1. Bakker, D.C.E., B. Pfeil, C.S. Landa, N. Metzl, K.M. O'Brien, A. Olsen, K. Smith, C. Cosca, S. Harasawa, S.D. Jones, S.-I. Nakaoka, Y. Nojiri, U. Schuster, T. Steinhoff, C. Sweeney, T. Takahashi, B. Tilbrook, C. Wada, R. Wanninkhof, S.R. Alin, C.F. Balestrini, L. Barbero, N.R. Bates, A.A. Bianchi, F. Bonou, J. Boutin, Y. Bozec, E.F. Burger, W.-J. Cai, R.D. Castle, L. Chen, M. Chierici, K. Currie, W. Evans, C. Featherstone, R.A. Feely, A. Fransson, C. Goyet, N. Greenwood, L. Gregor, S. Hankin, N.J. Hardman-Mountford, J. Harlay, J. Hauck, M. Hoppema, M.P. Humphreys, C.W. Hunt, B. Huss, J.S.P. Ibánhez, T. Johannessen, R. Keeling, V. Kitidis, A. Körtzinger, A. Kozyr, E. Krasakopoulou, A. Kuwata, P. Landschützer, S.K. Lauvset, N. Lefèvre, C. Lo Monaco, A. Manke, J.T. Mathis, L. Merlivat, F.J. Millero, P.M.S. Monteiro, D.R. Munro, A. Murata, T. Newberger, A.M. Omar, T. Ono, K. Paterson, D. Pearce, D. Pierrot, L.L. Robbins, S. Saito, J. Salisbury, R. Schlitzer, B. Schneider, R. Schweitzer, R. Sieger, I. Skjelvan, K.F. Sullivan, S.C. Sutherland, A.J. Sutton, K. Tadokoro, M. Telszewski, M. Tuma, S.M.A.C. Van Heuven, D. Vandemark, B. Ward, A.J. Watson, and S. Xu. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8:383-413, doi:10.5194/essd-8-383-2016 2016

    Abstract:

    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.

  2. Bakker, D.C.E., B. Pfeil, K. Smith, S. Hankin, A. Olsen, S.R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K.M. O’Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N.R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R.D. Castle, F.P. Chavez, L. Chen, M. Chierici, K. Currie, H.J.W. de Baar, W. Evans, R.A. Feely, A. Fransson, Z. Gao, B. Hales, N.J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C.W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E.M. Jones, S.D. Jones, S. Jutterstrom, V. Kitidis, A. Kortzinger, P. Llandschutzer, S.K. Lauvset, N. Lefevre, A.B. Manke, J.T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A.M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A.F. Rios, C.L. Sabine, S. Saito, J. Salisbury, V.V.S.S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K.F. Sullivan, H. Sun, A.J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S.M.A.C. van Heuven, D. Vandemark, P. Vlahos, D.W.R. Wallace, R. Wanninkhof, and A.J. Watson. An update to the surface CO2 atlas (SOCAT version 2). Earth System Science Data, 6(1):69-90, doi:10.5194/essd-6-69-2014 2014

    Abstract:

    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink, and its spatial, seasonal, year-to-year and longer term variation, as well as initialization or validation of ocean carbon models and coupled climate-carbon models.

  3. Wanninkhof, R.H., T.-H. Peng, B. Huss, C.L. Sabine, and K. Lee. Comparison of inorganic carbon system parameters measured in the Atlantic Ocean from 1990 to 1998 and recommended adjustments. Oak Ridge National Laboratory/Carbon Dioxide Information Analysis Center, Data Report, ORNL/CDIAC-140, 43 pp., 2003

    Abstract:

    As part of the global synthesis effort sponsored by the Global Carbon Cycle project of the National Oceanic and Atmospheric Administration (NOAA) and U.S. Department of Energy, a comprehensive comparison was performed of inorganic carbon parameters measured on oceanographic surveys carried out under the auspices of the Joint Global Ocean Flux Study and related programs. Many of the cruises were performed as part of the World Hydrographic Program of the World Ocean Circulation Experiment and the NOAA Ocean-Atmosphere Carbon Exchange Study. Total dissolved inorganic carbon (DIC), total alkalinity (TAlk), fugacity of CO2, and pH data from 23 cruises were checked to determine whether there were systematic offsets of these parameters between cruises. The focus was on the DIC and TAlk state variables. Data quality and offsets of DIC and TAlk were determined by using several different techniques. One approach was based on crossover analyses, where the deep-water concentrations of DIC and TAlk were compared for stations on different cruises that were within 100 km of each other. Regional comparisons were also made by using a multiple-parameter linear regression technique in which DIC or TAlk was regressed against hydrographic and nutrient parameters. When offsets of greater than 4 µmol/kg were observed for DIC and/or 6 µmol/kg were observed for TAlk, the data taken on the cruise were closely scrutinized to determine whether the offsets were systematic. Based on these analyses, the DIC data and TAlk data of three cruises were deemed of insufficient quality to be included in the comprehensive basinwide data set. For several of the cruises, small adjustments in TAlk were recommended for consistency with other cruises in the region. After these adjustments were incorporated, the inorganic carbon data from all cruises, along with hydrographic, chlorofluorocarbon, and nutrient data, were combined as a research-quality product for the scientific community.

  4. Castle, R.D., R.H. Wanninkhof, J.L. Bullister, S.C. Doney, R.A. Feely, B.E. Huss, E. Johns, F.J. Millero, K. Lee, D. Frazel, D. Wisegarver, D.Greeley, F. Menzia, M. Lamb, G. Berberian, and L.D. Moore. Chemical and hydrographic profiles and underway measurements from the eastern North Atlantic during July and August of 1993. NOAA Data Report, ERL-AOML-32 (PB98-131865), 82 pp., 1998

    Abstract:

    From July 4-August 30, 1993, the National Oceanic and Atmospheric Administration's (NOAA) Ocean-Atmosphere Carbon Exchange Study (OACES) and Radiatively Important Trace Species (RITS) programs participated in an oceanographic research cruise aboard the NOAA ship Malcolm Baldrige. The objectives of the OACES component were to determine the source and sink regions of CO2 in the equatorial and North Atlantic during the summer and to establish a baseline of total carbon inventory in the region. Data were collected from 5°S to Iceland along a nominal longitude of 20°W. This report presents only the OACES-related data from legs 1, 2A, and 2B, including hydrography, nutrients, carbon species, dissolved oxygen, total inorganic carbon, chlorofluorocarbons, total alkalinity, pH, and salinity. Included are contour plots of the various parameters and descriptions of the sampling techniques and analytical methods used in data collection.

  5. Peltola, E., R. Wanninkhof, R. Molinari, B.E. Huss, R. Feely, J. Bullister, J.-Z. Zhang, F. Chavez, A. Dickson, A. Ffield, D. Hansell, F. Millero, P. Quay, R. Castle, G. Thomas, R. Roddy, T. Landry, M. Roberts, H. Chen, D. Greeley, K. Lee, M. Roche, J.A. Goen, F. Millero, K. Buck, M. Kelly, F. Menzia, A. Huston, T. Waterhouse, S. Becker, and C. Mordy. Chemical and hydrographic measurements during the Indian Ocean I8 repeat cruise (IR8N) in September and October 1995. NOAA Data Report, ERL-AOML-34 (PB99-126948), 176 pp., 1998

    Abstract:

    This document contains data and metadata from the I8 repeat cruise in the Indian Ocean cruise in 1995 from Fremantle, Australia to Male in the Maldives. From September 22 to October 25, 1995, the National Oceanic and Atmospheric Administration (NOAA) sponsored an oceanographic research cruise conducted aboard the NOAA Ship Malcolm Baldrige. This report presents the analytical and quality control procedures and data from the cruise that was conducted for the Ocean-Atmosphere Carbon Exchange Study (OACES). Samples were taken at 101 stations. The data presented in this report includes hydrography, nutrients, total dissolved inorganic carbon dioxide (DIC), fugacity of carbon dioxide (fCO2), total alkalinity (TA), pH, total organic carbon and nitrogen data (TOC/TON), chlorofluorocarbons, 13C, and biological parameters.

  6. Lamb, M.F., J.L. Bullister, R.A. Feely, G.C. Johnson, D.P. Wisegarver, B. Taft, R.H. Wanninkhof, K.E. McTaggart, K.A. Krogslund, C.W. Mordy, K. Hargreaves, D. Greeley, T. Lantry, H. Chen, B.E. Huss, F.J. Millero, R.H. Byrne, D.A. Hansell, F.P. Chavez, P.D. Quay, P.R. Guenther, J.-Z.Zhang, W. Gardner, M.J. Richardson, and T.-H. Peng. Chemical and hydrograph measurements in the eastern Pacific during the CGC94 expedition (WOCE section P18). NOAA Data Report, ERL-PMEL-61 (PB97-158075), 235 pp., 1997

    Abstract:

    NOAA's Climate and Global Change (CGC) Program sponsored a major cooperative effort in the eastern Pacific along WOCE Hydrographic Programme Line P18 from 26 January to 27 April 1994. The first leg (Leg 1) consisted of a transit from Seattle to Punta Arenas, Chile. The second leg (Leg 2) covered hydrographic stations from 67°S, 103°W to 27°S, 103°. The third leg (Leg 3) included stations between 26.5°S, 103°W and 23°N, 110°W. Full depth CTD/rosette casts were made to the ocean bottom at a nominal spacing of 30 miles on Legs 2 and 3. Water samples were collected on the casts for analyses of concentrations of salinity, DO, CFC, fCO2, DIC, TAlk, pH, TOC/TON, 13C/12C isotopes, and nutrients. Biological parameters were also sampled, and included biogenic Si, chlorophyll-a, phaeopigments, and primary productivity.