Radar Scientist | Flight I | D | Storm | Radar Scientist | |-----------|---------|---|---| | on his/h | er assi | ard radar scientist is responsible for datigned aircraft. Detailed operational proces's manual. General supplementary proces | edures and checklists are contained | | Prefligh | nt | | | | | 1. | Determine status of equipment and report r | esults to lead project scientist (LPS). | | 2 | 2. | Confirm mission and pattern selection from | the LPS. | | 3 | 3. | Select the operational mode for radar syste | m(s) after consultation with the LPS. | | | 4. | Complete the appropriate preflight check li | st. | | In-Fligh | ht | | | | | 1. | Monitor the Tail Doppler Radar function display, to make sure the Doppler radar is s | | | | 2. | Maintain the Doppler Wind Parameter for
the Radar Event Log of event times, su
recording. Also document any equipment
signal status. | ch as ending and restarting of radar | | Post flig | ght | | | | | 1. | Complete the summary checklist and all of | her appropriate forms. | | 2 | 2. | Download all Tail (TA) radar data files to t | chumb drive. | | | 3. | Brief the LPS on equipment status and turn to the LPS. | n in completed forms and thumb drives | | | 4. | Debrief at the base of operations. | | | | 5. | Determine the status of future missions and can be contacted. | d notify HFP Director as to where you | **Doppler Wind parameters** | Flight ID: | Doppler flight-leg notes (for use in automatic QC and analysis) Scientist: ABERSON | | | | | | | | 1 | | | | |--------------------|---|---------|--------|--------|---------------------|-----------|------------------|-------------------|--------------------------------|--------------------------|-----------|-----------------------------------| | Leg Start
Time | Leg End
Time | Storm | Motion | Time | Center Fix Latitude | Longitude | Inbound
track | Outbound
track | Max
Radius
Default = 245 | Horz. Res
Default = 5 | Sent
? | | | HHMMSS | HHMMSS | Degrees | Knots | HHMMSS | (Deg/Min) | (Deg/Min) | Degrees | Degrees | (km) | (km) | (Y/N) | | | PRISTED A | | 300 | 12 | /20000 | 27 00 | 55 06 | | | | | | | | 140500 iup | wind
145400 | 305 | 11 | 151217 | 27 16 | 55 4/3 | 145 | 135 | | | | 83 kt SFMR 101 kt FL 966 mb Sonde | | inbound
145405 | 153200 | | | | | | 145 | 135 | | | | | | 153200 | nurnol 16000 | | | 162426 | 27 27 | 55 53 | | | | | | 92H SFMR
103H FL
96bmb | | 160200 | 164000 | 305 | 11 | 162735 | 27 27 | 55 55 | 225 | 060 | | | | 87kt SFHR
115kt FL
968mb | | inbound
16.4000 | outbound
170700 | | | | | | 240 | 060 | | | | | | unknend
170700 | outband
173500 | | | | | | 240 | 020 | | | | | | inbourd
193500 | 182465 | | | 180750 | 27 41 | 56 09 | 195 | 210 | | | | 83kt SFMR
163ktFL
963mb |