Lead Project Scientist

\qquad 1. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from AOC flight director/meteorologist whether aircraft has operational fix responsibility and the mission designation.
4. Contact HRD members of crew to:
a. Assure availability for mission.
b. Review field program safety checklist
c. Arrange ground transportation schedule when deployed.
d. Determine equipment status.
\qquad 5. Meet with AOC flight director and navigator at least 3 hours before take-off for initial briefing.
6. Meet with AOC flight crew at least 2 hours before take-off for crew briefing. Provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
_ 7. Report status of aircraft, systems, necessary on-board supplies and crews to MGOC in Miami.
_ 8. Before take-off, brief the on-board GPS dropsonde operator on times and positions of drop times.
9. Make sure each HRD flight crew member has a life vest.
_ 10. Perform a headset operation check with all HRD flight crew members. Make sure everyone can hear and speak using the headset.

In-Flight

1.	Confirm from AOC flight director that satellite data link is operative (information).
2.	Confirm camera mode of operation.
3.	Confirm data recording rate.
4.	Complete Lead Project Scientist Form.
5.	Check in with the flight director to make sure the mission is going as planned (i.e. turns are made when they are supposed to be made).

Post flight

1. Debrief scientific crew.
2. Gather completed forms for mission and turn in to data manager at HRD.
3. Obtain a copy of the 10-s flight listing from the AOC flight director. Turn in with completed forms.
4. Obtain a copy of the radar DAT tapes. Turn in with completed forms.
5. Obtain a copy of serial flight data on thumb drive. Turn in with completed forms.
[Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]

- 6. Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to MGOC.

7. Determine next mission status, if any, and brief crews as necessary.
8. Notify MGOC as to where you can be contacted and arrange for any further coordination required.
9. Prepare written mission summary using Mission Summary form.
\qquad Experiment name \qquad
Flight ID \qquad Mission ID \qquad
E. - Equipment Status (Up \uparrow, Down \downarrow, Not Available N/A, Not Used O)

Equipment	Pre-Flight	In-Flight	Post-Flight	\# DATs/CDs Expendables/ Printouts
Radar/LF				
Doppler Radar/TA				
Cloud Physics				
Data System				
GPS sondes				
AXBT/AXCP				
Ozone instrument				
Workstation				
Cameras				

REMARKS:

Lead Project Scientist Event Log
Date \qquad Flight ID LPS

Time	Event	Position	Comments
	+/0		
80253	Begin turns	24275903	
181910	Begin 30°		Video Ifll true
			$8 k f t$
-1835	End 45°		
184242	Drap (1) CP	$2500{ }^{\prime} 5823^{\prime}$	SST 29.3
84855	Drop(2) BT	$2520^{\prime} 5809^{\prime}$	SET 29.3
185330	Drop S RT	$25.37^{\prime} 5800^{\circ}$	
185942	DCof(4) BT	2549.57361	S5T 29.2
96600	Drop (s) CP	26 ol' 5711	SST 289
191213	prop (b) BT	-?	SST 27.9
191833	Drep CTD	$2626{ }^{1} 5623^{\prime}$,	2 MLS SST 28.9
92504	drop (8) BT	$263815600{ }^{\prime}$	ST 27.4
93407	brop(a) CP	2655 5522	$555 \quad 27.3$
194300	Drop (10) Cp	$27.13^{\prime} 5447^{\prime}$	S4T 26.0
195150	Droo (1) CTD	$2729^{\prime} 5412{ }^{\prime}$	S5T 26-5
200042	Drop(12) BT	2546 ' $5333{ }^{\prime}$	SST 22.4
200820	Prop(13) lp	$2800^{\prime \prime} 5305$	$\times \mathrm{BaC}$
201437	Prof (1) Br	$2739^{\prime} 5311^{\prime}$	551×27.7
202057	Drop 15 CP	$2714^{\prime} 5317^{\prime}$	
202713	Drop(tb) $4 D$	$2650^{\prime} 5321^{\prime}$	S51 27.8
203355	Dratif cp	$2623 / 5327^{\prime}$	SST 27.2
204031	Arop(18) BT	$25^{5} 58^{\prime} 5333^{\prime}$	359 28.4
204746	Prop (19) CP	$2528^{\prime} 5339^{\prime}$	SST 28.6
205514	drop 20 (BT)	2459 ' 5345	
210152	Drop (2) CP	$2511^{\prime} 5323^{\prime}$	SST 28.5

Lead Project Scientist Event Log

Date \qquad Flight ID

LPS \qquad

	Time	Event	Position	Comments
	210900	Oreper 3T	$2523{ }^{\prime} 5256$	
	21602	Prop 23 COD	$2 \sqrt{38^{\prime}} \sqrt{228}$	
	212224	Proo 24 BT	$2549 \prime 52031$	27.755%
	212850	Propt25 CP	$2601^{\prime} 5137^{\prime}$	55 J 27.5
	213502	Proo 26 ¿l	$2612^{\prime} 5112^{\prime}$	SST 27.6
$\operatorname{tur} \tilde{5}+0$	214140	Prop(21) CP	$262 y^{\prime} 5047^{\prime}$	SST 28.1
	214804	Prop 28 CTD	$2610^{\prime} 5025^{\prime}$	557287
	215422	Drop(29)Ce	$2555^{\prime} 50.02^{\prime}$	$55[28.2$
	220010	$D \cos 30)$ CP	2541	X $3 A D$
	220628	Drop (31) Cp	25335000^{\prime}	$X B A D$
	221252		25215024	
	211926	PD(33) 18	25085050	23.5 55
	222558	Drop (34) 3T	24555115	28.5557
	223315	Drup 35 m	24415143^{\prime}	S5T 28.4
	224007	DCoP 36 ce	$2427^{\prime} 5209^{\prime}$	S5T 28.5
	224709	Drop (3) BT	$2413{ }^{1} 5235$	$55+287$
multionedr	225415	Drep 38 CTD	$2359 \quad 5303$	SST 29.1
$<$		Deoper 29 ति		
		(

