Radar Scientist

 Flight ID 2016080311 Storm Radar Scientist flurchvistophersenThe on-board radar scientist is responsible for data collection from all radar systems on his/her assigned aircraft. Detailed operational procedures and checklists are contained in the operator's manual. General supplementary procedures follow. (Check off or initial.)

Preflight

In-Flight

\checkmark

1. Monitor the Tail Doppler Radar function regularly, using the realtime TDR display, to make sure the Doppler radar is scanning and working normally.
\qquad 2. Maintain the Doppler Wind Parameter form as well as a written commentary in the Radar Event Log of event times, such as ending and restarting of radar recording. Also document any equipment problems or changes in R/T, INE, or signal status.

Post flight

\qquad 1. Complete the summary checklist and all other appropriate forms.
\qquad 2. Download all Tail (TA) radar data files to thumb drive.
\qquad 3. Brief the LPS on equipment status and turn in completed forms and thumb drives to the LPS.
\qquad 4. Debrief at the base of operations.
\qquad 5. Determine the status of future missions and notify HFP Director as to where you can be contacted.

HRD Radar Scientist Check List

Flight ID: \qquad
Aircraft Number: N43 RF
Radar Scientist: Hui Christophersen
Radar Technician: \qquad

Component Systems Status (Up \uparrow, Down \downarrow, Not Available N/A, Not Used \mathbf{O}): Radar Computer \qquad
Lower Fuselage (LF) Antenna \qquad
Tail (TA) Antenna \qquad

Time correction between LF radar time and digital time: \qquad

TA Radar Parameters:
(Single/Dual) PRF \qquad F/AST (Y/N) Rotation Rate \qquad RPM

Sweeps/File \qquad Record $2^{\text {nd }}$ Trip (Y / N) (Circle appropriate status)

Radar Post flight Summary

Significant down time:
Radar LF \qquad

Radar TA \qquad
Other Problems:

HRD Radar Event Log
Flight ID 20160803 II Aircraft N43RF
Radar Scientist \qquad
\qquad Richard
(Include down time and times of when recording ended and was restarted)

Time (HHMMSS)	Event
070641	Initial Radar setup completes. Everything looks good
084930	First drop
085832	(Top Inbound starts)
092902	drop $\# 4$

Doppler Wind parameters

Flight ID: Leg Start Time Heter	2016080311			Doppler flight-leg notes (for use in automatic QC and analysis)				Scientist: Hui Christoplersen			
	Leg End Time	Storm Motion		Center Fix			Inbound track	Outbound track	MaxRadiusDefault $=245$	Horz. Res Default $=5$	$\begin{gathered} \text { Sent } \\ ? \end{gathered}$
				Time	Latitude	Longitude					
HHMmSS	HHMmss	Degrees	Knots	HHMMSS	(Deg/Min)	(Deg/Min)	Degrees	Degrees	(km)	(km)	(Y/N)
084630	092402	280	12	090244	16.161	$83.47{ }^{\prime}$	150	150			
094318	102500	210	12	100530	16.16^{\prime}	$84.01{ }^{\prime}$	270	270			
104843	112020	275	10	105839	16.18	84.081	30	30			

