HB20 Overall Dropsonde Impact					HB20 G4IC Dropsonde Impact			GFSv16 Dropsonde/HDOB Impact			Fin.	
0	0	0	0	0	0	0	0	0	0	0	0	0

Recent Results on the Impact of Reconnaissance Data on TC Forecasts in both the Basin-Scale HWRF and GFSv16

Sarah D. Ditchek^{1,2} and Jason Sippel²

Acknowledgements: Ghassan J. Alaka Jr.², Lidia Cucurull², Daryl Kleist⁴, Stanley B. Goldenberg², Vijay Tallapragada⁴, & Xingren Wu³

¹Cooperative Institute for Marine and Atmospheric Studies (CIMAS)
²NOAA/AOML/Hurricane Research Division (HRD)
³I.M. Systems Group, Rockville, Maryland
⁴NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

A DATA DE LO DATA DE L

04/21/22 | 11am (Mountain)

This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.

This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.

EXPERIMENTS

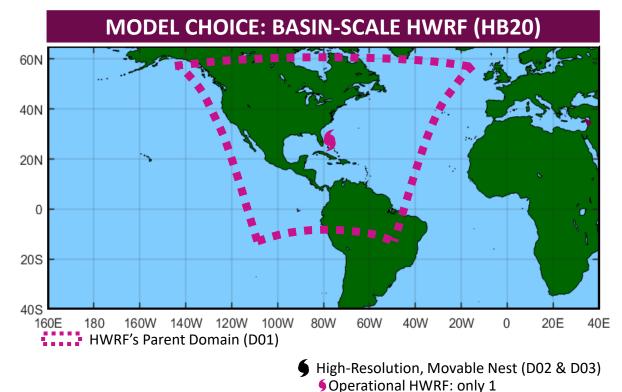
ALL dropsondes are allowed

NO dropsondes are not allowed

This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.

EXPERIMENTS	SCOPE OF STUDY				
ALL dropsondes are allowed	Years	Cycles	# Of TCs	# with Dropsondes (%)	
NO dropsondes are not allowed	2017-2020	634	92	41 (45%)	

This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.


EXPERIMENTS	SCOPE OF STUDY				
ALL dropsondes are allowed	Years	Cycles	# Of TCs	# with Dropsondes (%)	
NO dropsondes are not allowed	2017-2020	634	92	41 (45%)	

MODEL CHOICE: BASIN-SCALE HWRF (HB20)

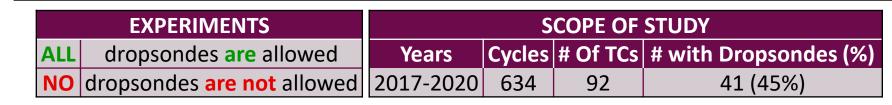
This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.

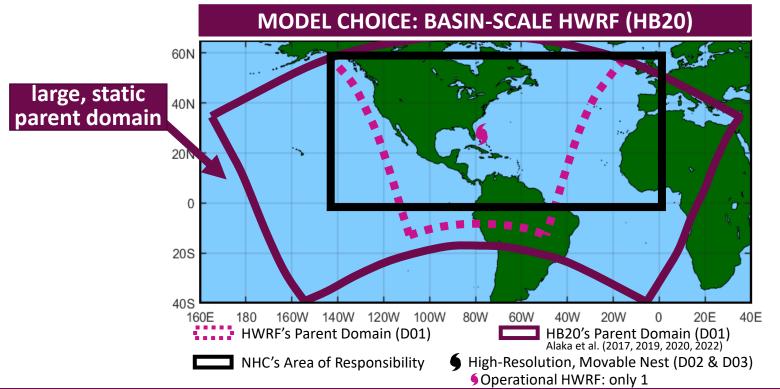
EXPERIMENTS	SCOPE OF STUDY				
ALL dropsondes are allowed	Years	Cycles	# Of TCs	# with Dropsondes (%)	
NO dropsondes are not allowed	2017-2020	634	92	41 (45%)	

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)

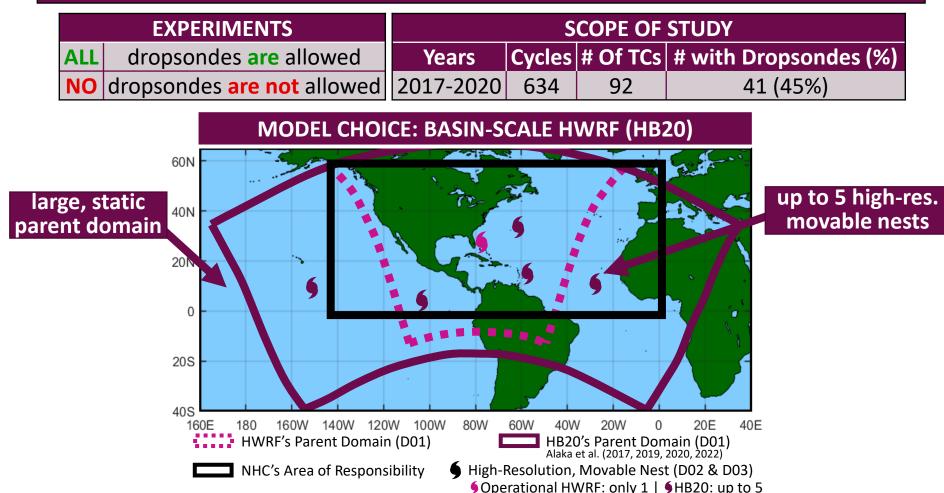
This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.





04/21/22 | 11am (Mountain)

This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.



24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)

This project is the first systematic, large-sample assessment to quantify the overall impact of dropsondes on TC forecasts of track, intensity, and structure.

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)

FOUR MAIN TAKEAWAYS

04/21/22 | 11am (Mountain)

FOUR MAIN TAKEAWAYS

1) Dropsondes directly improve TC forecasts

FOUR MAIN TAKEAWAYS

1) Dropsondes directly improve TC forecasts

2) Dropsondes indirectly improve TC intensity forecasts at long lead times and R34 forecasts at short lead times

HB20 Overall Dropsonde Impact HB20 G4IC Dropsonde Impact GFSv16 Dropsonde/HDOB Impact Fin. 0 0 0 \bigcirc \mathbf{O} 0 0 0 0 0 0 0

Project Outcomes

FOUR MAIN TAKEAWAYS

1) Dropsondes directly improve TC forecasts

- 2) Dropsondes indirectly improve TC intensity forecasts at long lead times and R34 forecasts at short lead times
- 3) Prioritizing sampling H12 would lead to more forecast improvements compared to sampling TS and H345

HB20 G4IC Dropsonde Impact HB20 Overall Dropsonde Impact GFSv16 Dropsonde/HDOB Impact Fin. 0 0 0 \bigcirc \mathbf{O} 0 0 0 0 0 0 0

Project Outcomes

FOUR MAIN TAKEAWAYS

1) Dropsondes directly improve TC forecasts

- 2) Dropsondes indirectly improve TC intensity forecasts at long lead times and R34 forecasts at short lead times
- 3) Prioritizing sampling H12 would lead to more forecast improvements compared to sampling TS and H345
- 4) Directly sampling the region of hurricane-force winds improves R64 forecasts

HB20 Overall Dropsonde Impact HB20 G4IC Dropsonde Impact GFSv16 Dropsonde/HDOB Impact Fin. 0 0 0 \bigcirc \mathbf{O} 0 0 0 0 0 0 0

Project Outcomes

FOUR MAIN TAKEAWAYS

1) Dropsondes directly improve TC forecasts

- 2) Dropsondes indirectly improve TC intensity forecasts at long lead times and R34 forecasts at short lead times
- 3) Prioritizing sampling H12 would lead to more forecast improvements compared to sampling TS and H345
- 4) Directly sampling the region of hurricane-force winds improves R64 forecasts

This section includes results for Takeaway #1 and Takeaway #4.

HB20 G4IC Dropsonde Impact GFSv16 Dropsonde/HDOB Impact HB20 Overall Dropsonde Impact Fin. 0 0 0 \bigcirc \mathbf{O} 0 0 0 0 0 0 0

Project Outcomes

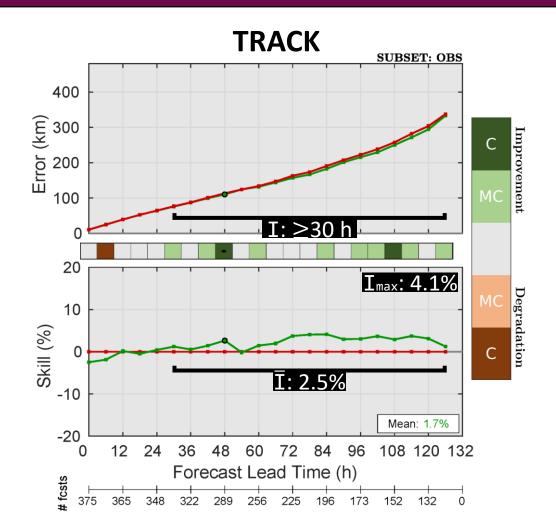
FOUR MAIN TAKEAWAYS

1) Dropsondes directly improve TC forecasts

- 2) Dropsondes indirectly improve TC intensity forecasts at long lead times and R34 forecasts at short lead times
- 3) Prioritizing sampling H12 would lead to more forecast improvements compared to sampling TS and H345

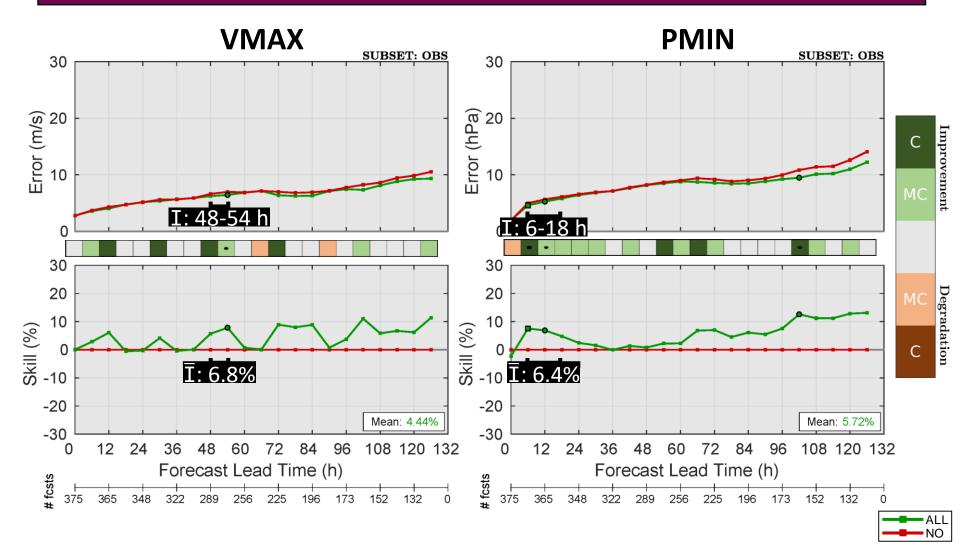
4) Directly sampling the region of hurricane-force winds improves R64 forecasts

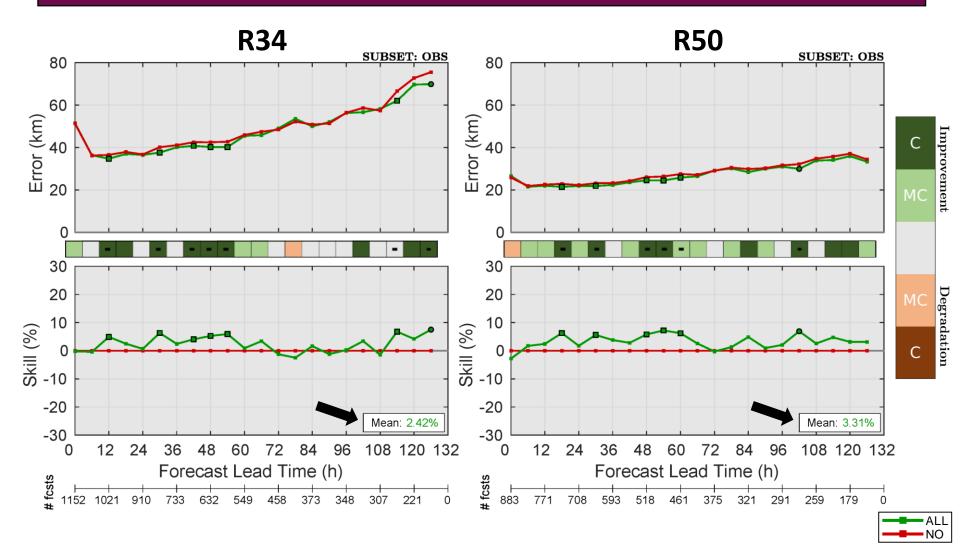
This section includes results for Takeaway #1 and Takeaway #4.

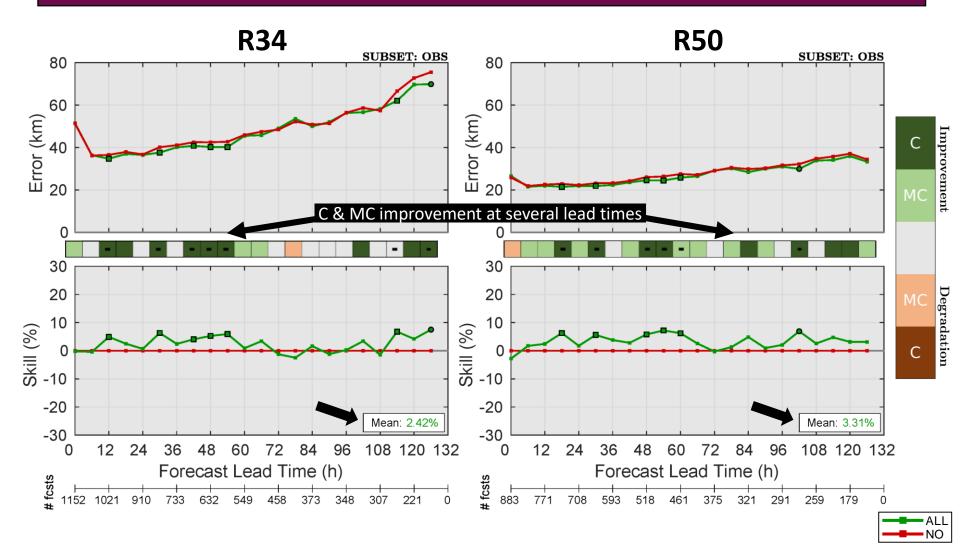

Manuscript currently in HRD's Internal Review

Ditchek, S.D., J. Sippel, G. Alaka, S.B. Goldenberg, and L. Cucurull 2022: A Systematic Assessment of the Overall Dropsonde Impact during the 2017-2020 Hurricane Seasons using the Basin-Scale HWRF.

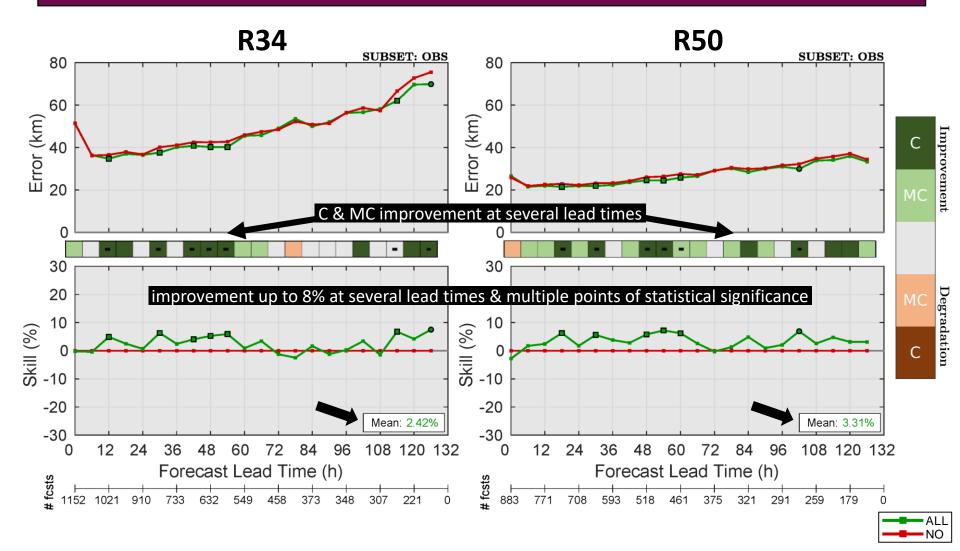
OBS: Cycles from Atlantic basin TCs that did directly assimilate dropsondes




04/21/22 | 11am (Mountain)


04/21/22 | 11am (Mountain)

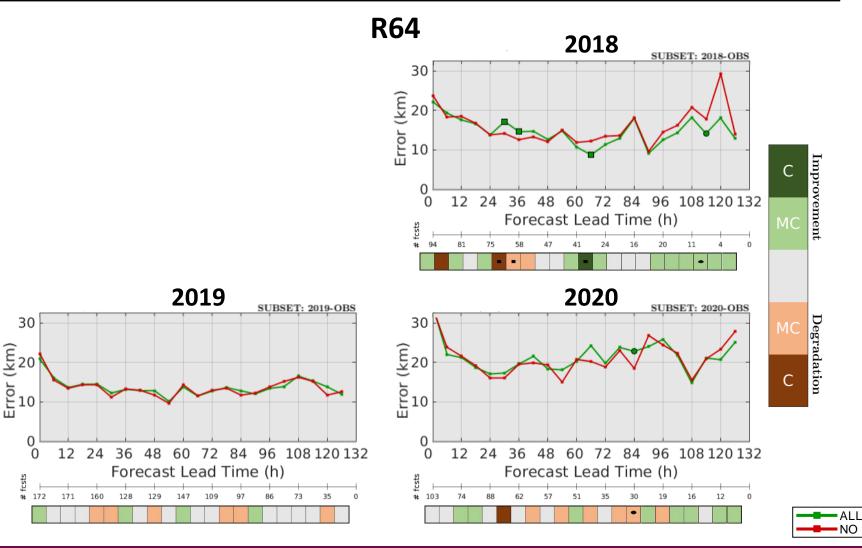
04/21/22 | 11am (Mountain)



04/21/22 | 11am (Mountain)

■ (●): 95% (90%) sig

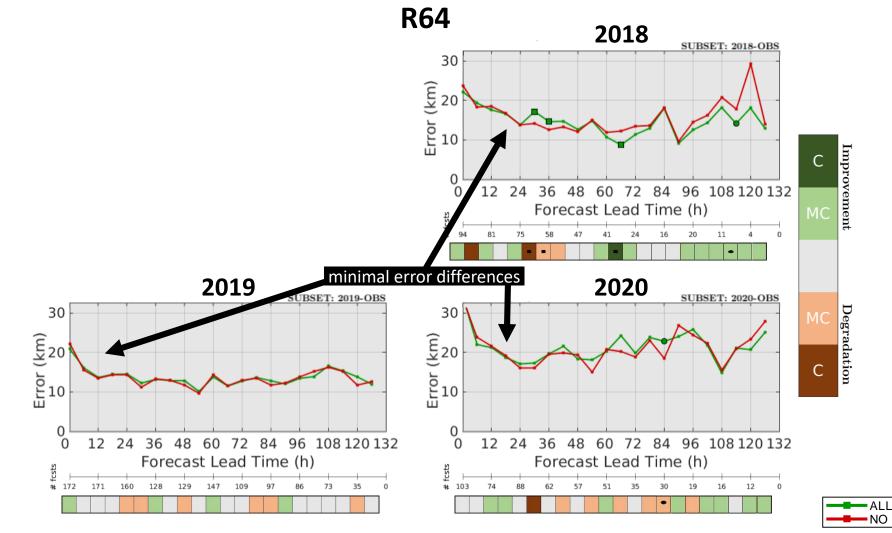
#1: Dropsondes directly improve TC forecasts



04/21/22 | 11am (Mountain)

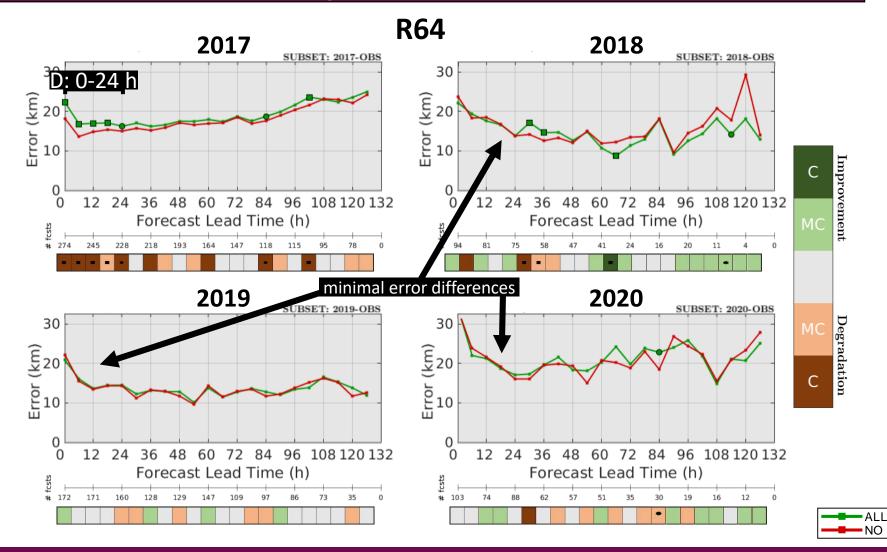
#4: Directly sampling the region of hurricane-force winds improves R64 forecasts

OBS: Cycles from Atlantic basin TCs that did directly assimilate dropsondes



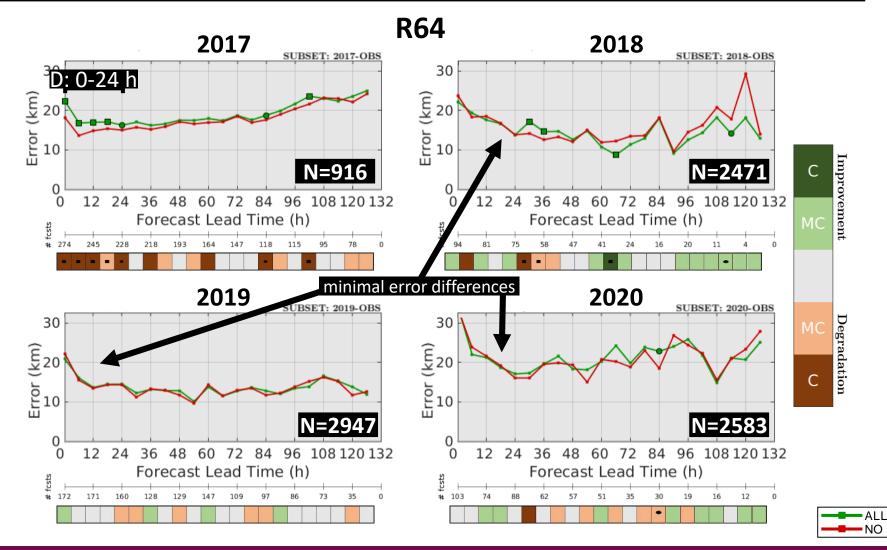
24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)



04/21/22 | 11am (Mountain)

#4: Directly sampling the region of hurricane-force winds improves R64 forecasts



24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)

#4: Directly sampling the region of hurricane-force winds improves R64 forecasts

04/21/22 | 11am (Mountain)

This project evaluates the impact of dropsondes launched during the G-IV Inner Circumnavigation (G4IC) on TC track, intensity, and structure forecasts.

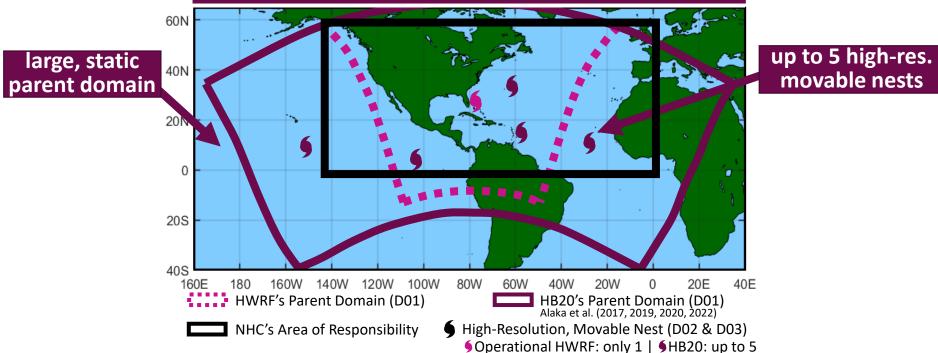
This project evaluates the impact of dropsondes launched during the G-IV Inner Circumnavigation (G4IC) on TC track, intensity, and structure forecasts.

EXPERIMENTS

ALL dropsondes are allowed

NOG4IC-D G4IC dropsondes are not allowed

This project evaluates the impact of dropsondes launched during the G-IV Inner Circumnavigation (G4IC) on TC track, intensity, and structure forecasts.


	SCOPE OF STUDY				
ALL	dropsondes are allowed	Years	Cycles	# Of TCs	# with G4IC (%)
NOG4IC-D	G4IC dropsondes are not allowed	2018-2020	97	23	5 (22%)

This project evaluates the impact of dropsondes launched during the G-IV Inner Circumnavigation (G4IC) on TC track, intensity, and structure forecasts.

		EXPERIMENTS	SCOPE OF STUDY			
	ALL	dropsondes are allowed	Years	Cycles	# Of TCs	# with G4IC (%)
N	NOG4IC-D	G4IC dropsondes are not allowed	2018-2020	97	23	5 (22%)

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)

THREE MAIN TAKEAWAYS

THREE MAIN TAKEAWAYS

1) G4IC dropsondes directly improve TC track forecasts

THREE MAIN TAKEAWAYS

1) G4IC dropsondes directly improve TC track forecasts

2) G4IC dropsondes have minimal direct impacts on TC intensity and structure forecasts

THREE MAIN TAKEAWAYS

1) G4IC dropsondes directly improve TC track forecasts

2) G4IC dropsondes have minimal direct impacts on TC intensity and structure forecasts

3) G4IC dropsondes indirectly improve TC intensity forecasts at long lead times and R50 & R64 forecasts at short lead times

THREE MAIN TAKEAWAYS

1) G4IC dropsondes directly improve TC track forecasts

2) G4IC dropsondes have minimal direct impacts on TC intensity and structure forecasts

3) G4IC dropsondes indirectly improve TC intensity forecasts at long lead times and R50 & R64 forecasts at short lead times

This section includes results for Takeaway #1.

THREE MAIN TAKEAWAYS

1) G4IC dropsondes directly improve TC track forecasts

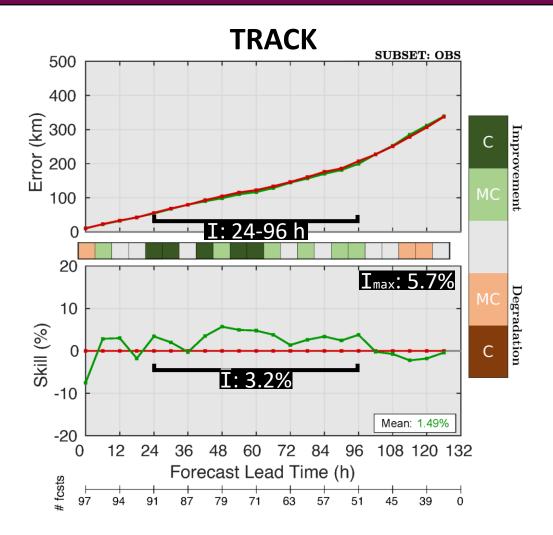
2) G4IC dropsondes have minimal direct impacts on TC intensity and structure forecasts

3) G4IC dropsondes indirectly improve TC intensity forecasts at long lead times and R50 & R64 forecasts at short lead times

This section includes results for Takeaway #1.

Manuscript In Prep

Sippel, J., S.D. Ditchek, K. Ryan, C.W. Landsea 2022: The R2O2R2O Life Cycle of the Recently Implemented G-IV Inner-Ring Circumnavigation.


HB20 Overall Dropsonde Impact					HB20 G4IC Dropsonde Impact			GFSv16 Dro	GFSv16 Dropsonde/HDOB Impact				
0	0	0	0	0	0		0	0		0	0	0	0

#1: G4IC dropsondes directly improve TC track forecasts

OBS: Cycles from Atlantic basin TCs that did directly assimilate dropsondes

#1: G4IC dropsondes directly improve TC track forecasts

ALL NOG4IC-D

04/21/22 | 11am (Mountain)

This project quantifies the overall combined impact of 1) additional dropsonde wind data near the TC center and 2) the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) on TC forecasts using GFS version 16 (GFSv16)

This project quantifies the overall combined impact of 1) additional dropsonde wind data near the TC center and 2) the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) on TC forecasts using GFS version 16 (GFSv16)

EXPERIMENTS

NEWadd'l data are allowedOLDadd'l data are not allowed

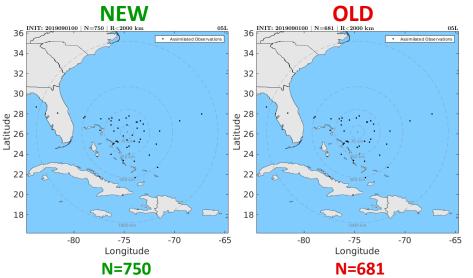
This project quantifies the overall combined impact of 1) additional dropsonde wind data near the TC center and 2) the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) on TC forecasts using GFS version 16 (GFSv16)

	EXPERIMENTS	SCOPE OF STUDY				
NEW	NEW add'l data are allowed		Cycles	# Of TCs	# with add'l data (%)	
OLD	add'l data are not allowed	2018-2020	347	43	17 (40%)	

This project quantifies the overall combined impact of 1) additional dropsonde wind data near the TC center and 2) the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) on TC forecasts using GFS version 16 (GFSv16)

EXPERIMENTS	SCOPE OF STUDY				
NEW add'l data are allowed	Years	Cycles	# Of TCs	# with add'l data (%)	
OLD add'l data are not allowed	2018-2020	347	43	17 (40%)	

Representative Example of Add'l Data Assimilated



This project quantifies the overall combined impact of 1) additional dropsonde wind data near the TC center and 2) the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) on TC forecasts using GFS version 16 (GFSv16)

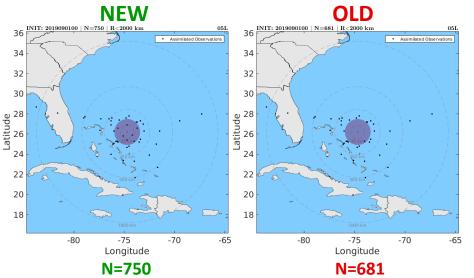
	EXPERIMENTS	SCOPE OF STUDY				
NEW add'l data are allowed		Years	Cycles	# Of TCs	# with add'l data (%)	
OLD	add'l data are not allowed	2018-2020	347	43	17 (40%)	

Representative Example of Add'l Data Assimilated

1) Add'l Dropsonde Wind Data

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)



This project quantifies the overall combined impact of 1) additional dropsonde wind data near the TC center and 2) the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) on TC forecasts using GFS version 16 (GFSv16)

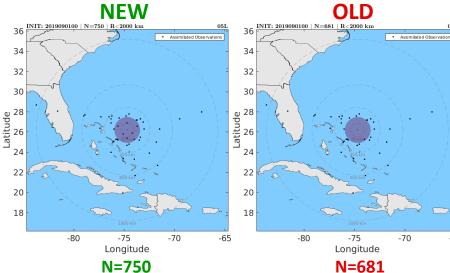
	EXPERIMENTS	SCOPE OF STUDY				
NEW add'l data are allowed		Years	Cycles	# Of TCs	# with add'l data (%)	
OLD	add'l data are not allowed	2018-2020	347	43	17 (40%)	

Representative Example of Add'l Data Assimilated

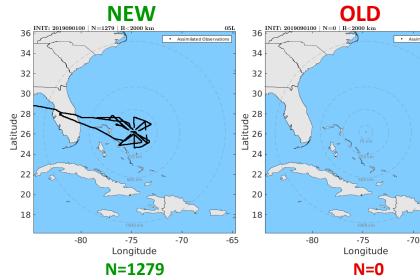
1) Add'l Dropsonde Wind Data

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)


This project quantifies the overall combined impact of 1) additional dropsonde wind data near the TC center and 2) the first-time addition of high-density, flight-level reconnaissance observations (HDOBs) on TC forecasts using GFS version 16 (GFSv16)

EXPERIMENTS	SCOPE OF STUDY				
NEW add'l data are allowed	Years	Cycles	# Of TCs	# with add'l data (%)	
OLD add'l data are not allowed	2018-2020	347	43	17 (40%)	


Representative Example of Add'l Data Assimilated

-65

2) First-Time Addition of HDOBs

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)

-65

TWO MAIN TAKEAWAYS

TWO MAIN TAKEAWAYS

1) The add'l data has profound impacts on TC track forecasts

TWO MAIN TAKEAWAYS

1) The add'l data has profound impacts on TC track forecasts

2) The add'l data improves VMAX forecasts, thought not as much as TC track forecasts

TWO MAIN TAKEAWAYS

1) The add'l data has profound impacts on TC track forecasts

2) The add'l data improves VMAX forecasts, thought not as much as TC track forecasts

This section includes results for Takeaway #1.

TWO MAIN TAKEAWAYS

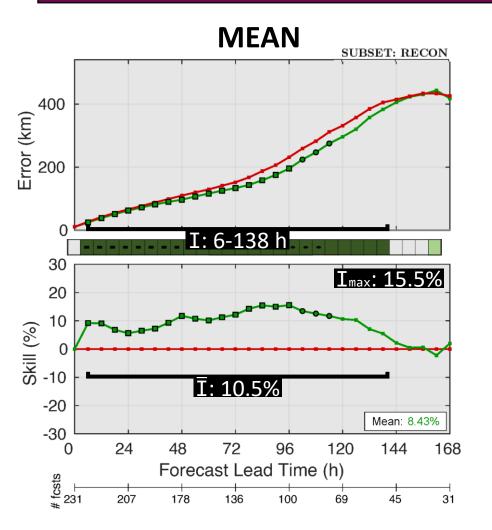
1) The add'l data has profound impacts on TC track forecasts

2) The add'l data improves VMAX forecasts, thought not as much as TC track forecasts

This section includes results for Takeaway #1.

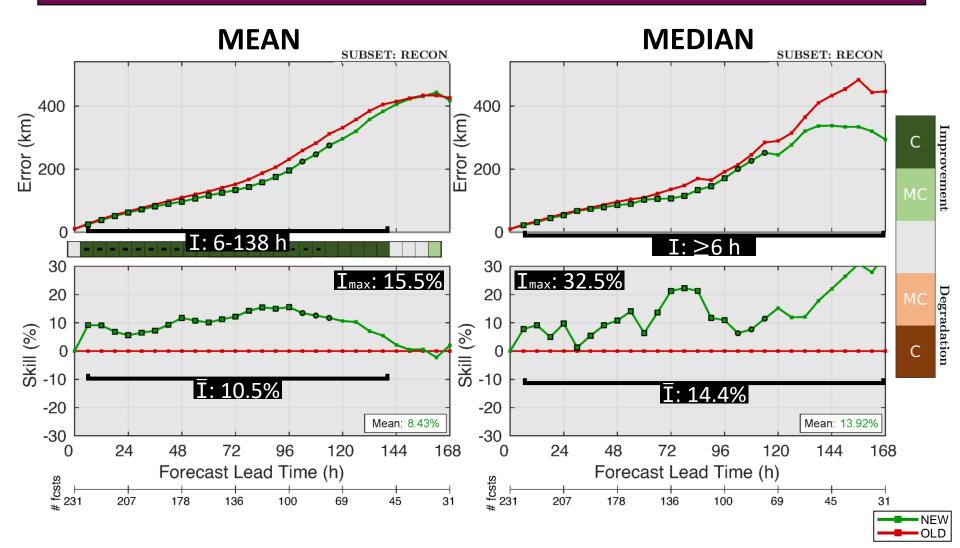
Manuscript In Review @ AMS's WAF

Sippel, J., X. Wu, S.D. Ditchek, V. Tallapragada, and D. Kleist 2022: Impacts of assimilating additional reconnaissance data on operational GFS tropical cyclone forecasts.



#1: The add'l data has profound impacts on TC track forecasts

RECON: Cycles from Atlantic basin TCs from the first cycle with assimilated reconnaissance data through the last cycle of the TC


TC track forecasts

TC track forecasts

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)

The Takeaways

04/21/22 | 11am (Mountain)

Green: discussed in this presentation

The Takeaways

HB20 Overall Dropsonde Impact

1) Dropsondes directly improve TC forecasts

2) Dropsondes indirectly improveTC intensity forecasts at long lead timesand R34 forecasts at short lead times

3) Prioritizing sampling H12 would lead to the most forecast improvements

4) Directly sampling the hurricane-force wind region improves R64 forecasts

HB20 G4IC Dropsonde Impact

1) G4IC dropsondes directly improve TC track forecasts

2) G4IC dropsondes have minimal direct impacts on TC intensity and structure forecasts
 3) G4IC dropsondes indirectly improve

TC intensity forecasts at long lead times and R50 & R64 forecasts at short lead times

GFSv16 Dropsonde/HDOB Impact

1) The add'l data has profound impacts on TC track forecasts

2) The add'l data improves VMAX forecasts, thought not as much as TC track forecasts

Green: discussed in this presentation

The Takeaways

HB20 Overall Dropsonde Impact

1) Dropsondes directly improve TC forecasts

2) Dropsondes indirectly improveTC intensity forecasts at long lead timesand R34 forecasts at short lead times

3) Prioritizing sampling H12 would lead to the most forecast improvements

4) Directly sampling the hurricane-force wind region improves R64 forecasts

HB20 G4IC Dropsonde Impact

- 1) G4IC dropsondes directly improve TC track forecasts
- 2) G4IC dropsondes have minimal direct impacts on TC intensity and structure forecasts
- 3) G4IC dropsondes indirectly improve

TC intensity forecasts at long lead times and R50 & R64 forecasts at short lead times

GFSv16 Dropsonde/HDOB Impact

1) The add'l data has profound impacts on TC track forecasts

2) The add'l data improves VMAX forecasts, thought not as much as TC track forecasts

THANK YOU FOR LISTENING!

Dr. Sarah D. Ditchek <u>Email:</u> sarah.d.ditchek@noaa.gov

24th AVAPS Users Group Meeting

04/21/22 | 11am (Mountain)