## Evaluating the Impact of Hurricane Observations from the Unmanned Coyote Aircraft in Observing System Simulation Experiments

## Altug Aksoy<sup>1,2</sup>

#### Joe Cione<sup>2,3</sup>, Brittany Dahl<sup>1,2</sup>, Hui Christophersen<sup>1,2</sup>, Robert Atlas<sup>4</sup>

<sup>1</sup> Cooperative Institute for Marine and Atmospheric Studies, University of Miami – Miami, Florida <sup>2</sup> Hurricane Research Division, NOAA/AOML – Miami, Florida <sup>3</sup> Physical Sciences Division, NOAA/ESRL – Boulder, Colorado <sup>4</sup> Atlantic Oceanographic and Meteorological Laboratory, NOAA – Miami, Florida

#### Funding & Computing Resources Provided by:

NOAA/OAR Assistant Administrator's Office NOAA/OMAO Aircraft Operations Center NOAA UAS Program Office & SHOUT Project NOAA Hurricane Forecast Improvement Project (HFIP)



## **Coyote Unmanned Aircraft System** A New Tool to Better Observe Tropical Cyclones

The NOAA P-3 Aircraft Typically Penetrates Tropical Cyclones and Collects Data with a Suite of Instruments

> The Dropsonde System is Designed to Measure the Vertical Variations in the Atmosphere



The Coyote is a Small Aircraft that Uses the Dropsonde Deployment System and Sensor Suite and is Capable of Remaining Airborne for ~1 h or Longer



## Hurricane Edouard (2014) Aircraft Missions Coordination of Multiple Aircraft and Coyote Missions



# Hurricane Edouard (2014) Aircraft Missions Coordination of Multiple Aircraft and Coyote Missions



Can we repeat the findings of the real-data experiment and expand on it in an OSSE?

Value of Coyote UAS Observations for TC Data Assimilation and Prediction

Altug.Aksoy@noaa.gov

#### Coyote Mission on 16 September Closer Look at What Was Observed



#### **Coyote Mission on 16 September** Closer Look at What Was Observed



### **OSSE Experimental Setup**

#### Data Assimilation System and Nature Run



930

NRH1 JONR Hurricane

Jul 31

Aug 2

Aug 4

#### **HEDAS Characteristics**

- Focus on tropical cyclone inner-core data assimilation for high-resolution vortex initialization
- Uses the ensemble square-root Kalman filter (Whitaker and Hamill 2002)
- Storm-relative observation processing capability (Aksoy 2013)

#### **Nature Run Characteristics**

- From Nolan et al. (JAMES 2013)
- High-resolution (27/9/3/1 km) hurricane simulation with WRF-ARW
- Embedded in and nudged toward an ECMWF T511 nature run

-80

-70

-60

-50

longitude

-40

-30

-20

Aug 6

Aug 8

Aug 10

Altug.Aksoy@noaa.gov

























Altug.Aksoy@noaa.gov







#### Summary

- 1. Successful simulation and assimilation of Coyote UAS observations
  - This Phase-1 OSSE confirms the findings of the real-data study
- 2. Small but consistent & meaningful improvements in the kinematic and thermodynamic structures
  - Mostly in the low-to-mid levels
  - Mostly near the inner core
- 3. Further optimization in DA may be necessary as # of dense Coyote UAS observations increase in a localized region of the vortex
- 4. Further research will investigate ways to improve sampling strategies with the Coyote UAS
  - Where in the vortex?
  - Sampling rate vs sampling duration
  - Possibility of simultaneous sampling by multiple aircraft