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Definitions

Let x; be a vector of state variables, and y; be a vector of
observations that are valid at time t.

x; and y; are given by a nonlinear set of equations:

Xt = M(Xt—l) + N,
y: H(x:) + €.
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Definitions

We don't know x; and y; exactly, so the best we can do is
estimate their pdfs:

p(xe) p(y:)
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Our goal

What we're really after is the pdf of x; conditioned on all
information we have:

P(Xt|X0:t—17 YI:t)-

This pdf considers past and present observations, model
states, and their errors. In practice, we only need most recent
obs and model state:

P(Xt’XO:t—hYLt) ~ p(xt|xt—17yt)~
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Our goal

Bayes' theorem tells us where to begin:

p(xexe-1,ye) o p(yelxe) X p(Xe[Xe-1,¥e-1)-
T T T
Posterior (analysis) Likelihood Prior (background)
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Our goal

Bayes' theorem tells us where to begin:

p(xe[xe—1,y:) oc pyelxe) X p(Xe[Xe-1, Y1)
T T T
l....."|iilll!?-..........---;. ‘;....'IIII"!III--........... l:-lll"l.'l!!llll.ll-......
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Our goal

For weather prediction, the ultimate objective is to estimate
various parts of the forecast probability density p(X;is¢|X¢, Yt)-

P(Xt’Xt—la Yt) p(xt+§t‘xt> Yt)
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Our goal

For weather prediction, the ultimate objective is to estimate
various parts of the forecast probability density p(X;is¢|X¢, Yt)-

Examples:

m Most probable TC track, intensity, structure, etc.
m Range of likely outcomes (variance in estimates).

m Range of possible outcomes (e.g., solutions that are
improbable, but still plausible).
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Our goal

For weather prediction, the ultimate objective is to estimate
various parts of the forecast probability density p(X;is¢|X¢, Yt)-

Improving this estimate requires advancements in

m representation of model processes and their uncertainty:
Xt = M(x¢—1) + ¢

m observations and their uncertainty: data collection,
OSSEs/OSEs, etc.

m data assimilation theory: p(x:|x:—1,y:)
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How is this done on the DA side?

Optimal Interpolation (Ol):

P(Xt|xt—1, Yt) P(Yt|xt) p(xt|xt—17 Yt—l)

f
X
Posterior mean

m Assume Gaussian obs errors and Gaussian prior with mean x/
and fixed prior error covariance from climatology.

m Solve explicitly for posterior mean.
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How is this done on the DA side?

3D-Variational (3DVar):
p(Xe|xt-1,Y¢) p(ye|x:) p(Xe|Xt-1,Ye-1)

f
X
Mode

m Assume Gaussian obs errors and Gaussian prior with mean x/

and fixed prior error covariance from climatology.

m Solve for posterior mode by minimizing a cost function
(differs from Ol under certain conditions).
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Note on forecast pdf

First two methods do not allow for estimate of p(X;is¢|X¢, Y¢)-
For high-dimensional systems, only computationally feasible
estimate is through sequential Monte Carl methods.

P(Xt’Xt—la Yt) p(xt+§t‘xta Yt)

Draw x} for n =1,2, ..., N, from p(x:|x;—1,¥:).

X7, se = M(x7) +n;], are then samples from p(Xeis¢|Xe, ¥t).
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How is this done on the DA side?

Ensemble Kalman filter (EnKF):

p(X¢|Xe—1,Y¢) p(ye|x:) p(X¢|Xe—1, Y1)
oc X
X y |_'_l X
Equally likely samples Equally likely samples

m Assume Gaussian obs errors and Gaussian prior estimated
from equally likely ensemble realization of model integrations.

m Solve explicitly for sample (ensemble) that has correct
posterior mean and covariance.

13/18



How is this done on the DA side?

Particle filter (PF):

P(Xt|xt—1, Yt) P(Yt|xt) p(xt|xt—17 Yt—l)

] X y — X
Equally likely samples Equally likely samples
m Freedom to choose error distribution for obs; assume prior

distribution is sum of delta functions centered on each
member.

m Posterior given by weighted sum of prior members; samples
drawn in neighborhood of members with high weights
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Note on forecast pdf

Unlike EnKFs, PFs will converge to true p(x;is¢|Xs,Y:) as
N, — oo, and as representation of M(x;) and its errors
improve.

P(Xt’Xt—la Yt) p(xt+§t|xt7 Yt)
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Important points

Many operational centers use “hybrid” DA: combines strengths
and weaknesses of Var and EnKF (ask about theoretical and
practical strengths/weaknesses in weather models).

PFs provide a way of solving complex nonlinear problems that
are difficult for EnKFs (see my talk later this month).

PF can be useful for high-dimensional applications by

exploiting sparsity of data assimilation problem (Poterjoy
2016, Poterjoy and Anderson 2016)
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Research objectives at AOML

Test PF for hurricane OSSEs and OSEs—builds off recent
success applying the PF for convective-scale NWP at NSSL.

Use new DA framework to assimilate observing systems not
used operationally, but may have large potential (e.g., cloudy

radiances).

Improve estimates of observation errors used for DA in tropical
cyclones.
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Research objectives at AOML

Improve the model!
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m Bias after 3 h of 5-min cycling DA
using PF and EnKF with perfect
model (Poterjoy et al. 2017).
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