flight track or page \#)
Combo Dur (fy 4) + Coyok tedt/Rana mission

Mission Synopsis: (include plot of actual flight track)

Evaluation: (did the experiment meet the proposed objectives?)
Partial. Fyou 4 for Du -C
caus successful. Capote launch t 50 min flight was Successful. Ronge/comonsise did nt vet objecting
Problems:(list all problems)
8BT failures (n osuccesses)
coyote lost corms, reduced range ($\sim 50-60 \mathrm{~m}$ m flight
Expendables used in mission:
GPS sonde:
AXBTs

Sonobuoy: \qquad

