Mission Summary
 990806H Aircraft 42RF
 Early-Season: Tropical Cyclone Air-Sea Interaction Gulf Loop Current/Eddy Flight II

Scientific Crew (42RF)
Lead Scientist
AXBT Scientist
AXCP/AXCTD Scientist
P. Black, L. Shay (US/RSMAS)
Observers
D. Jacob (UM/RSMAS)
G. Goni, E. VanCoverden

Mission Briefing:

This mission was the second early-season, air-sea interaction flight designed to map the boundaries of the Gulf Loop Current and associated warm anticyclonic eddies as well as obtain an initial estimate of the heat content anomalies associated with these features. The experiment designed to measure the current and density anomalies associated with these features as a complement to the thermal anomalies mapped during the 990803 H flight, as well as relate the in situ data to TOPEX and ERS-2 satellite-derived estimates of upper layer heat content and layer thickness relative to 20 and $26^{\circ} \mathrm{C}$ water. The experiment is designed to determine the effect of heat content in anomalous warm eddies in the Gulf of Mexico on hurricane intensity change. A secondary objective was to test the aircraft receiver system for the AXCP (measures temperature and current vector vs. depth) and AXCTD (measures temperature and conductivity (salinity) vs. depth from which density is calculated) probes.

With the help of the thermal analysis from the 990803 H AXBT flight, this second flight was designed to map the currents associated with the main Loop Current region and the main anticyclonic warm eddy in the process of breaking off from the northwest region of the Loop Current. The flight pattern zig-zagged across these features while most AXCPs were dropped across the region of strongest thermal gradient, and hence expected strongest currents.

Mission Synopsis

The flight departed MacDill AFB at 1207 UTC and landed there at 2036 UTC, a duration of 8.5 hours, and was conducted at radar altitiude of $5 \mathrm{kft}(1.5 \mathrm{~km}, 850 \mathrm{mb})$. The flight pattern consisted of a saw-tooth pattern across the Loop Current and warm eddy to the northwest.

After the Mark 10 receiver was switched, success rates exceeded 95%. All data was recorded on 90 minute Digital Analog Tapes for processing within the laboratory. Based on the two AXCPs and AXCTDs deployed on the 3 Aug flight, AOC corrected the problem of 7 dB loss in the cable connecting the antenna to the receiver by adding a preamplifier yielding a 3 dB gain in the signals entering the Mark 10 receiver and Mark 12 cards. A second issue dealt with altitude and speed. It was decided to fly the aircraft at 5000 feet at a speed of 190 knots as per previous deployments.

A total of 18 AXBTs were deployed, all CAD-launched. Clean signals were observed to 350 m on all AXBTs. 18 AXCPs and 16 AXCTDs were also launched. One AXCTD and 4 AXCPs failed due to a defective receiver system. Following receiver replacement with a backup system excellent data was obtained to 1500 m .

Profilers deployed: 18 AXCPs, 16 AXCTDs, and 18 AXBTs
Successful Profilers: 15 AXCPs, 14 AXCTDs, 18 AXBTs
Success Rates: 83\% (AXCPs) , 87% (AXCTDs) , 100% (AXBTs)

Evaluation:

Additional detail was added to the structure of the double-lobbed eddy pattern diagnosed by the AXBTs and TOPEX/ERS2 blended analysis from 3 August. Preliminary scientific findings are:

1) Upper layer thicknesses were within $5-10 \%$ of those estimated from remote sensing techniques using TOPEX and ERS-2 altimetry;
2) Deep isothermal layers were evident within the Loop Current and warm eddy regions, whereas outside of this regime, shallow mixed layers were eivdent in the data; and
3) Near-surface currents exceeded $1.5 \mathrm{~m} \mathrm{~s}^{-1}$ with large current gradients in the vertical including evidence of internal waves trapped within the eddy.

All data were recorded on 90 -minute Digital Analog Tapes (DATs) for post-processing.

Problems:

A defective AXCP/AXCTD receiver was detected, and replaced in flight. This unit is being returned to Sippican, Inc. for repair or replacement. In addition, five profilers will be replaced since the receiver problem was due to the factory.

Peter Black and Nick Shay
8/15/99

Hurricane 1999
 Warm Pool Eddy

Flight \#1: 990806H N42RF

Sensor or system

INE

Accelerometer

Temperature ProbeDew Point ProbeAltitude (for vertical wind)Static Pressure
Dynamic Pressure
Time SourceConstants File
Number or Name1112
RA-159Rosemount FuselageRosemount FuselageMicro 99

CO2991.CON

Notes:
A number of very brief GPS dropouts occurring around 2028Z-2031Z were removed and patched with corrected INE 1 positions. GPS ground speeds were also patched during this period.

The APN-159 Radar Altimeter was patched with good APN-232 positions just before take off and just after landing.

INE1 positions were renavigated using 13 valid GPS positions during the flight.
During the flight, it appeared the Downward Radiometer was reading about 3 degrees \mathbf{C} too cold.

	$\frac{\text { Takeoff }}{1014.8}$	$\frac{\text { Landing }}{1014.9}$
Aircraft static pressure	1013.2	1014.8

The aircraft INE positions were renavigated with respect to GPS.
SPECIAL NOTE!!! Locations 80, 81 and 82 of record five on the standard tape contain vertical ground, vertical air and vertical speeds, respectively, computed using Dave Jorgensen's vertical wind algorithm.
It is recommended that these values be used for vertical wind analysis.
Flight Meteorologist: Jack Parrish, (813) 828-3310 ext. 3077.

990800H WRAM COALE. ANO (NMP)

990806 H WHOM RUiNg DROPS (HADD) Pace 2

On-Board Lead Project Scientist Check List

\qquad Aircraft \qquad 428 F Flight ID \qquad 990806 H
A. Participants:

Takeoff: 1207 z Location: $M \mathrm{Ac}_{\mathrm{c}} \mathrm{Dill}_{\mathrm{il}}$
Landing: $203 ६ Z$ Location: MAC Dill $\quad \begin{aligned} & \text { Number of Eye } \\ & \text { Penetrations: }\end{aligned}$ \qquad
B. Past and Forecast Storm Locations:

Date/Time	Latitude	Longitude	MSLP	Maximum Wind

C. Mission Briefing: \qquad

E. 2 Lead Project Scientist (On-Board)

E.2.1 Prefilght

I. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from CARCAH or field program director whether aircraft has operational fix responsibility and diseuss with AOC flight director/meteorologist and CARCAH unless briefed otherwise by field program director.
4. Contact HRD members of crew to:
a. Assure avalability for mission.
b. Arrange ground transportation schedule when deployed.
c. Determine equipment status.
5. Meet with $A O C$ filght crew at least 90 minutes before takeoff, provide copies of flight requirements, and provide a formal briefing for the fight director, navigator, and pilots.
6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E. 22 In-Flight

\qquad I. Confirm from AOC fight director that satellite data link is operative (information).
\qquad 2. Confirm camera mode of operation.
3. Confirm datra recording rate.
4. Complete Form E-2.

E. 23 Posthlight

\qquad I. Debrief scientfic crew.
2. Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to the appropriate HRD operations center (MGOC or FGOC).
3. Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
4. Obtain a copy of the $10-s$ ffight listing from the AOC filght director. Turn in with completed forms.
5. Determine next mission status, if any, and brief crews as necessary.
6. Notify the appropriate operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.
7. Prepare written mission summary.
D. Equipment Status (Up, Down, Not Available, Not Used)

Equipment	Pre-Flight	In-Flight	Post-Flight
Aircraft	U		
Radar/LF			
Radar/TA (Doppler)			
Cloud Physics	-		
Data System			
Omegasondes			
AXBT/AXCP/AXCTD	\sim		
Workstation			
Videography			

REMARKS:
E. (I) Proposed Flight Pattern (sketch or designate by number)

E. (II) Actual Flight Pattern

Lead Project Scientist Event Log

Date \qquad Fight 990806 H LPS PBLACK/N. Shay

Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes
Date \qquad Flight ID \qquad LPS \qquad .

Lead Project Scientist Event Log

Date \qquad Flight \qquad 9868064

LP S BLACK, N. SHAY

$$
\angle F \text { back up }
$$

Lead Project Scientist Event Log

Lead Project Scientist Event Log

Date \qquad Flight $9508061 t$

UPS \qquad BLACK

Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes
Date Flight ID \qquad LPS \qquad

Note : Label full degrees according to location of the flight area.

Lead Project Scientist Event Log

Date \qquad Flight $990806 / H$ uPS BLACK

Lead Project Scientist Event Log
Date \qquad Flight \qquad 9908061
us \qquad BLACK

Lead Project Scientist Event Log

Date \qquad Flight \qquad 9908064
us P. BLACK

