Lead Project Scientist | Preflight | | |-------------|---| | 1. | Participate in general mission briefing. | | 2. | Determine specific mission and flight requirements for assigned aircraft. | | 3. | Determine from field program director whether aircraft has operational fix responsibility and discuss with AOC flight director/meteorologist unless briefed otherwise by field program director. | | 4. | Contact HRD members of crew to: a. Assure availability for mission. b. Review field program safety checklist c. Arrange ground transportation schedule when deployed. | | 5. | d. Determine equipment status. Meet with AOC flight director and navigator at least 3 hours before take-off for initial briefing. | | 5. | Meet with AOC flight crew at least 2 hours before take-off for crew briefing. Provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots. | | 6. | Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami). | | 7. | Before take-off, brief the on-board GPS dropsonde operator on times and positions of drop times. | | 7. | Make sure each HRD flight crew members have life vests | | 7. | Perform a headset operation check with all HRD flight crew members. Make sure everyone can hear and speak using the headset. | | 8. | Collect "mess" fee (\$2.00) from all on-board HRD flight crew members. | | In-Flight | | | 1. | Confirm from AOC flight director that satellite data link is operative (information). | | 2. | Confirm camera mode of operation. | | 3. | Confirm data recording rate. | | 4. | Complete Lead Project Scientist Form. | | 5. | Check in with the flight director to make sure the mission is going as planned (i.e. turns are made when they are supposed to be made). | | Post flight | | | 1. | Debrief scientific crew. | | 2. | Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to MGOC. | | 3. | Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.] | | 4. | Obtain a copy of the 10-s flight listing from the AOC flight director. Turn in with completed forms. | | 5. | Obtain a copy of the radar DAT tapes. Turn in with completed forms. | | 6. | Obtain a copy of the all VHS videos form aircraft cameras (3-4 approx.). Turn in with completed forms. | | 7. | Obtain a copy of CD with all flight data. Turn in with completed forms. | | 8. | Determine next mission status, if any, and brief crews as necessary. | | 9. | Notify MGOC as to where you can be contacted and arrange for any further coordination required. | | 10. | Prepare written mission summary using Mission Summary form (due to Field Program Director a week after the flight). | # Lead Project Scientist Check List | Date 9-14-200 | | | 0208A I | | |--|--------------------------|--|--|-----------------| | A. Participants: | | one restante econo co | 020071 | ngvia | | | IRD | | AOC | | | Function | Partici | | n | Participant | | Lead Project Scientis | | lhorn Flight D | irector | Paul Flohetz | | Radar | Paul Le | 4 shtor Pilots | westernings on the result | La las | | Workstation | 11 | Navigat | or | Frong/rewnan | | Cloud Physics | V/A | The state of the state of the same has | Engineer | | | Photographer/Observ/Guests | er | Data Te | chnician | | | Dropwindsonde | Erie/ | Paul Electron | ics Technician | 4 | | AXBT/AXCP | Eric/1 | U. Other | Ocean Win | ds Crew | | | | hados
Labados | | | | Number of Eye Penetro C. Past and Forecast Date/Time | ations: | | MSLP | Maximum | | Number of Eye Penetr | ations: Storm Location | ons: | MSLP | Maximum
Wind | | Tumber of Eye Penetr | ations: Storm Location | ons: | MSLP | | | Number of Eye Penetr | ations: Storm Location | ons: | MSLP | | | Number of Eye Penetr | ations: Storm Location | ons: | MSLP | | | Number of Eye Penetr | ations: Storm Location | ons: | MSLP | | | Number of Eye Penetr | ations: Storm Location | ons: | MSLP | | | Date/Time | ations: Storm Location | ons: | MSLP | | | Date/Time Datesion Briefing: | Storm Location Latitude | Longitude | and a second process of a second broadpast o | | | Number of Eye Penetr | Storm Location Latitude | Longitude | and a second process of a second broadpast o | Wind | ### Lead Project Scientist Event Log Date 2067-09-14 prograf H1 LPS Frie U, | 0750 0750 0750 0750 0750 0750 0750 0750 | Time | Event | Position | Comments | |--|-------|--|--------------------|---------------------------| | 0750 0825 0825 0825 0826 0826 0828 0838 0 | 07217 | Tabesff | Barbados | | | 1825 1825 1826 1826 1828 1828 1828 1828 1828 1828 | 0750 | | | Disabled Chips SFMR | | 1858 Desard to 1430 1952 IP 1952 IP 1952 IP 1952 IP 1952 IP 1952 PRIO AXETO 1417 48.23 1002 9950 14.78 48.77 SFWL 16 m/s 1017 9950 15.30 49.80 SFML 17 m/s 1018 9950 070 16.86 SD.59 SFML 17 m/s 1018 9950 070 16.86 SD.59 SFML 19 m/s 1110 9950 15.30 SO.59 SFML 19 m/s 1110 9950 15.55 50.09 1110 9950 14.87 SO.59 SFML 19 m/s 1112 9950 14.87 SO.59 SFML 19 m/s 1112 9950 14.87 SO.59 SFML 14m/s 1112 9950 14.87 SO.59 SFML 14m/s 1112 9950 14.87 SO.59 SFML 14m/s 1112 9950 14.87 SO.05 1127 9950 14.89 49.87 SFML 16 m/s 1115 9950 14.89 49.87 SFML 16 m/s 1152 9950 15.55 49.75 Center FX 1142 9950 15.56 49.23 1151 9950 16.01 GS.74 SFML 17 m/s 1152 9950 16.01 GS.74 SFML 17 m/s 1154 9950 16.01 GS.74 SFML 17 m/s 1157 turn to box 1 1337 FT O N.15 49.80 GO MI S 1402 BT O N.15 49.80 GO MI S | 4825 | | | due to KWRAP RFI | | 0930 Descrit to \$000' 0952 IP 1404'N 048 169' 0952 9960 AXBTO 14:17 48.23 1007 9950 14:78 48:97 SFINK 16 m/s 1017 9950 15:70 49:80 SFMR 17 m/s 1039 9950 050 16:36 50:59 SFMR 19 m/s 1039 9950 050 16:36 50:59 SFMR 19 m/s 1110 9950 14:52 50:09 Heavy Ram drop FMR 11112 9950 14:52 50:09 Heavy Ram drop FMR 11122 9950 14:52 50:09 Heavy Ram drop FMR 11122 9950 14:89 49:87 SFMR 16 m/s 1127 9950 14:89 49:87 SFMR 16 m/s 1135 9950 15:05 49:75 Center Fix 1142 9950 15:56 49:23 1150 49:57 50:04 SFMR 17 m/s 1150 9950 15:56 49:23 1150 9950 15:56 49:23 1150 9950 15:56 49:23 1150 15:56 49:23 1150 15:57 49:50 Go M 5 | 0825 | | | Best Radar | | 0952 | 0858 | | | | | 0952 | 0930 | Descent to 50001 | | designation of the second | | 0952 9860 AXCTO 14.17 48.23 1007 9850 14.78 48.97 SFWL 16 m/s 1017 9850 070 15.09 49.86 Center 1022 9850 15.30 49.80 SFMR 17 m/s 1028 9850 15.58 50.09 1039 9850 070 16.06 50.59 SFMR 19 m/s 1054 BT B 15.17 50.68 557 28.11 1110 9850 14.7 50.59 587 27.0 SFMR 14m/s 1118 9860 14.52 50.19 Heavy Rain drop 38 m/s 1122 9850 14.89 49.87 SFMR 16 m/s 1135 9850 15.05 49.76 Center 5x 1142 9850 15.05 49.76 Center 5x 1142 9850 15.56 49.23 11562 9850 16.04 48.74 80 nmi PE 1157 Turn to box 1 1337 870 14.15 49.80 Go Mi S 1402 87.80 16.04 48.74 80 nmi PE | 0952 | IP | 14 0.4 N 048 18.9" | | | 1007 983 14.78 48.97 SFINE 16 m/s 1017 986 BTD 15.09 49.06 Center 1022 9850 15.30 49.80 SFINE 17 m/s 1039 9850 BTO 16.06 50.59 SFINE 19 m/s 1059 BTA 15.17 50.68 557 28.1 1110 9858 BTB 14.7 50.59 587 28.1 1110 9850 14.52 50.09 Heavy Rain drop 38 m/s 1122 9850 14.89 49.87 SFINE 16 m/s 1135 9850 15.05 49.70 Center Fix 1142 9850 15.05 49.23 1146 98514 15.56 49.23 1156 9850 16.01 48.74 80 nmi NE 1157 turn to box 1 1337 870 N.15 49.80 Go Mi S 1402 BTO 14.15 49.80 Go Mi S | 0952 | GPS O AXISTO | | | | 1017 978 BTD 1509 49.86 Center 1022 978 D 15.30 49.80 SFMR 17 m/s 1028 978 D 07 D 16.06 50.59 SFMR 19 m/s 1039 978 D 07 D 16.06 50.59 SFMR 19 m/s 1059 BT B 15.17 50.68 587 28.11 1110 978 B BT B 14.17 50.59 587 27.09 SFMR 14 m/s 1118 978 D 14.52 50.9 Heavy Rain drop 35 m/s 1122 978 D 14.89 49.87 SFMR 16 m/s 1135 978 D 15.05 49.76 Center 5 x 1142 978 D 15.35 49.76 Center 5 x 1142 978 D 15.56 49.23 1156 978 D 15.56 49.23 1157 turn to box 1 1337 87 D 14.15 49.80 Go mi 5 1402 BT B 14.15 49.80 Go mi 5 | 1002 | 985 D | | CONTRACTOR OF | | 1022 978 15.30 49.80 SFMR 17 m/s 1028 978 0 15.58 50.09 1039 978 0 57 0 16.86 50.59 SFMR 19 m/s 1059 BT A 15.17 50.68 587 28.11 1110 978 8 57 3 14.17 50.59 SFT 27.9 SFMR 14 m/s 1118 978 0 14.52 50.09 Heavy Rain drop struck of the second secon | 1007 | | | SFWR 16 m/s | | 1078 998 0 BT 0 15.58 50.09 1039 988 0 BT 0 16.06 50.59 SEMPL 19 M/S 1059 BT B 15.17 50.68 55T 27.09 SEMPL 14 M/S 1110 988 BT B 14.17 50.59 SET 27.09 SEMPL 14 M/S 1118 9850 14.52 50.09 Heavy Rain drop FRIPL 1122 9850 14.89 49.87 SEMPL 16 M/S 1135 9850 15.05 49.76 Center Fix 1142 9850 15.05 49.76 Center Fix 1142 9850 15.56 49.23 1156 9850 576 16.04 48.74 80 min NE 1157 turn to box 1 1337 850 N.15 49.80 Go Mi S 1402 BT B N.15 49.80 Go Mi S | 1017 | 6 PS (B) BTO | 15.09 49.86 | Cluter | | 1039 GPS D BT O 16.86 S0.59 SFMR 19 M/S 1059 BT B 15.17 S0.68 SST 28.1 1110 GPS B BT B 14.17 S0.59 SST 27.9 SFMR 14 M/S 1118 GPS O 14.52 S0.09 Heavy Rain drop FMR 3 1122 GPS O 14.89 49.87 SFMR 16 M/S 1135 GPS O 15.05 49.76 Center Fix 1142 GPS O 15.05 49.23 1142 GPS O 15.56 49.23 11562 GPS O GTO 16.01 48.74 BO NAI PE 1157 Turn to box 1 1337 BT O N.15 49.80 GO ME 5 | | The second secon | 15:30 49.80 | SFMR 17 m/s | | 1059 BT PD 15.17 50.68 558 28.1 1110 GRS B BT B 14.17 50.59 58T 27.09 56MR 14M/5 1118 GPS B 14.52 50.09 Heavy Rain drop 56MR 14M/5 1122 GPS B 14.67 50.05 1127 GPS B 14.67 50.05 1135 GPS B 15.05 49.76 Center Fix 1142 GPS B 15.05 49.23 1142 GPS B 15.56 49.23 1156 GRS B 16.04 48.74 BO Not PE 1157 Turn to box 1 1337 BT B 14.15 49.80 GO ME 5 1402 BT B 60 M E | 1028 | GPS (6) | | | | 1110 FRS 8 BT B 1118 GPS B 1118 GPS B 1122 GPS B 1127 GPS B 1135 GPS B 1505 49.76 Center Fix 1142 GPS B 1505 49.23 1156 GPS B 1505 49.23 1156 GPS B 1507 FT B 1508 GPS B 1508 GPS B 1509 150 | 1039 | GPS 0 BT 0 | | SFMR 19 m/s | | 1110 9PS B BT B 14.7 50.59 587 27.0 5FMR 14M/5 1118 9PS B 14.52 50.9 Heavy Rain drop 5FMR 14M/5 1122 9PS B 14.67 50.05 1127 9PS B 14.67 50.05 1135 9PS B 15.05 49.70 Center 15x 1142 9PS B 15.05 49.70 Center 15x 1142 9PS B 15.56 49.23 1156 9PS B 16 B 16.04 98.74 BO non i PE 1157 turn to box 1 1157 1402 BT B N.15 49.80 Go Mi S 1402 BT B 16.04 PS.74 BO Mi S | 1059 | BTA | 15.17 50.68 | 58[28:1 | | 1122 GPS (10) 14.67 50.05 1127 GPS (10) 14.89 49.87 SFMR 16 m/s 1135 GPS (10) 15.05 49.78 Center Fix 1142 GPS (10) 15.05 49.23 1146 GPS (10) GT (10) 16.04 (18.74 80 nmi PE 1157 turn to box 1 1337 BT (10) 14.15 49.80 Go mi S 1402 BT (10) 14.15 49.80 Go m E | 1110 | 5PS 8 BT 5 | | SST 27.0 SFAR 14M/5 | | 1122 GPS (10) 14.67 50.05 1127 GPS (10) 14.89 49.87 SFMR 16 m/s 1135 GPS (10) 15.05 49.78 Center Fix 1142 GPS (10) 15.05 49.23 1146 GPS (10) GT (10) 16.04 (18.74 80 nmi PE 1157 turn to box 1 1337 BT (10) 14.15 49.80 Go mi S 1402 BT (10) 14.15 49.80 Go m E | 1118 | 9050 | | Heavy Rain drop stark to | | 1135 GPS (2) 15.05 49.76 Center Fix 1142 GPS (3) 15.99 49.41 SFMR 17 M/S 1146 GPS (4) 15.56 49.23 1156 GPS (3) PT(3) 1157 turn to box 1 1337 PST (3) 1402 BT (3) 15.05 49.70 Go Mi S 1402 BT (3) 15.05 49.80 Go Mi S 16.04 Go M E | 1122 | GPS (10) | | | | 1142 9800 15.99 49.41 SFAR 17 M/S 1146 98514 15.56 49.23 11562 980 970 16.04 48.74 80 nmi PE 1157 turn to box 1 1337 1570 14.15 49.80 60 mi S 1402 1578 60 M E | 1127 | | 14.89 49.87 | | | 1196 98514 15.56 49.23
1156 98 0 GTC 16.04 48.74 80 nmi PE
1157 turn to box 1
1337 157 0 14.15 49.80 Go Mi S
1402 BT B GO M E | | | 15.05 49.76 | Center Fix | | 1156 918 0 GTO 16.04 48.74 80 nmi PE
1157 turn to box 1
1337 BTO N.15 49.80 Go Mi S
1402 BTO GO ME | | | | SFAR 17 M/S | | 1157 turn to box 1
1337 BT 0 N.15 49.80 Go Mi S
1402 BT 0 GO M E | 1146 | | | | | 1337 BT (B) 14.15 49.80 GOMES
1402 BT (B) GOME | 11562 | 9150 50 | 16.04 48.74 | Bonni ME | | 1337 BT (B) N.15 49.80 GOMES | | turn to box 1 | | | | 1402 BT (3) GOME | | | N.15 49.80 | 60 Mi 5 | | 1411 two final outer 15.97 49.10 | 1402 | BT (8) | | 60 M E | | | | two final outer | 15.97 49.16 | | | 100× 10g | | box leg | | | #### Hurricane Recco Plotting Chart True at 25° Latitude, in Degrees and Minutes Note: Label full degrees according to location of the flight area. #### Lead Project Scientist Event Log | Date Fight LF3 | Date | Flight | LPS | |----------------|------|--------|-----| |----------------|------|--------|-----| | | | | 2.00,1 | |-----------------------|------------------|----------------|-------------------| | Time | Event | Position | Comments | | 1420 | BTO | IS.99 49,67 | Final BT | | 1471 | End of leg | 15.97 So. So | FP | | | | | | | | | | 1 1 12 | | | | | 0.1 | | | | | | | | | | | | 0. | | 44 | 0.7 | | | | | 0.5 | | | | X (4) | | | ma - view - i - i - i | | | 22 | | 0.8 | | | 00 | | | 1-1- | | | | | | | | | 02 | 97 | | 0.00 | 0.2 | | 7-6 4 - 5 - 5 - 6 - 6 | 050108 111112185 | as erasalinina | 01080808080108010 | | | | | | | | | | | # Mission Summary Storm name YYMMDDA# Aircraft 4_RF | Mission Briefing: (include sketch of proposed flight track or page #) | |---| | | | See flight track sketch | | | | | | Mission Synopsis: (include plot of actual flight track) | | Flight proceeded as planned, with the | | exception of shortened outer box leg | | East of Storm (80 m) instead of 120) for finelins, | | Evaluation: (did the experiment meet the proposed objectives?) | | Missian went of what a hitch a All Sondes | | ANSTS good Both doppler analyses completed | | and transmitted. | | Problems:(list all problems) | | | | | | Expendables used in mission: GPS sondes: AXBTs: Sonobuoys: |