Intro	Track				Wind Speed						R64					End		
0	0	C	С	0			0	0	0	0			0	0	0	0		0

A Systematic Assessment of Dropsonde Impact during the 2017-2019 Hurricane Seasons using the Basin-Scale HWRF: Overall Impacts

Sarah D. Ditchek^{1,2}

Jason Sippel², Ghassan (Gus) Alaka², Karina Apodaca^{1,2}, & Lidia Cucurull² ¹Cooperative Institute for Marine and Atmospheric Studies (CIMAS) | University of Miami (UM) ²Hurricane Research Division (HRD) | Atlantic Oceanographic and Meteorological Laboratory (AOML)

Funding: FY18 Hurricane Supplemental | NOAA Award ID #NA19OAR0220188

23rd AVAPS Users Group Meeting

April 14, 2021

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

1) What is the overall impact of all dropsondes from missions between 2017-2019? SQs:

2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?

3) What impact do inner-core dropsondes (<75 km) have on forecasts?

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

1) What is the overall impact of all dropsondes from missions between 2017-2019? SQs:

2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?

3) What impact do inner-core dropsondes (<75 km) have on forecasts?

Experiment Suite:

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

- 1) What is the overall impact of all dropsondes from missions between 2017-2019? SQs:
 - 2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?
 - 3) What impact do inner-core dropsondes (<75 km) have on forecasts?

Experiment Suite: Assimilated Dropsonde Observations

Dropsondes are allowed *outside* a given radius (r)

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

1) What is the overall impact of all dropsondes from missions between 2017-2019? SQs:

- 2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?
 - 3) What impact do inner-core dropsondes (<75 km) have on forecasts?

Experiment Suite: Assimilated Dropsonde Observations

Dropsondes are allowed *outside* a given radius (r)

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

1) What is the overall impact of all dropsondes from missions between 2017-2019? SQs:

- 2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?
 - 3) What impact do inner-core dropsondes (<75 km) have on forecasts?

Experiment Suite: Assimilated Dropsonde Observations

Dropsondes are allowed *outside* a given radius (r)

Scope of Study: Cycles S_{drn}*/S_{all} Years Davs 498 22/47 2017-2019 ~125

*Storms with assimilated dropsondes

Dropsondes are allowed *inside* a given radius (r)

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

1) What is the overall impact of all dropsondes from missions between 2017-2019? SQs:

- 2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?
 - 3) What impact do inner-core dropsondes (<75 km) have on forecasts?

Experiment Suite: Assimilated Dropsonde Observations

Dropsondes are allowed *outside* a given radius (r)

Scope of Study: Cycles S_{drp}*/S_{all} Years Days 498 22/47 2017-2019 ~125 *Storms with assimilated dropsondes

Dropsondes are allowed *inside* a given radius (r)

Model Choice: The basin-scale HWRF (HB20) İS an experimental, parallel version of the operational HWRF (H220). They are identical except that the basin-scale HWRF has a large, static outer domain and up to five TC-tracking nests.

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

1) What is the overall impact of all dropsondes from missions between 2017-2019? SQs:

- 2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?
 - 3) What impact do inner-core dropsondes (<75 km) have on forecasts?

Experiment Suite: Assimilated Dropsonde Observations

Dropsondes are allowed *outside* a given radius (r)

Scope of Study: Cycles S_{drn}*/S_{all} Years Days 498 22/47 2017-2019 ~125

*Storms with assimilated dropsondes

Dropsondes are allowed *inside* a given radius (r)

Model Choice: The basin-scale HWRF (HB20) İS an experimental, parallel version of the operational HWRF (H220). They are identical except that the basin-scale HWRF has a large, static outer domain and up to five TC-tracking nests.

By using the basin-scale HWRF, while only 22/47 storms had assimilated dropsondes, forecasts of all storms in the basin are impacted if any storm had assimilated dropsondes!

OBJECTIVE: To conduct a composite study that quantifies the radial impact of dropsondes from manned (C-130, P3, G-IV) and unmanned (GH) aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons

1) What is the overall impact of all dropsondes from missions between 2017-2019?

- 2) What is the importance of having dropsondes in the full TS-Gales region (<250 km)?
 - 3) What impact do inner-core dropsondes (<75 km) have on forecasts?

Experiment Suite: Assimilated Dropsonde Observations

Scope of Study: Years Days Cycles S_{drp}*/S_{all} 2017-2019 ~125 498 22/47

*Storms with assimilated dropsondes

Dropsondes are allowed *inside* a given radius (r)

Model Choice: The basin-scale HWRF (HB20) is an experimental, parallel version of the operational HWRF (H220). They are identical except that the basin-scale HWRF has a large, static outer domain and up to five TC-tracking nests.

By using the basin-scale HWRF, while only 22/47 storms had assimilated dropsondes, forecasts of all storms in the basin are impacted if any storm had assimilated dropsondes!

Full* SampleBasin: AL | Verification: Consistent with NHC

OVERALL ASSESSMENT

The inclusion of dropsondes improves track forecasts between 72-120 h around 3-5%. Additionally, the assimilation of dropsondes reduces the across-track bias and the improvement found isn't driven by large outliers.

Stratification By Data Availability

Basin: AL | Verification: Consistent with NHC

NOOBS-B

Stratification By Data Availability

Basin: AL | Verification: Consistent with NHC

OBS-B

This indicates that cycles with dropsondes in the parent domain (OBS-B) outperformed those cycles without dropsondes in the parent domain (NOOBS-B). Not shown is that cycles from storms with dropsondes showed 5-6% improvement between 72-120 h.

Stratification By Intensity

Basin: AL | Verification: Consistent with NHC

Stratification By Intensity

Basin: AL | Verification: Consistent with NHC

Cycles from storms of TS intensity drove track improvement, with 4-9% track improvement between 66-102 h.

Full* SampleBasin: AL | Verification: Consistent with NHC

OVERALL ASSESSMENT

The inclusion of dropsondes improves wind speed forecasts ≥48 h around 4-9%. Additionally, the assimilation of dropsondes slightly reduces the bias and the improvement found is driven by some large outliers.

Stratification By Year

Basin: AL | Verification: Consistent with NHC

Stratification By Year

Basin: AL | Verification: Consistent with NHC

Between 2017 and 2019 there was a change to the observing system method – end-point dropsondes and an inner circumnavigation were both added. Could this be driving the interannual difference shown?

Stratification By Year

Between 2017 and 2019 there was a change to the observing system method – end-point dropsondes and an inner circumnavigation were both added. Could this be driving the interannual difference shown?

23rd AVAPS Users Group Meeting

April 14, 2021

Stratification By Year & Data Availability

Basin: AL | Verification: Consistent with NHC

directly assimilate dropsondes

23rd AVAPS Users Group Meeting

Stratification By Year & Data Availability

Basin: AL | Verification: Consistent with NHC ERROR FSP IMPROVEMENT BIAS 30 STORMS: 6(2017) 9(2019 20 STORMS: 6(2017) | 9(20 40 STORMS: 6(2017) | 9(2019 ORMS: 6(2017) | 9(2019) ALL ALL FULL SAMPLE 60 0N (kts) 25 55 ð Ę -10 35 -15 30 -30 12 24 36 48 60 72 84 96 108 120 132 0 12 24 36 48 60 72 84 96 108 120 132 12 24 36 48 60 72 84 96 108 120 132 12 24 36 48 60 72 84 96 108 120 132 Forecast Lead Time (h) Forecast Lead Time (h) Forecast Lead Time (h) Forecast Lead Time (h) 415 384 356 327 304 283 384 356 327 304 283 415 384 356 327 327 304 263 26

This indicates that cycles from storms with dropsondes in 2019 (2019-OBS) drove wind speed improvement in the full sample.

23rd AVAPS Users Group Meeting

April 14, 2021

Individual Storm Contribution

Individual Storm Contribution ALL Percent Contribution to Wind Speed Error (%) STORMS: 7(2019) SUBSET: 2019-OBS 100 05L (Dorian) 49% 50% 54% 58% 60% 62% 64% 66% 68% 65% 61% 72% 73% 78% 79% 78% 85% 81% 83% 85% 89% 90 80 06L (Erin) 1% 1% 0% 1% 1% 1% 0% 1% 70 07L (Fernand) 1% 1% 0% 1% 1% 1% 60 09L (Humberto) 13% 13% 14% 10% 11% 8% 50 10% 11% 13% 10% 10% 14% 12% 12% 8% 8% 5% 7% 5% 4% 4% 8% 40 10L (Jerry) 22% 18% 16% 17% 15% 20% 15% 15% 14% 11% 10% 12% 7% 10% 9% 6% 5% 3% 4% 3% 2% 1% 30 12L (Karen) 6% 6% 4% 8% 5% 5% 6% 5% 3% 7% 10% 10% 6% 2% 2% 4% 7% 5% 8% 9% 10% 6% 20 10 13L (Lorenzo) 8% 12% 11% 6% 6% 6% 5% 4% 4% 6% 3% 2% 2% 1% 0% 8% 2% 4% 3% 2% 0 12 24 36 72 84 96 108 120 0 48 60 Forecast Lead Time (h)

Dorian's Dropsonde Distribution

Dorian's Dropsonde Distribution

Assimilated Dropsonde Observations

April 14, 2021

Dorian's Dropsonde Distribution

Assimilated Dropsonde Observations

April 14, 2021

Full* SampleBasin: AL | Verification: Consistent with NHC

OVERALL ASSESSMENT

The inclusion of dropsondes degrades forecasts \leq 18 h around 8-13%. Additionally, the assimilation of dropsondes slightly increased the bias and the degradation found was not driven by outliers.

Stratification By Year

Basin: AL | Verification: Consistent with NHC

Stratification By Year

Basin: AL | Verification: Consistent with NHC

Between 2017 and 2019 there was a change to the observing system method – end-point dropsondes and an inner circumnavigation were both added. Could this be driving the interannual difference shown?

Stratification By Year & Data Availability

Basin: AL | Verification: Consistent with NHC

Stratification By Year & Data Availability

Basin: AL | Verification: Consistent with NHC

This indicates that cycles from storms with dropsondes in 2017 (2017-OBS) drove R64 degradation in the full sample.

23rd AVAPS Users Group Meeting

April 14, 2021

Dropsonde Observations Stratified By Year

Dropsonde Observations Stratified By Year

Dropsonde Observations Stratified By Year

When investigating the storms that contributed to the 2017 and 2019 error and looking at the radial dropsondes distributions, those storms that had very few dropsondes within the 60-160 km radial range showed more degradation at early lead times.

PROJECT PLAN

OBJECTIVE: a composite study that quantifies both the overall and radial impact of dropsondes from aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons using the basin-scale HWRF

PROJECT PLAN

OBJECTIVE: a composite study that quantifies both the overall and radial impact of dropsondes from aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons using the basin-scale HWRF

SETUP: 6 experiments (ALL, NIC, NTG, TG, IC, & NO) that vary where dropsondes are assimilated - each covers ~125 days over 3 years, has 498 cycles, and has 47 storms (22 with assimilated dropsondes)

PROJECT PLAN

OBJECTIVE: a composite study that quantifies both the overall and radial impact of dropsondes from aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons using the basin-scale HWRF

SETUP: 6 experiments (ALL, NIC, NTG, TG, IC, & NO) that vary where dropsondes are assimilated - each covers ~125 days over 3 years, has 498 cycles, and has 47 storms (22 with assimilated dropsondes)

Results were shown for ALL & NO which cover 2017 and 2019.

PROJECT PLAN

OBJECTIVE: a composite study that quantifies both the overall and radial impact of dropsondes from aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons using the basin-scale HWRF

SETUP: 6 experiments (ALL, NIC, NTG, TG, IC, & NO) that vary where dropsondes are assimilated - each covers ~125 days over 3 years, has 498 cycles, and has 47 storms (22 with assimilated dropsondes)

Results were shown for ALL & NO which cover 2017 and 2019.

TRACK	WIND SPEED	R64				
OVERALL	OVERALL	OVERALL				
Dropsondes improved track forecasts	Dropsondes improved wind speed	Dropsondes degraded R64 forecasts				
btw 72-120 h around 3-5%	forecasts ≥48 h around 4-9%	≤18 h around 8-13%				
 STRATIFICATIONS REVEALED TS intensity storms drove	 STRATIFICATIONS REVEALED Cycles from storms with	 STRATIFICATIONS REVEALED Cycles from storms with				
track improvement Cycles with dropsondes in the	dropsondes in 2019 drove wind	dropsondes in 2017 drove				
parent domain outperformed cycles	speed improvement (~14% at nearly	R64 degradation Storms with few dropsondes in the				
without dropsondes in the parent	all lead times) Dorian (2019) drove much of the	observed R64 window had more				
domain	wind speed improvement	degradation				

PROJECT PLAN

OBJECTIVE: a composite study that quantifies both the overall and radial impact of dropsondes from aircraft on TC forecasts of track, intensity, and structure over the 2017–2019 hurricane seasons using the basin-scale HWRF

SETUP: 6 experiments (ALL, NIC, NTG, TG, IC, & NO) that vary where dropsondes are assimilated - each covers ~125 days over 3 years, has 498 cycles, and has 47 storms (22 with assimilated dropsondes)

TRACK WIND SPEED **R64 OVERALL OVERALL OVERALL** Dropsondes improved track forecasts Dropsondes improved wind speed Dropsondes degraded R64 forecasts btw 72-120 h around 3-5% forecasts >48 h around 4-9% <18 h around 8-13% STRATIFICATIONS REVEALED... STRATIFICATIONS REVEALED... STRATIFICATIONS REVEALED... Cycles from storms with Cycles from storms with TS intensity storms drove track improvement dropsondes in 2019 drove wind dropsondes in 2017 drove Cycles with dropsondes in the speed improvement (~14% at nearly **R64** degradation parent domain outperformed cycles all lead times) Storms with few dropsondes in the without dropsondes in the parent Dorian (2019) drove much of the observed R64 window had more domain wind speed improvement degradation

Results were shown for ALL & NO which cover 2017 and 2019.

STAY TUNED FOR MORE RESULTS UPON THE COMPLETION OF 2018 AS WELL AS RESULTS FOR THE NTG (incl. ≥250), NIC (incl. ≥75 km), TG (incl. <250 km), AND IC (incl. <75 km) EXPERIMENTS!

THANK YOU FOR LISTENING!

Dr. Sarah D. Ditchek <u>Email:</u> sarah.d.ditchek@noaa.gov <u>Website:</u> http://www.atmos.albany.edu/student/sditchek/

23rd AVAPS Users Group Meeting

April 14, 2021

*10 experiments had unquantifiable improvement – qualitatively, all showed overall improvement due to dropsonde assimilation

Motivation

A total of 57 experiments across 30 papers ranging from 1992 – 2019 were identified that documented the impact of dropsondes on tropical cyclone forecasts, and improvement by forecast lead time was digitized. The percent improvement for 47* experiments are summarized below.

Only 6 experiments had \geq 100 cases, with a mean (median) improvement of 2.85% (3.00%).

Very few studies quantified the impact of dropsondes on intensity and pressure. With many dropsondes being deployed with the purpose of identifying storm intensity, this was surprising.

Dropsonde Observations

Given below are the storm-relative locations of assimilated dropsonde observations in the ALL & NO experiments.

N=49655

N=0

BONUS SLIDES

track

Stratification By Data Availability

Basin: AL | Verification: Consistent with NHC

Cycles from storms with dropsondes (OBS) showed 5-6% improvement between 72-120 h.

BONUS SLIDES wind speed

■ (●): 95% (90%) sig.

Stratification By Intensity

Basin: AL | Verification: Consistent with NHC

TS intensity storms drove wind speed improvement, but this improvement was mostly due to Dorian (2019).

BONUS SLIDES wind speed

■ (●): 95% (90%) sig.

Stratification By Intensity Change

Basin: AL | Verification: Consistent with NHC

For the BT of a storm, calculate running -6 h to +6 h intensity change to capture what type of intensity change the storm is currently undergoing

- For cycles where at t=0 that value is...
- $x \ge 15$ kt, : categorize as RI $5 \le x < 15$ kt: categorize as IN -5 < x < 5 kt: categorize as SS
- -5 < x < 5 Rt. categorize as 55
- $-15 < x \le -5$ kt: categorize as WK

 $x \leq -15$ kt: categorize as RW

BONUS SLIDES wind speed

Stratification By Year & Data Availability

Basin: AL | Verification: Consistent with NHC

Overall, ALL performed the best. Between 24-78 h, removing synoptic dropsondes (TG) performed second best. After 78 h, having dropsondes \geq 75 km is key (ALL, NIC, NTG), particularly \geq 250 km (NTG).

BONUS SLIDES

R34

■ (•): 95% (90%) sig.

Full Sample Basin: AL | Verification: Consistent with NHC

OVERALL ASSESSMENT

The inclusion of dropsondes improves R34 forecasts at nearly all lead times on average 2%, with many lead times above 5%. Additionally, the assimilation of dropsondes reduces the bias and the improvement found isn't driven by large outliers.

BONUS SLIDES

R50

Full SampleBasin: AL | Verification: Consistent with NHC

OVERALL ASSESSMENT

The inclusion of dropsondes improves R50 forecasts ≤78 h around 3-7%. Additionally, the assimilation of dropsondes reduces the bias and the improvement found is driven by large outliers.

Stratification By Intensity

BONUS SLIDES R50

Basin: AL | Verification: Consistent with NHC

H12 intensity storms drove R50 improvement, with 10-20% R50 improvement ≤78 h.

BONUS SLIDES

R50

Stratification By H12 & Data Availability

Basin: AL | Verification: Consistent with NHC ERROR IMPROVEMENT FSP BIAS 80 STORMS: 6(2017) 75 STORMS: 6(2017) | 9(2015 60 STORMS: 6(2017) | 9(3 ALL NO ALL 70 70 40 FULL SAMPLE 65 % 60 Q 10 20 t NO (%) 50 wrt (km) wrt in ≥ -10 -20 40 Ĕ 35 -20 -40 30 0 12 24 36 48 60 72 84 96 108 120 132 0 12 24 36 48 60 72 84 96 108 120 132 0 12 24 36 48 60 72 84 96 108 120 132 0 12 24 36 48 60 72 84 96 108 120 13 Forecast Lead Time (h) Forecast Lead Time (h) Forecast Lead Time (h) Forecast Lead Time (h) 996 914 903 878 824 778 714 713 656 617 543 0 993 922 922 895 795 799 725 657 623 639 545 4 206 914 903 878 824 778 714 713 656 617 548 993 922 922 805 735 736 725 637 623 639 545 4 920 924 923 878 894 775 726 724 711 656 617 543 296 214 203 478 434 778 714 713 456 617 543

This indicates that cycles from H12 storms with dropsondes (H12-OBS) drove R50 improvement in the full sample.

23rd AVAPS Users Group Meeting

April 14, 2021

■ (•): 95% (90%) sig.