E. 2 Lead Project Scientist (On-Board)

8.-.

E.2.1 Preflight

I. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from CARCAH or field program director whether aircraft has operational fix responsibility and discuss with AOC flight director/meteorologist and CARCAH unless briefed otherwise by field program director.
4. Contact HRD members of crew to:
a. Assure availability for mission.
b. Arrange ground transportation schedule when deployed.
c. Determine equipment status.
5. Meet with AOC fight crew at least 90 minutes before takeoff, provide copies of flight requirements, and provide a formal briefing for the flight director, navigator, and pilots.
6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E.2.2 In-Flight

I. Confirm from AOC fight director that satellite data link is operative (information).
2. Confirm camera mode of operation.
3. Confirm data recording rate.
4. Complete Form E-2.

E.2.3 Postfilight

I. Debrief scientific crew.
2. Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc) remaining aboard the aircraft to the appropriate HRD operations center (MGOC or FGOC).
3. Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
4. Obtain a copy of the 10 -s flight listing from the AOC flight director. Turn in with completed forms.
\qquad 5. Determine next mission status, if any, and brief crews as necessary.
6. Notify the appropriate operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.
7. Prepare written mission summary.

On-Board Lead Project Scientist Check List

Date \qquad Aircraft
\qquad Flight ID \qquad 980829 T

A. Participants:

Take-Off: \qquad Location: \qquad Number of Eye Penetrations: \qquad Landing: \qquad Location:
B. Past and Forecast Storm Locations:

Date/Time	Latitude	Longitude	MSLP	Maximum Wind
$29 / 8 z$	25,5	71.0	980	$85 \mathrm{k} / 3$

C. Mission Briefing:

\qquad

D. Equipment Status (Up, Down, Not Available, Not Used)

remarks: 2D-P was crapped out most of Aught
-2D-C was very noisy

- Radar system had are crash N of 9160 nmout with no los of data needed for analysis.
- 2 Sailed AXBT's; one \#sigual; I nolaunch 1 Total failme on GPS sondes 3-4 partial winds
E. (I) Proposed Flight Pattern (sketch or designate by number)
see attacked flight plan
E. (II) Actual Flight Pattern
as briefed
start leg \#1

$$
202900-2054
$$

$\begin{aligned} & \text { Start leg Hz } \\ & \text { Scientist Event Log }\end{aligned} 2107-2130$
Date \qquad 29 August 1998

Flight \qquad 9808297

UPS \qquad Marks

reatimerestring
good verbiage bust wo strong winds above then

Hurricane Recto Plotting Chart

True at 25° Latitude, in Degrees and Minutes
Date \qquad 29 August 1998

Flight ID \qquad LP \qquad .

Note : Label full degrees according* to location of the flight area.

- preen probe crapped rent
pret is crapped red diamond is
Lead Project Scientist Event Log
\qquad Fight \qquad uPS \qquad 1e9'42325-
 convective Tomorrow

Lead Project Scientist Event Log
Date 29 August 1998
Fight \qquad ups Marls

Time	Event	Position	Comments

Hurricane Recto Plotting Chart

True at 25° Latitude, in Degrees and Minutes
Date 29 August 199 Flight ID \qquad LPG \qquad Mars

Note : Label full degrees according to location of the flight area.

Mission Summary

Danielle 980829 Aircraft 43RF

Scientific Crew (43RF)	
Lead Project Scientist	Frank Marks
Radar Scientist	Neal Dorst
Cloud Physics Scien	Chris Landsea
Dropwindsonde Scientis	Sim Aberson
WARDS Scientist	Peter Hildebrand
Workstation Scientist	Paul Leighto

Mission Briefing:

At 2000 UTC on 29 August Hurricane Danielle was projected to be a 25.5 N and 71 W , moving WNW at 11 kts . We briefed the N43RF crew for the Vortex Motion and Evolution Experiment (p. 19 in HFP) with a take off at 1800 UTC from Opa Locka in Miami. The initial point (IP) in the pattern was 160 nm SSW of the center. Flight-level was planned to start at $18,000 \mathrm{ft}$ outside 50 nm radius from the center, climbing as high as possible throughout the mission. Inside 50 nm radius flight level would be $16,000 \mathrm{ft}$ to avoid p static effecting the GPS-sonde antenna.

Mission Synopsis::
Take off occurred at 1820 UTC and we proceeded to the IP (2005 UTC). Radar revealed that Danielle was trying to form an eyewall with a radius of 25 nm . The developing eyewall was on the SE corner of a large hook shaped principal rainband curving around the center from 200 nm SE of the center through 150 nm N of the center to 50 nm NW of the center. The principal band contained active convective cells all along its length. Initially, the eyewall was characterized by an opening to the NW, with a large anvil over the inner 50 nm radius. Scatterers were confined to the convection SW, S, SE, and E of the center at all levels and at low and high levels to the NW. During the mission the NE corner of the developing eyewall slowly wrapped around the center, and by the last pass through the center convection was growing all around the center.

The first coordinated dual-Doppler pattern was from 2029-2130 UTC. N43RF ran the Doppler radar with single PRF (1600) scanning perpendicular to the track on all of the radial legs to produce an EVTD analysis, while N42RF ran the Doppler radar in dual-PRF (2100/1400) and F/AST on all legs. The EVTD was completed showing over 80 kt winds at 1 km in the NW side of the storm and transmitted for the first time back to NHC (it was received and given to the hurricane specialist). The center at 1 km altitude was found WNW of the flight level center at $16,000 \mathrm{ft}$. Peak winds of 70 kts were found at flight level in the SE quadrant. The EVTD-derived hodograph showed the storm was embedded in a flow with a low-level (600850 mb) E jet with mean winds of 10 kts . The hodograph showed the winds dropped off both above and below these levels.

The second coordinated dual-Doppler pattern was from 2252-2344 UTC. On this Fig-4 N42RF ran their Doppler radar with single PRF (1600) scanning perpendicular to the track on all of the radial legs to produce an EVTD analysis, while N43RF ran the Doppler radar in dual-PRF (1600/1050) and F/AST on all legs. N42RF ran an EVTD and successfully transmitted their first analysis to NHC. Again the center at the surface was found WNW of the flight-level center at $16,000 \mathrm{ft}$. Peak winds of 70 kts were found at flight level in the SE quadrant. At the end of the outbound leg 160 nm N of the storm the radar system crashed taking 9 min to be restarted. Fortunately, very little scatterers were present in this part of the pattern and no data was lost.

The third coordinated dual-Doppler pattern was from 0105-0201 UTC. As on the last coordinated Fig4 N42RF ran their Doppler radar with single PRF (1600) scanning perpendicular to the track on all of the radial legs to produce an EVTD analysis, while N43RF ran the Doppler radar in dual-PRF (1600/1050) and F/AST on all legs. The first leg was very well coordinated with both planes passing through the eye at the same time (visual confirmation), and 3-min after the AFRES WC-130 and 1-min after the NASA DC-8. The second leg was not as well coordinated as N42RF cut their downwind leg short to avoid intense convection, thereby getting to the center 5 min ahead of us.

AXBTs on the first leg showed peak SST 160 nm WSW of the center of 28.2°, remaining above 27° through the center to 50 nm NE of the center. The coldest SST was $25.7^{\circ} 160 \mathrm{~nm}$ SSE of the center in the wake of both Bonnie and Danielle. SSTs in the precipitation within 100 nm E of the center were typically hovering near $26-26.5^{\circ}$, while SSTs 160 nm N of the center were over 28°.

We had one GPS-sonde failure out of 38 total drops on the 75 nm ring E of the center inbound to the second coordinated Fig-4. We also had one bad AXBT at the 100 nm ring on the same leg and another at the 100 nm ring W of the center.

We had 6 penetrations.

Evaluation:

Overall the experiment went very well as we completed the whole pattern as planned. With the addition of the DC-8 dropsondes from 35,000 ft in the core and the presence of the G-IV dropsondes surrounding the storm, this data set should provide an unprecedented data set to match the inner vortex onto it environment for use in studies of vortex interaction. The presence of the DC-8 dropsonde thermodynamic data will provide an excellent opportunity to derive the potential vorticity structure of the vortex. The evolution of the eyewall as it formed during the mission, combined with the missions the next day should provide an excellent opportunity to study the vortex evolution.

The coordination with N42RF was pretty good during the coordinated dual-Doppler legs in the core. We typically passed through the center within 1 min of N42RF. On the next to last leg we passed though the eye at the same time as N42RF, 2 min after the AFRES WC-130 and 1 min after the NASA DC-8. The worst coordination occurred on the last leg when N42RF crossed the eye 5 min ahead of us. The GPS sondes performed very well, with only one complete sonde failure out of 38 total drops. 3-4 other dropsondes had partial failures. The radar data system also performed well, with only one outage along the downwind leg 160 nm N of the center, where we had no scatterers. The AXBTs also worked real well with 13 good sondes out of 15 total.

Problems:

Most of the data systems worked very well. We did have a few problems:

1) 2D-P was not working for almost the whole flight. 2D-C was very noisy for most of the flight, but did seem to be getting some good images.
2) Radar system crashed at 0011 UTC and was down for 22 min while we were traversing downwind 160 nm N of the storm. However, no significant data was lost as there were few scatterers.
3) Two AXBTs failed: one had no launch signal and the second had no data.
4) One total failure of the GPS sondes (D16). 3-4 had partial winds in the boundary layer.

Frank Marks

$$
N 43 R F \quad 15-23 \mathrm{kft}
$$

VORTEX MOTION AND EVOLUTION EXPERIMENT

Fig. 9. Sample Upper Aircraft Flight Pattern

- Note 1. True airspeed calibration is required.
- Note 2. During the ferry to the IP, aircraft will climb to the 500 mb level (about FL 180). The 400 mb level (about FL 250) should be reached as soon as possible and maintained throughout the remainder of the pattern, unless icing or electrical conditions require a lower altitude.
- Note 3. The pattern may be entered along any compass heading. The IP and coordinating points (CP) must be reached simultaneously with the lower aircraft. The lower aircraft is responsible for ensuring that these points are reached simultaneously.
- Note 4. There are no scheduled drops in the eye. It may be desirable to make a drop during the second pass of each figure-4, assuming clearance from the lower aircraft and USAF reconnaissance aircraft. GPS-sonde frequencies should be coordinated with USAF aircraft. All drops are to be made after turns.
- Note 5. Airborne Doppler radar scans continuously perpendicular to the track on radial penetrations at radii< $50 \mathrm{nmi}(95 \mathrm{~km})$, and F/AST during the rest of the pattern.
- Note 6. Aircraft should not deviate from the pattern to find the wind center in the eye.

Coordination points with upper A/C

Latitude (${ }^{\circ}$)
(॰) әрп!!бuоך

әןə!uе] I6Z8086

