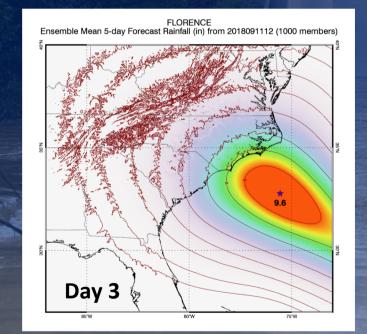
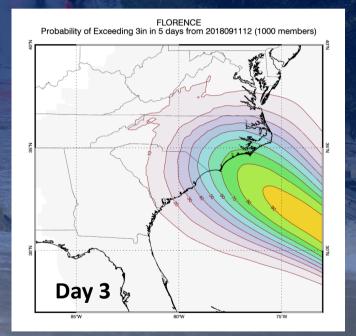
Development of a Probabilistic Tropical Cyclone Rainfall Model

PRESENTER: Frank Marks

BACKGROUND: Heavy precipitation is a major hazard in landfalling tropical cyclones (TCs). Historically, heavy rainfall has induced freshwater floods and mudslides during TC landfalls, accounting for 27% of deaths and devastating property. Hence, improving current TC quantitative precipitation forecasts is indispensable. A new tropical cyclone rainfall probability model is described that provides five-day probabilistic forecasts of extreme rainfall accumulation above a selected threshold, e.g., 1", 3", 6", etc..

I C	Hurricane Florence September 13-18, 2018 4162 sites	
	1-2.45° 3-4.45° 3-4.45° 1-2.45° 1-2.45° 1-2.456° 1-3.456° 1	Florence (2018) – 35.9/26.6 inches N Carolina/S Carolina Record
A A A A	Maximum: 35.93* Elizabethtown 6.2 NW, NC	
	Track	

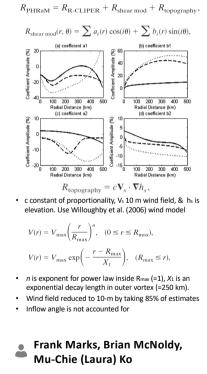

METHODS


- R-CLIPER: Rainfall CLImatology & PERsistence
 - Marks & DeMaria (2003), Tuleva et al. (2007) Accounts for intensity, size, speed, land, but not asymmetry or topography
 - Run experimentally at NHC 2001-2003, operationally since 2004
- PHRaM: Parametric Hurricane Rainfall Model Lonfat et al. (2007)
- · Builds on R-CLIPER framework, but adds asymmetry and topography
- · Intensity and shear dependent parameterization of rainfall derived from TRMM data (Lonfat et al. 2004. Chen et al 2006)
- Rainfall Probability: Probabilistic PHRaM
- Utilizes NHC's 1000-member Monte Carlo ensemble used for wind speed probabilities (DeMaria et al. 2009)
- · PHRaM is run on the 1000 members to get probabilistic information
- Includes uncertainties in track, intensity, & size randomly selected from NHC error distributions over past 5 years
- Rmax values calculated using Knaff et al. (2015) empirical relationship which is function of Vmax, & latitude
- · Computationally reasonable to run in real-time

RESULTS

- Ensemble-based products include: Ensemble mean.
 - Probability of exceeding a fixed amount
 - · Probability of exceeding deterministic forecast by some
 - amount,
 - · Area with % chance of exceeding deterministic forecast

A new probabilistic TC Rain Model produces the probability of rain exceeding certain accumulation thresholds over a 5-day forecast.



Take a picture to download background

Rain rate scales continuously with intensity, V_{max} ≥ 35kt. R_{max} ≤ 100km

PHRaM

R-CLIPFR

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE