

The AOML Environmental Microbiology Program:

Collaborative Inter-Disciplinary Research for Molecular Assessment of Microbial Water Quality In Coastal Ecosystems

David Wanless Kelly Goodwin Chris Sinigalliano

NOAA AOML: The Environmental Microbiology Program What do we do?

Molecular Microbiology to make coastal water quality assessment faster, easier, cheaper, and more accurate

Why do we do it?

To better protect the public health, ecosystems, and economy from: Sewage Pollution, Human Pathogens, Harmful Algae

The Specifics?

Develop and/or adapt *molecular assays and sensors* to detect microbial contaminants in coastal waters by measuring DNA or RNA signatures.

Who are our Customers and Partners?

Public Health Agencies, Fisheries, Tourism Industry, Environmental/Conservation Organizations, Concerned Citizens, Beach Managers, Water Quality Managers, Academic Institutions, Environmental and Public Health Scientists

Traditional assays need improvement

Fecal Indicator Assays:

- too slow (>18 hr)
- it is unclear if the correct thing is being monitored (axioms of fecal indicator theory violated)

- no pathogen detection
- no ability to source track (needed to guide remediation)

The Potential of Biotechnology

- species-specific ID
- ✓ rapid
- ✓ sensitive
- high-throughput
- ✓ allows sample storage

- culture & microscope independent
- simultaneous information on multiple targets
- Source-tracking of fecal indicator hosts

Key Scientific Questions

- Can molecular analysis be used to quickly and reliably identify human pathogens in coastal waters?
- Can molecular microbial source tracking aid in the reliable discrimination of input sources of microbial contamination to coastal waters?
- What are the sources of nutrients, pathogens, and fecal indicators in coastal waters?
- Is there a linkage between sources of nutrients and microbial contamination in coastal waters?

NOAA AOML **Tools for Environmental Microbiology:**

Real-Time quantitative PCR

colorimetric microplate **hybridization**

Luminex suspension array

Handheld **Electrochemical Biosensor**

Traditional Culture-Based

IDEXX EnteroLertTM

Membrane-Filtration Alternative Indicators Plate Counts (Clostridium, etc.)

Incorporation of Molecular Assays into Field Programs

National Oceanic & Atmospheric Administration

Florida Area Coastal Environment (FACE)

Water discharges to coastal waters including outfalls, inlets, & upwelling characterized for nutrient concentrations & microbiological water quality

Six treated wastewater outfalls off the Southeast Florida Coast

Molecular Microbiology Sampling aboard NOAA Ship Nancy Foster

Multiple Assays Incorporated

enterococci *Escherichia coli / Shigella* spp.

Bacteroides Fragilis Group Bacteroides distasonis

enterococci human marker Bacteroides human markers Bacteroides dog marker

E. coli O157:H7 *Campylobacter jejuni Salmonella* spp. *Staphylococcus aureus* adenovirus standard fecal indicators

alternative fecal indicators

source tracking markers

pathogens intestinal & dermal bacteria and virus

Indicators and Pathogens in Wastewater Outfall Boils

assay	HWD	HWD	HWD btm	MC	MC btm	NMB	NMB btm
enterococci	+	+	+	-	+	-	+
human <i>Bacteroides</i> (HF8)	-	-	+	l	-	-	-
S. aureus	-	-	-	+	-	-	+
adenovirus	-	-	+	+	-	-	-
Norovirus	-	-	+	+	-	-	+
Phage MS2	+	-	-	+	-	+	+
Crytpo/100L	55	17		236		8	
Giardia/100L	68	119		246		120	

Human enterococci, Salmonella, enterovirus: all negative

Tidal Discharges from Coastal Inlets

Satellite Photo Boynton Inlet

Export of microbial contamination with outgoing tide, Boynton Inlet 1st 48-hour intensive study, June 2007

assay	0400	1000	1600	2200	0400	1000	1600	2200	1400
human enterococci (esp)	+	I	I	1	+	I	I	I	+
human <i>Bacteroides</i> (HuBac)	+	-	l	I	+	I	+	+	+
S. aureus	+	-	-	-	+	-	+	+	+
adenovirus	+	-	-	+	-	-	+	-	+
norovirus	+	-	-	-	-				+
enterovirus	-	-	-	-	+				+
Crytpo/100L			6.3	<1	2.4				24.9
Giardia/100L			4.2	<1	1.2	- 14-			19.4

— inlet, outgoing tide; *Salmonella*, 0157:H7, *C. jejuni*: negative

Trends in elevated microbial contamination on outgoing tides correspond to trends in elevated nutrient levels

Nutrients and Flow, Boynton Inlet 2nd 48-hour Intensive study, September 2007 (Zheng et al.)

Beach Environmental Assessment and Characterization of Human Exposure Study (BEACHES)

Impact of Hurricanes Katrina and Rita on the Microbial Landscape of New Orleans:

Reported in: Sinigalliano et al., 2007, PNAS 104:9029-9034
Reviewed in: Dobbs, 2007, PNAS 104:9103-9104

Traditional & Non-Traditional Indicators

Portable & In-Situ Biosensors

Prototype handheld automated multiwell PCR analyzer and electrochemical detector, with PC interface

The Product: biotechnological innovations to produce timely & accurate reporting of ecosystem health and environmental safety

apid, Reliable, Affordable Health risks?

Questions?

Acknowledgmen

- CICEET
- NOAA OHHI
- NSF #0CE0432368
- NIEHS #P50 ES12736
- SCCWRP
- FDEP

NGI

• FDOH/CDC

