19990913 II_LPS

E.2 Lead Project Scientist (On-Boand)

E.2.1 Preningt

I. Participate in general mission briefing.
2. Determine spectic mission and flight requirements for assigned aircraft.
3. Determine from CARCAH or field program director whether aircraft has operational fix responsibility and diecuss whth AOC filght director/meteorologist and CARCAH unless briefed otherwise by field program director.
4. Contect HRD members of crew to:
a. Assure avalability for masion.
b. Arrange ground transportation schedule when deployed.
c. Determine equipment strtus.
5. Meet whth $A O C$ filght crew at least 90 minutes before tukeoff, provide copies of flight requirements, and provide a formal briefing for the flight director, navigator, and pilots.
6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).
E.2.2 In-Flisht
\qquad I. Confirm from AOC flight director that extellite clata link is operative (information).
__ 2. Confirm camera mode of operation.
\qquad 3. Confirm dete recording rate.
4. Complete Form E-2.

E. 23 Postllight

I. Debrief scientific crow.
2. Report landing time, aircraft, crow, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to the approprlate HRD operations center (MGOC or FGOC).
3. Gather completed forms for miasion and turn in at the appropriate operations center. [Note: all date removed from the aircraft by HRD personnel should be cleared with the AOC filght director.]
4. Obtain a copy of the $10-8$ flight listing from the AOC fllght director. Turn in with completed forms.
5. Determine next mission status, if any, and brief crews as necessary.
6. Notify the appropratse operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.
7. Propare writuen mission summary.

On-Board Lead Project Scientist Check Lint

Date 13 SEP99 Aircraft N43 Fight 990913I

A. Participants:

TakeOff. $13 / 1738$ z Location: M1 A Landing: $14 / 0153$ z Location: M1A
B. Past and Forecast Storm Locations:

Date/Time	Latitude	Longitude	MSLP	Maximum Wind
$13 / 20$	24.3	73.5	916	LOTS

C. Mission Briefing:

FLY XCDX, DROP NUNERONS SONDE 3
D. Equipment Status

REMARKS:
(1) JUST BH IP SWAAPPED LF RLT. NO BETTER switehed back TO ORIG. Reflectivitos low 28-32diz max
(2) Dato systom frozon 1959-2009
(3) HAD TO RESTAIZT AVAPS DFFINULT TO GET DROP DATA TO WOILLSTATION.
LOST COMM BETLEEN AUAPS $\$$ HAPS TTANSMITED ONLY TME FIZST DIROPS.

E. (I) Proposed Flight Pattern (sketch or designate by number)

E (II) Actual Flight Pattorn

Nominal Ó 24.3,73.5 @ 13/20Z

Hurricane Recco Plotting Chart

True at 25° Lattude, in Degrees and Minutes

Noto: Labol full degrees according to location of filght arca.

Lead Project Scientist Event Log

Date ___ Flight______ LPS____

${ }_{\text {m ma }}$	Eman	Patamen	Commans

Hurricane Recco Plotting Chart

True at 25° Lattude, in Degrees and Minutes

Noto: Label full dagrees according to location of filght arca.

Lead Project Scientist Event Log

Lead Project Scientist Event Log

Date 13 SEP 9
Flight 990913 I
LS 上ハルとOUGHRオオ

（1）Inner Qu， 20 nmi Outer 60 Bright stars i moon on exit

Fight $990913 I$
LPSWILLOUGHI3-1

Time	Event	Position	Comments
131738	T/O	M1A	
1901	AT 12 kft	$\begin{aligned} & 22^{0} 533^{\prime} \\ & 74054^{\prime} \end{aligned}$	LF flaley
1916	IP DIZOP 1 GOOD	$\begin{aligned} & 2230 \\ & 73262 \end{aligned}$	$\begin{aligned} & \text { LFigsort of UP } \\ & \text { with orig RIT } \end{aligned}$
1930	$\begin{aligned} & \text { DROD2 } \\ & G O D D \end{aligned}$	$\begin{aligned} & 2320 \\ & 7324 \end{aligned}$	TRAK $\mathrm{N} \longrightarrow \mathrm{g}$
1942	$6 \text { DIZOP 2.5 }$	$\begin{aligned} & 24-08 \\ & 73-14 \\ & \hline \end{aligned}$	NOT TOO FAR NOIZTH TRAK N G \rightarrow
1957	Drap 3, BTE	$\begin{aligned} & 25-13 \\ & 73-14 \\ & \hline \end{aligned}$	ET BAD
1959			DATA SYSTEM FROEEN
2009			DATA BACI<
2012	DROPA PATEIAY	$\begin{aligned} & 26^{\circ} 15^{\prime} \\ & 73^{\circ} 18^{\prime} \end{aligned}$	STAIZT DOW N WIAID TO POINT 5
2023	$B T^{\prime} b^{\prime \prime}$ GOOD	- 4	Missed position
2034	BT "C" GOOD	$\begin{aligned} & 24051 \\ & 7450 \end{aligned}$	
2046	DROP 5	$\begin{aligned} & 24 \circ 057 \\ & 750331 \end{aligned}$	TRAIC E $\rightarrow 5$
2101	DROP 6	$\begin{aligned} & 24^{\circ} .0^{\prime} \\ & 74^{\circ} 26^{\prime} \end{aligned}$	windos
2110	DROP 6.1	in eyowall	
2113	CENTER	$\begin{aligned} & 24018^{\prime} \\ & 73029 \\ & \hline \end{aligned}$	
2116	DROP $6 . ?$		
2121	BT "d"	$\begin{aligned} & 24^{\circ} .16^{\prime} \\ & 72^{\circ} 52^{\prime} \end{aligned}$	
2130	$0120 P^{2}$	$\begin{array}{\|l\|} \hline 24^{\circ} 16^{\prime} \\ 72^{\circ} 18^{\prime} \end{array}$	WINTS BT GOOP
$21^{\prime} 47$	$\begin{array}{\|l\|} \hline \text { DROP8 } \\ \text { TURN DOW NWMD } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24019^{\prime} \\ 71^{\circ} 46^{\prime} \\ \hline \end{array}$	winds
2205	Dropa $\text { TIZAK SE } \rightarrow 6$	$\begin{aligned} & 25^{\circ} 41 \\ & 71052 \\ & \hline \end{aligned}$	winds
2219	DROP 10 BT f	$\begin{aligned} & 25000 \\ & 72040 \end{aligned}$	BTGOOD

HRD GPS Dropwindsonde Scientist Log (Revised 6/1999)
Storm \qquad Floyd Flight Director \qquad Barry Damiano Page \qquad 1 of of 2 Flight ID 990913 I Dropwindsonde scientists LEIGHTON/DORST Takeoff 17:32 UTC Mission ID WXWXA FLOYD avaps operators DALE CARPENTER
\qquad Landing 0200 UTC

HRD GPS Dropwindsonde Scientist Log (Revised 6/1999)
Storm \qquad FLOYD Flight Director \qquad Damian Page 2 of of z Flight ID \qquad 990913 I Dropwindsonde Scientists \qquad LEIOHTON/DORST Takeoff 1732 UTC Mission ID WXWXA FLOYD AVAPS operators \qquad CARPENTER

Landing \qquad UTC
 Hurricane Research Division

AOML/NOAA
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Ph: (305) 361-4400
Fx: (305) 361-44402
Hugh.WIlloughby@noaa.gov

September 23, 1999

MEMORANDUM FOR: F. D. Marks

FROM: H. E. Willoughby

SUBJECT: Flight 990913I mission summary
Planning: Flight 990913I into Hurricane Floyd was an eXtended Cylone Dynamics eXperiement (XCDX) mission with added oceanographic observations. It originated and terminating at Miami International Airport. HRD participants were: Hugh Willoughby, Neal Dorst, Paul Leighton, Kristina Katsaros, and Liz Ritchie (Naval Postgraduate School). Because the hurricane was about 400 nmi from Miami, the normal six-sided "butterfly" pattern was replaced with a rotating figure for with nominal 130 nmi legs. The plan was to deploy GPS dropsondes at the endpoints and midpoints of the radial legs with center drops on the first and last passes through the center and eyewall drops on the middle two passes. Some of the drops, predominantly on the right side of the track would be augmented by AXBTs. Chosen mission altitude was $12,000 \mathrm{ft}$.

Operations: N43RF took off from Miami at 1738 UT on 13SEP99, arrived at its initial point south of the center at 1916, and approached the eye at $12,000 \mathrm{ft}$ on a nominal due-north track. Because the (malfunctioning) lower fuselage radar presentation showed low reflectivity and did not provide useful guidance, we used winds and the nose radar to find the center. Initially the eye was closed $\sim 20 \mathrm{nmi}$ in diameter. We reached the center at 1942 UT 70 nmi east of San Salvador Is. in the Bahamas, and observed a 923 mb MSLP of by dropsonde. The eye was well defined, clear overhead and undercast with broken stratocumulus. SMFR data showed an outer wind maximum at 60 nmi radius. Maximum surface winds were about 80 kt in the outer eyewall and 110 kt in the inner. We continued beyond the eye on the same track to a point north of the center and turned southwest to a point west of the center. The data system crashed during the outbound leg from 1959 to 2009. Two AXBT's on the downwind leg reported 28.8° and $28.7^{\circ} \mathrm{C} \mathrm{SST}$ ahead of the storm. The nominal track on the second penetration was due east, perpendicular to the first penetration. We reached the center at 2113 and deployed eyewall drops on entrance and exit. We continued beyond the eye to a point 103 nmi the east of the center and turned downwind to the north-northwest in order to rotate the second figure 4 by 45°. An AXBT 60 nmi from the center on the outbound leg reported a $26.3^{\circ} \mathrm{C} \mathrm{SST}$. The third penetration was from
northeast to southwest. AXBTs on this leg showed SSTs of 26.1° and $26.8^{\circ} \mathrm{C}$ behind and to the right of the storm's motion. We reached the center at 2236 and again deployed eyewall drops. On exit through the southwest eyewall, we encountered moderate turbulence in a $17 \mathrm{~m} \mathrm{~s}^{-1}$ updraft. At a point $\sim 100 \mathrm{nmi}$ out we turned downwind to the east to pass south of the center to the start of the final penetration from southeast to northwest. As we broke out of the eyewall into the eye we saw the new moon low over the western eyewall and bright stars overhead. We reached the center 30 nmi NW of San Salvador at 0021 UT on the $14^{\text {th }}$ and observed a 923 mb MSLP by dropsonde. N43RF recovered at Miami International at 0153.

Equipment: Airplane worked well, but instrumentation problems compromised the mission. The LF radar never observed realistic reflectivities, apparently due to AFC problems. Handshaking problems between AVAPS and the workstation prevented transmission of all but the first three dropsondes. Ten minutes downtime on the main data system cost us uniform spatial coverage. Eight of ten AXBTs worked, and all of the GPS sondes worked, at least partially.

Critique: Floyd was essentially in a steady state during an eyewall replacement after an episode of rapid deepening on the previous day. Average storm motion during the flight was 11 kt toward 290° This is a unique data set, compromised by equipment problems.

FLight 990913I, Floyd XCDX

4 GPS Drop
\bigcirc AXBT

