Radar Scientist

Flight ID 20160602T Storm EARL Radar Scientist ALARA

The on-board radar scientist is responsible for data collection from all radar systems on his/her assigned aircraft. Detailed operational procedures and checklists are contained in the operator's manual. General supplementary procedures follow. (Check off or initial.)

Preflight

✓ 1. Determine status of equipment and report results to lead project scientist (LPS).
✓ 2. Confirm mission and pattern selection from the LPS.
✓ 3. Select the operational mode for radar system(s) after consultation with the LPS.
✓ 4. Complete the appropriate preflight check list.

In-Flight

✓ 1. Monitor the Tail Doppler Radar function regularly, using the realtime TDR display, to make sure the Doppler radar is scanning and working normally.

___ 2. Maintain the Doppler Wind Parameter form as well as a written commentary in the Radar Event Log of event times, such as ending and restarting of radar recording. Also document any equipment problems or changes in R/T, INE, or signal status.

Post flight

___ 1. Complete the summary checklist and all other appropriate forms.
___ 2. Download all Tail (TA) radar data files to thumb drive.
___ 3. Brief the LPS on equipment status and turn in completed forms and thumb drives to the LPS.
___ 4. Debrief at the base of operations.
___ 5. Determine the status of future missions and notify HFP Director as to where you can be contacted.
HRD Radar Scientist Check List

Flight ID: 2016080217
Aircraft Number: 43
Radar Scientist: ALAKA
Radar Technician: DANA

Component Systems Status (Up ↑, Down ↓, Not Available N/A, Not Used O):

Radar Computer ↑
Lower Fuselage (LF) Antenna ↑
Tail (TA) Antenna ↑

Time correction between LF radar time and digital time: __

TA Radar Parameters:

(Single/Dual) PRF _____ F/AST (Y/N) Rotation Rate ___ RPM
Sweeps/File _____ Record 2nd Trip (Y/N) (Circle appropriate status)

Radar Post flight Summary

Significant down time:

Radar LF ______________
Radar TA ______________

Other Problems:

1) Reflectivity KMZ issues or MTS
Doppler Wind parameters

Flight ID: 20160802

Doppler flight-leg notes
(for use in automatic QC and analysis)

<table>
<thead>
<tr>
<th>Leg Start Time</th>
<th>Leg End Time</th>
<th>Storm Motion</th>
<th>Center Fix</th>
<th>Inbound track</th>
<th>Outbound track</th>
<th>Max Radius</th>
<th>Horz. Res</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHMMSS</td>
<td>HHMMSS</td>
<td>Degrees</td>
<td>(Deg/Min)</td>
<td>(Deg/Min)</td>
<td>Degrees</td>
<td>(km)</td>
<td>(km)</td>
<td>(Y/N)</td>
</tr>
<tr>
<td>041845</td>
<td>053000</td>
<td>280</td>
<td>14</td>
<td>211800</td>
<td>16(^\circ)10', 81°19'</td>
<td>160°</td>
<td>180°</td>
<td>245</td>
</tr>
<tr>
<td>053000</td>
<td>065600</td>
<td>280</td>
<td>14</td>
<td>222030</td>
<td>16°18', 81°50'</td>
<td>270°</td>
<td>270°</td>
<td>245</td>
</tr>
<tr>
<td>065600</td>
<td>083800</td>
<td>280</td>
<td>14</td>
<td>222030</td>
<td>16°18', 81°50'</td>
<td>270°</td>
<td>270°</td>
<td>245</td>
</tr>
</tbody>
</table>