19940924 HI_LPS

E. 2 Lead Project Scientist (On-Board)

E.2.1 Preflight

1. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from CARCAH or field program director whether aircraft has operational fix responsibility and discuss with AOC flight director/meteorologist and CARCAH unless briefed otherwise by field program director.
4. Contact HRD members of crew to:
a. Assure availability for mission.
b. Arrange ground transportation schedule when deployed.
c. Determine equipment status.
5. Meet with AOC flight crew at least 90 minutes before takeoff, provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E.2.2 In-Flight

1. Confirm from $A O C$ flight director that satellite data link is operative (information).
2. Confirm camera mode of operation.
3. Confirm data recording rate.
\qquad 4. Complete Form E-2.

E.2.3 Postflight

\qquad 1. Debrief scientific crew.
2. Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to the appropriate HRD operations center (MGOC or FGOC).
3. Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
4. Obtain a copy of the 10 -s flight listing from the AOC flight director. Turn in with completed forms.
5. Determine next mission status, if any, and brief crews as necessary.
6. Notify the appropriate operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.

Form E-2
Page 1 of 5
On-Board Lead Project Scientist Check List
Date \qquad SEP. 24 Aircraft \qquad N42RF Flight ID 940924 期
A. Participants

B. Past and Forecast Storm Locations

$\frac{13 z / 24}{18 z}$	$\frac{\text { Date/Time }}{\frac{15.2}{O z / 25}}$	$\frac{15.4}{15.8}$	$\frac{\text { Longitude }}{117.3}$	$\frac{118.2}{119.3}$
$\frac{17 \mathrm{~N}}{0 z / 26}$	$\frac{121 \mathrm{~N}}{15}$	-	$\frac{\text { Max. Wind }}{70 \mathrm{ht}}$	

C. Mission Briefing

Briefed Phil \& Jack. We well thy at 5^{4} \& 10^{43} thousond Cot doing 5 passes through stour in inner core stucture and exclusion.

Form E-2
Page 2 of 5

REMARKS:
Things went very well or this said a prayer for this answered it with one of the
flglt, t flint and Rod beast probbu flights d've ben on.

Form E-2
Page 3 of 5
E. I. Proposed Flight Pattern (sketch or designate by number)

E. II. Actual Flight Pattern

Asabere, but with one Avesta pain of raligh legs on each averafts

N-S on N4ZRT
E-W on NYZRR

Page 4 of 5

Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes

Note: Label full degrees according to location of flight area.

Form E-2
Page 4 of 5
Hurricane Recco Plotting Chart
True at 25° Latitude, in Degrees and Minutes

Note: Label full degrees according to location of flight area.

Form E-2
Page 5 of 5
"Olivia"
Lead Project Scientist Event Log
24 Sept 1994
\qquad 940924 HI

LBS \qquad GAMACHE

Form E-2
Page 5 of 5
(3) 043

Lead Project Scientist Event Log
Date 24 set 1994

Flight \qquad 940924 HI

LP CAmacho $=$

Form E-2
Page 5 of 5
Seq 241994 Lead Project Scientist Event Log
Date \qquad Flight \qquad $9409241+1$

LPG
CAMACHO
$1 6 \longdiv { 3 }$

Form E-2
Page 5 of 5
Lead Project Scientist Event Log

Date \quad Flight \quad LPS

Time	Event	Position	Comments

Note 1. AOC upper and lower aircraft fly 1-2-3-4-5-6-7-8-2 in their respective patterns (Figs. 9 and 10 , respectively).

Note 2. Each aircraft should be at the designated altitude upon reaching the IP and should maintain that altitude until point 8.

Note 3. True air speed calibration is required (Fig. C-1).
Note 4. The patterns may be entered along any compass heading, but the upper aircraft pattern should always be rotated 90° counterclockwise from the lower pattern.

Note 5. Aircraft may attempt to find a wind center on each pass, but should not "hunt" unless directed to do so. Track deviations should be kept to a minimum (10° or less).

Note 6. Cross checks between the aircraft INE and hard reference points or radio navigation aids are essential.

Note 7. During each pattern, the ODW drop in the eye should occur during the first pass through the center (a backup would be dropped in the second pass). During passes with ODW drops, the upper aircraft should be 5 min behind lower aircraft.
Note 8. During downwind legs, Doppler radar should be operated in FAST (forward/aft scanning technique) mode. (Not applicable to aircraft with dual-beam antenna.)

NOAA 4294092 HHI
Summary of RALAR Legs:
1746-175820 F/AST (SeaSurf on Ferry)

$$
\begin{aligned}
& 1926-1957 \mathrm{~N}-\mathrm{S} \text { (1) } \\
& 195747-200513 \text { F/AST(2) } \\
& 2005-2031 \mathrm{SE} \text {-NW (2) } \\
& 203114-203910 \text { FLAST (2032-2036 data gap) } \\
& 2039-2184 \text { W } \rightarrow \text { (3) } \\
& 210414-211029 \text { FLAST } \\
& 211029-2134 \text { NE } \rightarrow \text { SW (4) } \\
& 213539-214430 \text { FIAST }
\end{aligned}
$$

$2144 \mathrm{~S} \rightarrow \mathrm{~N}, \mathrm{~N} \rightarrow \mathrm{~S}, \mathrm{~S} \rightarrow \mathrm{~N} \quad 3$ pases (b) \rightarrow (7)
$232554-233041$ F/AST (sea Surf on return),

