Mission Summary
 991014I Aircraft 43RF
 Reconnaissance Mission for Hurricane Irene

Scientific Crew (43RF)

Lead Scientist	J. Cione
AXBT Scientist	J. Cione
GPS Scientist	M. Black
Radar Scientists	P. Dodge

Mission Briefing:

This was an NHC-tasked reconnaissance mission into Hurricane Irene. Such missions are routinely required when Tropical Cyclones (TC) move in close proximity to Cuba. Under these conditions, the Air Force Reserves cannot conduct TC reconnaissance missions. During the 991014 I mission we also made a conscious effort to obtain ocean thermal structure out ahead of the TC (predominantly to the north and east of the system) while still fulfilling our flight requirements of $21 \mathrm{Z}, 00 \mathrm{Z}$ and 03 Z center fixes. In addition to the AXBT drops we also deployed several GPS sondes in and around areas of active convection throughout flight 991014I.

Mission Synopsis

The flight departed MacDill AFB at 1856 UTC on 10/14 and landed there at 0355 UTC, on $10 / 15$ for a duration of 9 hours. The flight pattern consisted of a direct path to the Dry Tortugas C-MAN site (24.40N 81.50W). From there we headed SE to the IP (23.33N 80.50W). Along that leg 5 AXBTs were deployed within the relatively deep waters of the Loop Current north of Cuba. For 3 of the 5 AXBTs launched, concurrent atmospheric soundings from GPS sondes were obtained. $4 / 5$ of the AXBTs were successful. Unfortunately the one failure was launch number one which was with a GPS comparison at the Dry Tortugas CMAN site. After this leg we headed SW for the $21 Z$ fix which ended up being located only a couple miles SW of Havana. The 00 Z and $03 Z$ fixes were located just off shore and north of Havana. Due to the location of the center of circulation we alternated between 105 mi . coastal patrol legs (i.e. E-W legs along northern Cuba coastline) and 'half pie slice' radial legs away from the center (see attached sketch in flight log). After our $03 Z$ fix we headed out north and west of the circulation center 24 N 84.3 W . At this location we were in deeper water associated with the loop current and as such, deployed 4 AXBTs along our flight back to MacDill.

A total of 11 AXBTs, were deployed. Of these 11, SST was recorded for 10 drops (i.e. a 91% success rate). SST measurements ranged from 27.7-29.0C. Of the 11 drops MLDs were obtained from only 6 AXBTs (i.e. a 55% success rate). MLDs ranged from $40-67 \mathrm{~m}$. We also launched 15 GPS dropwindsondes
during flight 991014 I . For 4 of these GPS sondes we obtained thermal ocean structure from 4 concurrent AXBT launches. Of the 15 GPS sondes deployed, 7 measured a 10 m surface wind. The maximum surface wind observed by GPS for this flight was 46 kts within the west wind maxima ~ 20 miles north and west of the center (SFMR reported maximum surface winds $\sim 60 \mathrm{kts}$). Minimum surface pressure extrapolated from 5 k ft was 988 mb at 21 Z . Doppler and C-band radar systems in addition to SFMR were used throughout the mission.

Problems:

There were several minor/moderate problems associated with this mission. The AXBT signal strength was noticeably weak especially when we were above 10 k ft and in precipitation (inbound and outbound legs). A recommendation for future AXBT deployments is that the aircraft speed remain below 225 kts and flight level should be at or below 10 kf . Under these conditions the data seems to be much less noisy and in general more reliable. Also SFMR winds illustrated a consistent 'high bias' when compared with the GPS surface winds. This may or may not have something to do with the presence of a rapidly moving loop current in this region. (It is also possible that other issues may be at play.) This problem/inconsistency should be given high priority given the obvious operational potential of SFMR. Another area of concern is with the continual/habitual failure of the GPS sondes in obtaining near-surface winds (i.e. $8 / 15$ - a 53% failure rate). This season the GPS sondes have often not been able to obtain the average boundary layer winds and/or 10 m surface winds. It is possible that a dialogue with Viasala may be necessary(?) Finally, both radar systems worked without any major problems throughout the mission.

E. 2 Lead Project Scientist (On-Boand)

E.2.1 Prellight

I. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from CARCAH or field program director whecher aircraft has operational fix responsibility and discuss whth AOC filght director/meteorologist and CARCAH unless briefed otherwise by field program director.
4. Contact HRD members of crew to:
a. Acsure avaliability for misision.
b. Arrange ground transportation schedule when deployed.
c. Determine equipment status.
\qquad 5. Meet whth AOC filght crew at least 90 minutes before tukeoff, provide copies of fight requirements, and provide a formal briefing for the fight director, navigator, and pilots.
\qquad 6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E.2.2 In-Flight

\qquad I. Confirm from AOC night director that satellite data link is operative (information).
2. Confirm camera mode of operation.
3. Confirm dater recording rate.
4. Complete Form E-2.

E.2.3 Postilight

\qquad I. Debrief scientific crew.
2. Report landing time, aircraft, crew, and mission status along with supplies (tupes, etc) remaining aboard the alrcrift to the approprtate HRD operations center (MGOC or FGOC).
3. Gather completed forms for miasion and urn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the NOC filght director.]
4. Obeain a copy of the $10-\mathrm{s}$ fibigt listing from the AOC fight director. Turn in with completed forms.
5. Determine next mission status, if any, and brief crews as necessary.
6. Notify the approprinte operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordlination required.
7. Prepare wititen miasion summary.

On-Board Lead Project Scientist Check List
\qquad Aircraft \qquad $43 R F$

Flight ID \qquad 9910147
A. Participants:

TakeOff: \qquad $18: 56$ Location: \qquad MaCDill Landing: \qquad Location: Mac Dill
B. Past and Forecast Storm Locations:

Date/Time	Lattrude	Longtrude	MSLP	Maximum Wind

C. Mission Briefing: Reconnaissance mission for
\qquad of Havana ~ 18 z $10 / 14$
D. Equipment Seatus

Equipment	Pre-Flight	In-Flight	Post-Flight
Areraft			
Redar/LF			
Radar/TA (Doppler)			
Cloud Physics			
Dati System			
Omegasondes			
AXBT/AXCP			
Workstation			
Photography			

REMARKS:

E. (I) Proposed Flight Pattern (sketch or designate by number)
E. (II) Actual Flight Pattern

Hurricane Recco Plotting Chart
 True at 25° Lattucde, in Degrees and Minutes

Noto: Labol full dogrees according to location of filght area.

Lead Project Scientist Event Log
Date $10 / 14 / 99$

Flight \qquad uPS Clone

Hurricane Recco Plotting Chart

True at 25° Lattude, in Degrees and Minutes

Note: Labol full dogress eccording to location of filght arca.

Lead Project Scientist Event Log

Lead Project Scientist Event Log

Lead Project Scientist Event Log

