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6. Potential Temperature

The stability of the atmosphere may seem counter-intuitive.  We are aware from our
everyday experience that hot air rises, so why is it that the troposphere is stable despite
the temperature decreasing with height?  In this and the next section we shall investigate
why this is so.  It will be shown that the stability of the troposphere depends on both the
temperature and the decreasing pressure with height.  The pressure and temperature can
be combined into a single variable, the potential temperature, and it will be shown that
the atmosphere is stable if the potential temperature increases with height.  We shall
define the potential temperature, θ , to be a quantity that will not change as air parcels
are moved adiabatically (without heat exchange).

The first law of thermodynamics

Suppose that a small quantity of heat, dq, is added to a unit mass of gas. Conservation of
energy requires that the heat added be balanced by an increase in the internal energy of
the gas, du, and work done by the gas against its environment, dw. This may be
expressed mathematically as

dq du dw= + , (6.1)

and is known also as the first law of thermodynamics.

For a unit mass of gas, the volume V is simply the specific volume α . Then the work
done by the gas when its specific volume increases by dα  is

dw pd= α .

Note that the work done = force × distance. For example, for a unit mass of gas with
cross-sectional area A, dxAd =α , or ( ) dxApdp =α = force × distance. (See Fig. 6.1.)

dx

pA

Figure 6.1.  Work done in displacing a boundary of area A a distance dx.
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Hence Eq. (6.1) becomes

dq du pd= + α . (6.2)

Suppose that the heat added to the gas increases its temperature from T to T+dT without
a change in phase. The ratio dq/dT is called the specific heat. The specific heat defined
in this way can have any number of values depending on how the gas changes as the
heat is added.

For example, if the volume of the gas remains constant, the ratio dq/dT, denoted by cv ,
is called the specific heat at constant volume. In this situation, no work is done by the
gas in expanding, whereupon Eq. (6.2) gives dq = du, i.e.,

c du
dTv = �

�
�

�
�
�

=α constant
. (6.3)

However, the internal energy of an ideal gas is independent of volume since the
molecules of an ideal gas do not exert any attractive or repulsive forces on each other.
(In fact, it can be shown that the average kinetic energy of a gas molecule = 23 Tk ,
where NRk *=  is Boltzman’s constant.) Consequently, the internal energy depends
only upon the temperature, in which case Eq. (6.3) gives

du c dTv= .

Hence, Eq. (6.2) can be re-expressed as

dq c dT p dv= + α . (6.4)

As a second example, consider a case in which the heat is added to the gas in such a way
that the pressure remains constant. Then we may define a specific heat at constant
pressure as

c dq
dTp = �

�
�

�
�
�

=p constant
(6.5)

In this case, some of the heat input dq will go into doing work as the gas expands and
pushes against its environment. Therefore, a larger quantity of heat will need to be
added to the gas to raise its temperature by the same dT as in the case α = constant .

To show this we write the perfect gas equation in the differential form (using the
product rule)

.dTRdppd d=+ αα (6.6)

Using Eq. (6.6) to eliminate pdα  from Eq. (6.4) gives
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( ) .dpdTRcdq dv α−+= (6.7)

At constant pressure, dp = 0, whereupon Eq. (6.5) gives

dvp Rcc += . (6.8)

For dry air, cv  717 J deg −1 kg −1 .

Combining Eqs. (6.7) and (6.8) we obtain an alternative form of the first law of
thermodynamics, i.e.,

dq c dT dpp= −α . (6.9)

Note that α dp  is not the work done, but for an isothermal process 0=+ dpdp αα , and
hence dpdpdw αα −== . (An isothermal process is one for which the temperature
remains constant, and hence dT = 0.)

Adiabatic changes

As an air parcel moves around in the atmosphere, it tends to receive little external heat
input, at least on a time scale of a few hours. This is due to the relatively low thermal
and radiative conductivity of air. Thus, air parcels carry their heat with them and suffer
negligible heat loss or gain. Accordingly, it is a good approximation to assume that
changes of state are adiabatic.

The mathematical statement that no heat is gained or lost is dq = 0 . Thus, from Eq.
(6.4)

0 = +c dT pdv α .

If the air parcel expands ( )dα > 0 , it must cool ( )dT < 0  as it does work ( )pdα  against
its environment.

Alternatively, from Eq. (6.9),

0 = −c dT dpp α .

Using the perfect gas equation, this becomes

dp
p
TR

dTc d
p −=0

or, upon dividing by T,

0=−
p

dp
T
dT κ ,
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where pcR /=κ . Therefore, integrating from (T,p) to ( )θ, *p  gives

ln ln ln ln *T p p− = −κ θ κ , (6.10)

where θ  and p*  are reference values of temperature and pressure. For dry air,
κ = 0 286. .  Alternatively, Eq. (6.10) may be written as

T p
p

=
�

�
�

�

�
�θ

κ

*

 . (6.11)

θ  is called the potential temperature of the air parcel. Physically, the potential
temperature of an air parcel is the temperature the parcel would have if it were brought
adiabatically to the standard pressure p* ; generally we take p* = 1000 mb. Since the
potential temperature is just the constant of integration, it is a conserved quantity for an
air parcel in adiabatic motion, i.e., motion in which there are no heat sources or sinks.

In meteorology, it proves extremely useful to label air parcels with their potential
temperature. In fact, the potential temperature is defined by

θ
κ

=
�

�
�

�

�
�T p

p
* . (6.12)

We shall see that the vertical stability of a dry atmosphere can be characterized by the
variation of θ  with height.  Meteorologists have developed aerological diagrams which
allow the pressure and temperature to be plotted and the potential temperature to be read
off.

Aerological Diagrams

There are many different types of aerological diagrams, but they all share some
important characteristics.  All of them allow points to be plotted according to their
temperature and pressure, and the potential temperature to be read off.  In addition,
information about moist processes, such as the likelyhood of  cloud formation, can be
obtained from the diagrams.  However, in this course, we only consider dry processes.

The aerological diagram used in this course is the skewT-logP diagram used by the
Australian Bureau of Meteorology.  As the name suggests, the vertical axis is
log(pressure) and the other axis is skew (diagonal) temperature.  A simplified version of
this diagram is shown in Figure 6.2.  The horizontal lines are lines of equal pressure and
are labelled in hPa, the dashed lines (positive slope) are lines of constant temperature
and are labelled in 0C.  The negatively sloping solid lines are dry adiabats, and indicate
lines of equal potential temperature.  Another way to think about dry adiabats is to
realise that motion along these lines is adiabatic motion – no heat is exchanged.
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Remembering the definition of potential temperature, it is easy to find the potential
temperature given the pressure and temperature.  Plot the (pressure, temperature)
reading on the aerological diagram, then follow a dry adiabat to p=1000hPa and read off
the temperature at this point.

Figure 6.2 Simplified aerological diagram.


