E. 2 Lead Project Scientist (On-Board)

E.2.1 Preflight

1. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from CARCAH or field program director whether aircraft has operational fix responsibility and discuss with OAO flight director/meteorologist and CARCAH unless briefed otherwise by field program director.
4. Contact HRD members of crew to:
a. Assure availability for mission.
b. Arrange ground transportation schedule when deployed.
c. Determine equipment status.
5. Meet with OAO flight crew at least 90 minutes before takeoff, provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E.2.2 In-Flight

1. Confirm from OAO flight director/meteorologist that satellite data link is operative (information).
2. Confirm camera mode of operation.
3. Confirm data recording rate.
4. Complete Form E-2.

E.2.3 Postflight

1. Debrief scientific crew.
2. Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to the appropriate HRD operations center (MGOC or FGOC).
3. Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the OAO flight director.]
4. Obtain a copy of the $10-\mathrm{s}$ flight listing from the OAO flight director. Turn in with completed forms.
5. Determine next mission status, if any, and brief crews as necessary.
6. Notify the appropriate operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.

Form E-2
Page 1 of 5
On-Board Lead Project Scientist Check List
Date 25 SeP 1994 Aircraft N42RF Flight ID 940925 HI
A. Participants

B. Past and Forecast Storm Locations

C. Mission Briefing
\qquad
\qquad
\qquad

Form E-2

Page 2 of 5
D. Equipment Status

REMARKS:

$$
8 \times 25+7 \times 10
$$

Form E-2
Page 3 of 5
E. I. Proposed Flight Pattern (sketch or designate by number) INNER CORE SIRUTURE \& ENUUUTN

NY RF

NY RF
E. II. Actual Flight Pattern

Form E-2
Page 4 of 5

Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes of ϕ and λ.

Note: Label full degrees according to location of flight area.

Form E-2
Page 5 of 5
Lead Project Scientist Event Log
Date 25 SEP 1994
Flight \qquad 940925 HI \qquad GAMACHE

Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes of ϕ and λ.
Date___ Longitude ___ Observer
\qquad

Note: Label full degrees according to location of flight area.

Form E-2
Page 5 of 5
Lead Project Scientist Event Log
Date 25 SEP 1994 Flight 940925 HI UPS GAMACHE

EPS from
940925 HI

Fig. 9. Inner Core Structure and Evolution Experiment: Upper aircraft pattern.

Fig. 10. Inner Core Structure and Evolution Experiment: Lower aircraft pattern.

Note 1. AOC upper and lower aircraft fly 1-2-3-4-5-6-7-8-2 in their respective patterns (Figs. 9 and 10 , respectively).

Note 2. Each aircraft should be at the designated altitude upon reaching the IP and should maintain that altitude until point 8 .
Note 3. True air speed calibration is required (Fig. C-1).
Note 4. The patterns may be entered along any compass heading, but the upper aircraft pattern should always be rotated 90° counterclockwise from the lower pattern.
Note 5. Aircraft may attempt to find a wind center on each pass, but should not "hunt" unless directed to do so. Track deviations should be kept to a minimum (10° or less).
Note 6. Cross checks between the aircraft INE and hard reference points or radio navigation aids are essential.

Note 7. During each pattern, the ODW drop in the eye should occur during the first pass through the center (a backup would be dropped in the second pass). During passes with ODW drops, the upper aircraft should be 5 min behind lower aircraft.

Note 8. During downwind legs, Doppler radar should be operated in FAST (forward/aft scanning technique) mode. (Not applicable to aircraft with dual-beam antenna.)

