

# Development of a Tropical Cyclone Probabilistic Rainfall Model

Frank Marks<sup>1</sup>, Brian McNoldy<sup>2</sup>, Mu-Chieh Ko<sup>3</sup>, and Andrea Schumacher<sup>4</sup>

<sup>1</sup>NOAA/AOML <sup>2</sup>University of Miami/RSMAS <sup>3</sup>University of Miami/CIMAS <sup>4</sup>Colorado State University/CIRA



NOAA Hurricane Forecast Improvement Project





#### Why TC rainfall is important:





Rappaport 2014







UNIVERSITY OF MIAMI

SCHOOL of MARINE &

ATMOSPHERIC SCIENCE

NOAA Hurricane Forecast Improvement Project



ROAD

CLOSED



 From 2016-2018, more than half of the U.S. tropical cyclone water-related fatalities were vehicle related!

### Flood Related Vehicle Fatalities









## HFIP Goals & Metrics: Rainfall



| Goal 4.5   | Improve accuracy & lead time of WPC Excessive Rainfall Outlook for TCs.                     |
|------------|---------------------------------------------------------------------------------------------|
| Metric 4.5 | Brier Score of Day-3 Excessive Rainfall Outlook for landfalling Atlantic basin TCs          |
| Baseline   | Current Brier Score of Day-3 Excessive Rainfall Outlook, 2015-17 CONUS-<br>landfalling TCs. |
| Target     | Current Brier Score of Day-2 Excessive Rainfall Outlook:                                    |
| Goal 4.6   | Improve skill of Quantitative Precipitation Forecasts (QPF) for landfalling TCs.            |
| Metric 4.6 | QPF Brier Score for TCs affecting CONUS, Puerto Rico, and USVI                              |
| Baseline   | QPF Brier Score for TCs affecting CONUS, Puerto Rico, and USVI 2015-17                      |
| Target     | 10% improvement over baseline                                                               |
| Goal 4.7   | Create a probabilistic TC QPF product based on HAFS/HWRF ensemble<br>output.                |
| Metric 4.7 | Disseminate probabilistic TC QPF for CONUS, Puerto Rico, & USVI TC threats.                 |
| Baseline   | N/A                                                                                         |
| Target     | Disseminate probabilistic TC QPF for CONUS, Puerto Rico, & USVI TC threats.                 |



see Appendix A of <u>HFIP Strategic Plan</u>



NOAA Hurricane Forecast Improvement Project

# Parametric Modeling of TC Rainfall



- R-CLIPER: Rainfall CLImatology & PERsistence
  - Marks & DeMaria (2003), Tuleya et al (2007)
  - Accounts for intensity, size, & speed, but not shear asymmetry or topography
  - Run experimentally at NHC 2001-2003, operationally since 2004
- PHRaM: Parametric Hurricane Rainfall Model
  - Lonfat et al (2007)
  - Builds on R-CLIPER framework, but adds shear asymmetry & topography
  - Intensity & shear dependent parameterization of rainfall derived from TRMM data (Lonfat et al 2004 & Chen et al 2006)
- Rainfall Probability: Probabilistic PHRaM
  - Utilize 1000-member Monte-Carlo track ensemble used for Wind Speed Probability
  - Run PHRaM on 1000 members to get probabilistic information





# **R-CLIPER**



- 2121 TC cross-sections of rainfall collected from TRMM during 1998-2003
  Partitioned by intensity (TS, H12, H345)
- Replaced piecewise formulation in R-CLIPER with dual-exponential
- Rain rate scales continuously with intensity, V<sub>max</sub> ≥ 35kt, R<sub>max</sub> ≤ 100km



Marks and DeMaria (2003)









$$R_{\rm PHRaM} = R_{\rm R-CLIPER} + \left\{ R_{\rm shear \ mod} \right\} + \left\{ R_{\rm topography} \right\},$$
$$R_{\rm shear \ mod}(r, \theta) = \sum a_i(r) \cos(i\theta) + \sum b_i(r) \sin(i\theta), \qquad \qquad R_{\rm topography} = c \mathbf{V}_s \cdot \nabla h_s,$$



• *c* proportionality constant,  $V_s$  10 m wind field, &  $h_s$  is elevation. Use Willoughby et al. (2006) wind model

$$V(r) = V_{\max} \left(\frac{r}{R_{\max}}\right)^n, \quad (0 \le r \le R_{\max}),$$

$$V(r) = V_{\max} \exp\left(-\frac{r - R_{\max}}{X_1}\right), \quad (R_{\max} \le r),$$

- *n* is power law exponent inside R<sub>max</sub> (=1), X<sub>1</sub> is exponential decay length to 250 km radius.
- Wind field reduced by 85% for 10-m estimate
- Inflow angle not accounted for



Lonfat et al. (2007)

#### Florence Excessive Rainfall Outlook ATMOSPHERIC SCIENCE







UNIVERSITY OF MIAMI ROSENSTIEL

SCHOOL of MARINE &



## Best Track PHRaM



- Example using *best-track* position, intensity, shear, RMW for
  Florence (2018) from 1200 UTC
  11 September (<u>3 days prior to</u> landfall)
  - RMW values from Extended Best-Track







UNIVERSITY OF MIAMI

SCHOOL of MARINE &

ATMOSPHERIC SCIENCE

NOAA Hurricane Forecast Improvement Project



UNIVERSITY OF MIAM

SCHOOL of MARINE &

TMOSPHERIC SCIENCE

NOAA Hurricane Forecast Improvement Project



### Forecast Track PHRaM

- Example using *forecast* values of position, intensity, shear, & RMW for Florence (2018) from 1200 UTC 11 September (<u>3 Day prior to landfall</u>)
  - RMW values from Knaff et al (2015) empirical relationship that is function of V<sub>max</sub> & latitude





## **TC Ensemble**



- Operational Monte Carlo 1000-member track ensemble (DeMaria et al 2009)
  - Includes uncertainties in track, intensity, & size randomly selected from NHC error distributions over past 5 years
- Used to generate 34 kt, 50 kt, and 64 kt wind speed probabilities.
- Why not reuse for rainfall probabilities?



0-0h Forecasts from 1000 Realizations: al06 (FLORENCE) 09111200





UNIVERSITY OF MIAM

OL of MARINE &

PHERIC SCIENCE

NOAA Hurricane Forecast Improvement Project





#### Ensemble-based products include an ensemble mean & probability of exceeding a fixed amount



UNIVERSITY OF MIAMI

SCHOOL of MARINE &

ATMOSPHERIC SCIENCE

# Rainfall Probability



 Probability of exceeding deterministic forecast by some amount & area with % chance of exceeding deterministic forecast

UNIVERSITY OF MIAMI ROSENSTIEL

SCHOOL of MARINE &

ATMOSPHERIC SCIENCE





# **Planned Improvements**



- Replace Willoughby wind model with wind model used in Wind Speed Probability product
- Determine effective rainfall guidance thresholds & lead times
- Develop earliest & most likely time of arrival of rain products
- Replace & evaluate historical track, intensity & structure uncertainty with numerical model uncertainty
- Link probabilistic rainfall guidance to flood potential guidance
- Code is available <u>here</u>
  - Input: TCV (A-Deck: track, intensity, radii), SHIPS output (shear)





UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE



# Questions?





**NOAA Hurricane Forecast Improvement Project** 



#### **Record-Setting Hurricane Rainfall**



 Hurricanes Harvey, Florence, and Lane have each set state records for tropical cyclone rainfall with Harvey's rainfall of 60+ inches setting the U.S. record



Harvey (2017) - 60.58 in Texas & U.S. Record



Florence (2018) – 35.93/26.63 in North Carolina/South Carolina Record



Lane (2018) – 58.00 in Hawaii Record





NOAA Hurricane Forecast Improvement Project





#### Ensemble-based products include probability of exceeding a fixed amount





UNIVERSITY OF MIAMI ROSENSTIEL

SCHOOL of MARINE &

ATMOSPHERIC SCIENCE

NOAA Hurricane Forecast Improvement Project



#### **QPE** Techniques in TCs



- Scale dependence:
  - 10-s PMS sample area ~1 m<sup>-2</sup>
  - 1-h gage sample area ~1-16,000 m<sup>2</sup> (wind speed dependent)
  - 1-h radar sample area 16 km<sup>2</sup>
  - TMI sample are 25 km<sup>2</sup>
  - ≥10<sup>3</sup> gages to cover radar/TMI sample area
- PDF narrower and skewed to smaller R as area increases





NOAA Hurricane Forecast Improvement Project

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE



### **Storm Motion**



• Sensitivity of Rainfall maxima ( $R_{TOT}$ ) to  $V_s$  from climatology.





NOAA Hurricane Forecast Improvement Project

