

CYGNSS Science Team Meeting, 10/21/2015

Assimilation of GNSS-R Delay-Doppler Maps into Hurricane Models

Award under NASA GNSS Remote Sensing Science Team (ROSES-2015 A.26)

James L. Garrison, Ross Hoffman, Bachir Annane John Eyre, Ad Stoffelen

Proposal Summary

- Response to NASA GNSS Remote Sensing Science Team (ROSES-2015 A.26)
- 4 year Start date Dec 31, 2015
- University of Miami (CIMAS) Purdue Collaboration
- UK Met Office (John Eyre) and KNMI (Ad Stoffelen) collaborators
- Two Principal Goals:
 - Develop optimal assimilation of GNSS-R data into Hurricane models
 - Improve L-band bistatic model function

Background & Motivation

- CYGNSS 25 km resolution features may be smaller than that
- Measurements only along specular-point tracks
- Level 1X data product Delay Doppler Map convolution of surface roughness with C/A code ambiguity function (limiting resolution)
- Present approach "invert" the DDM in some way then assimilate wind speed
- Incorporates many assumptions:
 - Scattering model
 - Uniformity over 25 km region
 - Winds to MSS relationship
- Similarity with GNSS Radio-occultation learn from that experience

GNSS-R vs. GNSS-RO

Radio-occultation (-RO):
Water vapor -> Refractivity -> bending angle

GNSS-R vs. GNSS-RO

Reflectometry (-R):
Winds -> MSS -> DDM

$$\sigma_i^2 = 0.45 (0.003 + 0.00508 f(U)), \longrightarrow R(\tau, f) = C \iint \frac{|G(\vec{\rho})|^2}{4\pi R_I^2 R_S^2} \sigma_0(\vec{\rho}) |\chi(\tau, f, \vec{\rho})|^2 d\vec{\rho}^2$$

Problem Statement

- 25 km resolution requirement: 3 X 5 pixels used in L2 retrieval
- Downloaded to the ground: 17 x 11 pixels around specular point
- SGI-ReSI Receiver Much larger DDM generated on board

Model Assimilation

- DDM model will be used to derive an observation operator (forward model) and adjoint (Jacobian) at discrete steps in delay and Doppler
- Nominally work in a "state" of scattering cross-section linear in the forward model
- VAM Variational Analysis Method 2D VAR ocean surface wind assimilation method - Integrated with NCEP's HWRF

$$J(\mathbf{x}) = \frac{1}{2} \left(\mathbf{y} - h(\mathbf{x}) \right)^T \left(\mathbf{P}_O + \mathbf{P}_h \right)^{-1} \left(\mathbf{y} - h(\mathbf{x}) \right) \frac{1}{2} \left(\mathbf{x} - \hat{\mathbf{x}}(-) \right)^T \mathbf{P}_{\hat{\mathbf{x}}}^{-1} \left(\mathbf{x} - \hat{\mathbf{x}}(-) \right) + J_c(\mathbf{x})$$
(8)

- Nonlinearities in DDM will be incorporated into VAM first without need to modify HWRF.
- OSSE will be used study different scales using simulated CYGNSS data

Model Assimilation

Evaluation of Optimal Data for Assimilation

Initial look: three levels of data:

- CYGNSS Level 1b DDM
- Bistatic scattering cross-section extracted from EKF
- CYGNSS Level 2 wind product

Improvement of L-band model functions

- Retrievals of winds empirical model from Katzberg, et al.
 - Derived from > 10 years of airborne experiments C/A code single-channel DMR.
 - Isotropic slope PDF
 - Limited to high-elevation satellites
 - Parameterized using wind only.
- Upgrade of S-band signals-of-opportunity (SoOp) recorder for flight on NOAA P-3
- Software-Defined Radio (SDR) approach to extract all satellites in view, including Galileo.
- Larger experimental data set for fitting model functions.

Improvement of L-band model functions

Proposed Project Schedule

