19930828I1-LPS

E. 2 Lead Project Scientist (On-Board) '

E.2.1 Preflight

1. Participate in general mission briefing.
2. Determine specific mission and flight requirements for assigned aircraft.
3. Determine from CARCAH or field program director whether aircraft has operational fix responsibility and discuss with AOC flight director/meteorologist and CARCAH unless briefed otherwise by field program director.
4. Contact HRD members of crew to:
a. Assure availability for mission.
b. Arrange ground transportation schedule when deployed.
c. Determine equipment status.
5. Meet with AOC flight crew at least 90 minutes before takeoff, provide copies of flight requirements and provide a formal briefing for the flight director, navigator, and pilots.
6. Report status of aircraft, systems, necessary on-board supplies and crews to appropriate HRD operations center (MGOC in Miami or FGOC at remote recovery location).

E.2.2 In-Flight

1. Confirm from AOC flight director that satellite data link is operative (information).

2. Confirm camera mode of operation. - not applicable
3. Confirm data recording rate.
4. Complete Form E-2.

E.2.3 Postflight

1. Debrief scientific crew.
2. Report landing time, aircraft, crew, and mission status along with supplies (tapes, etc.) remaining aboard the aircraft to the appropriate HRD operations center (MGOC or FGOC).
3. Gather completed forms for mission and turn in at the appropriate operations center. [Note: all data removed from the aircraft by HRD personnel should be cleared with the AOC flight director.]
4. Obtain a copy of the 10-s flight listing from the AOC flight director. Turn in with complated forms.
5. Determine next mission status, if any, and brief crews as necessary.
6. Notify the appropriate operations center (FGOC or MGOC) as to where you can be contacted and arrange for any further coordination required.

Form E-2
Page 1 of 5
On-Board Lead Project Scientist Check List
Date 28 Cugnest 1993 Aircraft NOAA43 Flight ID 930828 I
A. Participants

B. Past and Forecast Storm Locations

C. Mission Briefing

Coordinates vortex interaction experiment in Hurricane Emily with NOAA 42 - NOAH 43 is the high plane And is Scheduled to begin the pattern 160 mm to the north of emily's center, 42 begins pattern 50 nm to the west of the storm center

Form E-2
Page 2 of 5
D. Equipment Status

REMARKS: tentative initial point 160 mm with of som $30^{\circ} 50^{\prime} \mathrm{N}, 67^{\circ} 36^{\circ} \mathrm{W}$ $1703 Z 27^{\circ} 54^{\prime} \mathrm{N} 67^{\circ} 33^{\prime} \mathrm{W}$ Air Force fix

979 mb BB kt N quadrant
$1830 z$ 2802'N $67^{\circ} 42^{\prime} \mathrm{NL} 42^{\prime}$ radar fix, 42 Doppler wot work
Omega signals weak - compared with $42^{\prime} s$ - some on 42 stronger, some weaker start pattern at 184818 Z
fist ODW -no Onega dipped LOD2
second OD W - also mo $\theta_{\text {mega }}$ - backed up with chanel 2
en general ODW did not work well, Games decided to abort th s pattern, 42 Itppler was fluid, 43 continuer. pattern to point $\$ 11$ because of the possifrity of a clouble eylwall seem on first figure four - He palters was coordinated with 42 from \#1 to $\$ 3$ and from \# 8 to \# 11 , but 42 didnot have Doppler from \#1 to \#3.

Form E-2
Page 3 of 5
E. I. Proposed Flight Pattern (sketch or designate by number)

E. II. Actual Flight Pattern

Page 4 of 5

Hurricane Recco Plotting Chart

True at 25° Latitude, in Degrees and Minutes

Note: Label full degrees according to location of flight area.

Lead Project Scientist Event Log
Date 2 28 August 1993

Flight

$$
930828 I
$$

LPS Burped

$224633 z$ point＇t＞11 end PS abservites patton－Lead for Bermuda
 with 換 the north hide of the storm．

Form E-2
Page 4 of 5
Hurricane Recco Plotting Chart
True at 25° Latitude, in Degrees and Minutes

Note: Label full degrees according to location of flight area.

Form E-2
Page 5 of 5
Lead Project Scientist Event Log

Date _ Flight \quad LPS _ _

Time	Event	Position	Comments

SECONDARY (LOWER) FLIGHT PATTERN

Navigation points:

Segment	Dist (nm)	GS (kt)	Seg/Tot Time $(\mathrm{h}: \mathrm{mm})$

Note: Lower aircraft begins its pattern (point 1) when upper aircraft reaches its point 2.

Fig. 1. Primary (Upper) Flight Pattern

Mission Summary
 930828I Aircraft 43RF

Scientific Crew (43RF)
Chief Scientist
Burpee Doppler Scientist Marks
Cloud Physics
Omega-dropwindsonde Franklin
Work-station
Griffin

Mission Briefing:

Vortex Interaction experiment, 42RF at 5000' doing Doppler pattern, and 43RF as high as possible doing ODW pattern. Both aircraft take off from Bermuda at 1800Z, 42RF set to return to MIA, and 43RF returns to Bermuda. Coordinate with AF aircraft so that 42 RF will give center pressures to the AF in exchange for them not dropping sondes from 10 kft . NHC requests that 42 RF get a 2100 Z fix.

Mission Synopsis:

Took off from Bermuda at 1800Z. 43RF starts pattern 160 nm N of center, while 42RF starts 40 nm W of center. 43RF at their IP 160 nm at 1856Z. The first ODW failed and 42RF reports radar problems again. 43RF reached 50 nm radius at 1919Z and 42RF point 40 nm W of center, starting coordinated fig 4. 42RF fixed the center at 1921Z and then headed for area outside the eye NE of the center to fix radar. 43RF continued pattern to W after cordinated fig 4 trying to get good ODWs. 43RF didn't get PMS data on first leg because I forgot to have the operator start it up.

On the first coordinated pattern storm looked like it might have double eyewall structure so we starting thinking about options if ODWs kept failing and 42RF TA radar didn't work. Decided to make decision point the same as the one we used the day before, the beginning of the second coordinated fig 4 pattern. Meanwhile, Joe Griffin completed a radar composite and sent it over ASDL after a little glitch in the ASDL computer was repaired. James decided that the ODW failures had compromised the mission as far as he was concerned and that we should investigate options if 42RF TA came back up. James suggested attempting ODW/LOD2 intercomparison to SW of center on final turn before fig 4 (2121Z). Also set up monitoring of omega signal on both aircraft to try to resolve the problem.

42RF TA radar repaired at 2115 Z and they do fix at 2129 Z on their way to the coordination point 40 nm NW of center. John Gamache suggests we do at least one coordinated fig. 4 together with both TA radars working. Start coordinated pattern at 2152Z, 43RF tracking 050° and 42RF tracking 140°. Center appears to have tilt from NW to SE with increasing altitude. No longer and indication of double eyewall, although eyewall has radar echo only on N semicircle. Radar eye appears to have contracted, with intense cells in NE corner, extending downwind. Finished coordinated pattern at 2248Z, 43RF SSE of the center and 42RF WSW of center. 42RF climbed to 18 kft after fixing the center to drop ODW as a test of signal strength. At 2249Z 42RF departed for MIA and 43RF headed for Bermuda.

James compared omega signals with 42RF during ferry. 43RF transmitted a second LF composite just before landing. 43RF landed in Bermuda at 0000Z.

Evaluation:

Similar problems to those experienced the day before. 43RF had many problems with the ODWs, while 42RF had no TA radar until the start of the second coordinated fig 4. 43RF completed almost half the pattern (to the end of the second coordinated Fig 4), while 42RF made one pass at 5000' then loitered NE of center to repair the radar.

42RF managed to get the TA radar repaired around 2110 UTC and fixed the center at 2130 Z . Starting at 2200 Z we did the coordinated fig 4 with both TA Dopplers for 3-D mapping. 43RF also managed to get an ODW/LOD2 intercomparison at the last drop SW of center. Mission was a marginal success. One lesson that was learned was that the Vortex-interaction experiment is very susceptible to failure if only a few drops are compromised. We need to re-evaluate the plan to build in better flexibility.

Two LF composites transmitted via ASDL to NHC, and the EVTD looked real interesting (shallow circulation with hint of double wind maxima in earliest time period). Coordinated Fig 4 should help John Gamache evaluate the GPS effects on Doppler analysis. ODW/LOD2 intercomparison should be useful to James Franklin.

Problems:

1. 42RF TA radar problems for the first 1.5 h of mission. Jim Roles got it working in time for last coordinated fig 4 pattern. If we hadn't cancelled the mission we could have continued to use the radar system.
2. 43RF had numerous ODW failures, compromising the flight. Dropped 9 sondes and 6 were failures. The main culprit appears to be weak omega signals being received on 43RF. During the mission we monitored the omega signal on both aircraft for 1.5 h and 42RF did a test drop to see if the signal strength was the problem or it was the 43RF receiver. Evaluation of the signal test suggests the problem is on 43RF. Interesting sidelight is that the LOD2/ODW intercomparison worked well till the ODW lost signal near 850 mb , while the LOD2 continued to report omega winds. Al Goldstein is working to try to trouble shoot ODW system by next mission.

Frank Marks

Hurricane Research Division Lead Project Scientist Checklist

Mission Briefing (including proposed flight pattern numbers):

Vortex Interaction experiment, 42RF at 5000' doing Doppler pattern, and 43RF as high as possible doing ODW pattern. Similar problems to yesterday, 43RF had many problems with the ODWs, while 42 RF had no TA radar until the second coordinated fig 4. 43RF completed almost half the pattern (to the end of the second coordinated Fig 4), while 42RF made one pass at 5000' tenn loitered NE of center to repair the radar. 42 RF got the radar repaired around 2110 UTC and fixed the center at 2130. starting at 2200 we did the coordinated fig 4 with both TA Doppler for 3-D mapping. 43RF also managed to get an ODW/LOD2 intercomparison at the last drop SW of center. Marginal success - Vortex-interaction is very susceptible to failure if only a few drops are compromised. Need to re-evaluate plan to build in better flexibility. 2 LF composites transmitted and EVTD looked real interesting. Coordinated Fig 4 should help John evaluate the GPS effects on Doppler analysis. ODW/LOD2 intercomparison should be useful to James.

Hurricane Research Division Lead Project Scientist Checklist

Mission Briefing (including proposed flight pattern numbers):

Vortex Interaction experiment, 42RF at 5000^{\prime} doing Doppler pattern, and 43 RF as
high as possible doing ODW pattern. Similar problems to yesterday, 43RF had problems with the ODWs, while 42RF had no TA radar until the second coordinated fig 4. 43RF completed almost half the pattern (to the end of the 2nd coordinated
Fig 4), 42RF made one pass at 5000 ' then loitered NE of center to repair the radar. 42RF got the radar repaired around 2110 UTC and fixed the center at 2130 . Starting at 2200 did the coordinated fig 4 with both TA Dopplers for 3-D mapping. 43RF also managed to get an ODW/LOD2 intercomparison at the last drop SW of center.

Flight Number: 930828 I
Date:28 August $1993 \quad$ Aircraft ID: 43 RF \quad Scientist:Marks

Event Log

$\begin{gathered} \text { Time } \\ (U T C) \end{gathered}$	Position (Lat, Lon)	Comments
18:33:53	3110,6629	2802, 6742 fix from 42RF radar
18:48:14	$3045.9,6739.6$	at pt 1 turn TK 180 to eye, ODW \#1
18:53:07	3025,6742	entering outer rainbands on N side running FAST
18:56:13		ODW \#1 bad, TA on 42RF down again!!
19:02:12	2943,6742	ODW \#2 at $100 \mathrm{~nm} \mathrm{pt}, \mathrm{42RF} \mathrm{may} \mathrm{have} \mathrm{received} \mathrm{our} \mathrm{first} \mathrm{sonde}$
19:09:59	$2910.2,6747.7$	punched thru big cell $8-10 \mathrm{~m} / \mathrm{s}$ up draft some graupel
19:12:32	$2858.2,6751.5$	start coordinated run in bound we are at 50 nm radius
19:19:19	28 27.7, 6754	approaching N side of eyewall
19:26:23	$2755.2,6751.7$	storm has small partial inner eyewall and hints of another ring $\sim 35 \mathrm{~nm}$ radius
19:33:21		42RF fix 192048: 28056745
19:34:10	27 21, 6751	turn to TK 045 to point east of center 50 nm
19:47:54	28 6.7, 6651.5	turn TK 270 at pt 50 nm E of center, definite indication of double eyewall structure
20:02:47	2812.3681 .7	beautiful TA look at the tilt in the NW eyewall, seems to be NNNW tilt of center, 5000 ' center $\sim 6 \mathrm{~nm}$ S of our 500 mb center.
20:06:16	2812,6819	on the edge of next rb out from eye, good cells for PMS
20:08:34		in outer ring good precip, some graupel
20:11:21	2815,6842	turn at 50 nm ring, TK 315 to 160 nm NW of center
20:23:03	2851,6925	on west edge of anvil
20:26:22	29 01.5, 6937	in chop out west of anvil, seem to be at top of wind maxima below our flight level, undulating rollercoaster type stuff
21:01:04	$2838.7,7025.5$	42RF has no TA radar and no hope of getting one back in the near future, our ODWs are only marginally better than yesterday, current thinking is have 42RF go direct to MIA, 43RF finish third leg for VTD, than head back to Bermuda, with an intercomparison between LOD2 and ODW at next drop (160 nm SW of center). ASDL down on 43RF at this time.
21:21:39	2655,70 22	end N-S leg, 160 nm SW of center, turn TK 045 to center ODW/LOD2 intercomparison, last drop-James says it is hopeless to continue throwing them out.
21:33:29		42RF fix 2129Z: $28226801,85 \mathrm{kt}$, 976 mb , talk to John-TA working OK, suggests we do 1 Fig 4 then head home, we end at our pt 11
21:43:36	2751,6845	at 50 nm ring, start coordinated fig 4 with 42
21:49:19	2809,6820	choppy on enterring radius of outer ring
21:55:46	$2829, .16753$	wind center at alt., real interesting sheared radar echoes to our right, tall and leaning back toward SE, center: $2828.9,6754$ center at 500 mb , surface center: 2824,6800
22:04:38	$2851.5,6710.1$	turn TK 285 to pt 10 downwind
22:16:43	2918,68 05	turn outside to TK 150 thru center (mini-pearl)
22:31:14		entering outer edge of intense portion of eyewall

Airborne Chief Scientist Log

Flight Number: 930828 I
Date: 28 August 1993 Aircraft ID: 43RF
Scientist: Marks
Event Log

