

E.2 Lead Project Scientist (On-Board)

E.2.1 Preflight

- 1. Participate in general mission briefing.
- 2. Determine specific mission and flight requirements for assigned aircraft.
- Determine from CARCAH or field program director whether aircraft has operational fix responsibility and discuss with OAO flight director/meteorologist and CARCAH unless briefed otherwise by field program director.
- 4. Contact HRD members of crew to:
 - a. Assure availability for mission.
 - b. Arrange ground transportation schedule when deployed.
 - c. Determine equipment status.
- 5. Meet with OAO flight crew at least 90 minutes before takeoff, provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
- Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E.2.2 In-Flight

- 1. Confirm from OAO flight director/meteorologist that satellite data link is operative (information).
- 2. Confirm camera mode of operation.
- _____ 3. Confirm data recording rate.
 - 4. Complete Form E-2.

E.2.3 Postflight

- 1. Debrief scientific crew.
- Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to the appropriate HRD operations center (MGOC or FGOC).
 - Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the OAO flight director.]
 - 4. Determine next mission status, if any, and brief crews as necessary.
 - 5. Notify the appropriate operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.

Hurricane Enely

Form E-2 Page 1 of 5

On-Board Lead Project Scientist Check List

Aircraft NDAA43 Date 29 august 1993

Flight ID <u>930829 I</u>

OAO

A. Participants

HRD

Function Function Participant Participant Lead Proj. Sci. Flight Director **Cloud Physics** Pilots Radar Navigator Sys. Engr. Doppler Photographer Data Tech. Omegasonde El. Tech. AXBT/AXCP Other 1) as katatig Take-Off Location Landing Location Omun 18004DZ Past and Forecast Storm Locations B. Date/Time Latitude Longitude MSLP Max. Wind

332t osecast 70.0 30. 31.0 72.2 0600 2

C. Mission Briefing Fusticano, Emil rids of the your 2 days th Au The next eyewall penetrations The storm in ØN no the

Form E-2 Page 2 of 5

D. Equipment Status

	Equipment	Pre-Flight	In-Flight	Post-Flight
some proflem just before talecoff but fixed	Aircraft			
	Radar	aland NV		
	Cloud physics	2DP animer pro	lans no change -	mocloud
	Data system	Ormage signal getton	week signels	
	Omegasondes	greend	getos takeoff	
	AXBT/AXCP	NA	NA	NA
	Doppler		<u> </u>	
	Photography	not on airplane	NA	NA
	workstation	V	\checkmark	V

REMARKS:

completed pattern as diagramed

Form E-2 Page 3 of 5

E. I. Proposed Flight Pattern (sketch or designate by number)

sel attached diagram

E. II. Actual Flight Pattern

as in deagram

Form E-2 Page 4 of 5

Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes of φ and $\lambda.$

Note: Label full degrees according to location of flight area.

Form E-2 Page 5 of 5

Lead Project Scientist Event Log

	Flight		LPS	
Time	Event	Position	Comments	

30 T G Ø 75 9 MM UT 0/06 Ccell fr Mul 31/06 10 Am Mo m decisim \$ 06 3 , in the 1030/18 06.20 32 20109 S she 80. 20 and 75. 700 65° 3100-9 ... 0162 2810 0 28/12 27/1736 0/87 % .0 .50 OURY 0 est 28 12 5250 \$6 50 12:56 2730 705 1000