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ABSTRACT

Variations in tropical Atlantic SST are an important factor in seasonal forecasts in the region and beyond.
An analysis is given of the capabilities of the latest generation of coupled GCM seasonal forecast systems
to predict tropical Atlantic SST anomalies. Skill above that of persistence is demonstrated in both the
northern tropical and equatorial Atlantic, but not farther south. The inability of the coupled models to
correctly represent the mean seasonal cycle is a major problem in attempts to forecast equatorial SST
anomalies in the boreal summer. Even when forced with observed SST, atmosphere models have significant
failings in this area. The quality of ocean initial conditions for coupled model forecasts is also a cause for
concern, and the adequacy of the near-equatorial ocean observing system is in doubt. A multimodel
approach improves forecast skill only modestly, and large errors remain in the southern tropical Atlantic.
There is still much scope for improving forecasts of tropical Atlantic SST.

1. Introduction and motivation

On a global scale, it is the ENSO-related SST vari-
ability in the Pacific that is the biggest single driver of
seasonally averaged climate anomalies. In comparison
to ENSO, Atlantic SST variability is typically weaker,
and is often given little attention in “global” seasonal
forecast systems. Yet Atlantic SST variability is by no
means negligible and can have a substantial impact on
the atmosphere and on seasonal weather patterns. This
impact is most visible on the regional scale (e.g., the
influence of Atlantic SST on Brazilian Nordeste rain-
fall), but the influence of Atlantic SST anomalies can
extend out of the Tropics, where it combines with forc-
ing from the Pacific and Indian Oceans. In the case of
the North Atlantic sector, the contribution from the
Atlantic is often substantial (Mathieu et al. 2004).

In this paper we focus on our present capabilities to
predict tropical Atlantic SST anomalies and the impli-
cations this has for seasonal prediction of climate
anomalies in the Atlantic sector. Of course, an impor-
tant part of what is predictable in Atlantic climate is
driven from outside. Here we assume that these other
factors are either already handled reasonably well (pos-
sibly true for some ENSO influences) or will be pur-

sued elsewhere. There is a specific issue of teleconnec-
tions in coupled models, namely, how accurately signals
propagate from a correctly represented tropical source
outside the Atlantic, given the errors that exist in the
mean state of coupled models. We will not examine this
in detail, but the level of success (or otherwise) is im-
plicitly included in our examination of SST prediction
skill in ENSO-affected regions such as the north tropi-
cal and equatorial Atlantic.

The predictability of SST varies across the Atlantic,
due to the variety of mechanisms that are operating.
Equally, the physical importance of the SST in influ-
encing climate anomalies varies, depending on the re-
gion of SST concerned. Our knowledge of exactly
which regions of SST are most important in a coupled
prediction system is still incomplete, but certain areas
and seasons of established importance are given promi-
nence in this paper. In particular, the interhemispheric
SST gradient is important for March–May (MAM) pre-
cipitation in Northeast Brazil, while the equatorial
SSTs are important for June–August (JJA) rainfall in
West Africa. The paper by Kushnir et al. (2006) gives a
good overview of the observed variability, which we are
trying to predict, and the physical mechanisms known
to be involved. Rather than provide a full discussion of
the scientific background to our paper, we advise the
reader to look through Kushnir et al. (2006).

In this paper we first give a brief review of coupled
models used for predicting Atlantic SST. We then con-
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sider the elements that are likely to be needed for a
good numerical forecasting system, namely, a good
model (section 3) and good initial conditions (section
4). In section 5, the actual skill and properties of
coupled GCM SST forecasts are then examined and
interpreted in the context of the quality of the models
and initial conditions. Finally, in section 6 we summa-
rize the state of the art of numerical SST forecasts in
the Atlantic, and provide some tentative conclusions
regarding the actual predictability that exists and the
observing systems that may be needed to realize the
potential predictability.

2. Overview of existing coupled prediction systems
for the tropical Atlantic

Relatively few coupled models have been used to
investigate predictability and prediction skill specifi-
cally in the Atlantic sector. Much seasonal prediction
work with coupled models has used basinwide models
of the Pacific or Indo–Pacific with Atlantic SSTs simply
being specified. Indeed, many operational seasonal
forecasting systems today are still using empirical meth-
ods to generate an SST forecast for the Atlantic basin.
As will be clear by the end of this paper, such a strategy
is not unreasonable, given the challenges involved in
trying to get coupled model forecast systems to work.

Zebiak (1993) used a simplified coupled model to-
gether with data analysis to establish that coupled in-
teraction in the equatorial Atlantic is a source of inter-
annual variability. Compared to the Pacific the variabil-
ity is much weaker (and subcritical with regard to self-
sustaining oscillations, according to Zebiak’s estimate),
and SST variability is clearly driven by many other fac-
tors besides. As far as we are aware, this Atlantic model
has not been used for further studies into predictability
or prediction of the component of SST variability that it
claims to identify. Chang et al. (2003) have developed a
coupled model consisting of an atmospheric GCM and
an ocean mixed-layer model. This ignores the role of
ocean dynamics but allows study of the role of thermo-
dynamic coupled processes on Atlantic SST predictabil-
ity and prediction. The remote influence of ENSO and
local thermodynamic processes both contribute toward
predictive skill in their system, but they only considered
forecasts of the north tropical Atlantic since equatorial
forecasts showed no skill. Huang et al. (2002) used a
coupled GCM to clarify the relative roles of ENSO and
local coupling in driving Atlantic SST variability, show-
ing that much of the variability in the equatorial and
southern Atlantic is locally produced rather than
ENSO forced; but they did not attempt prediction stud-
ies.

One interesting observation is the fair degree of cor-
relation between interannual SST variability on the
equator in the Atlantic and SST variability farther
south. This correlation is seasonally varying and is most
evident in the boreal summer. What this tells us about
mechanisms and, thus, prediction strategies is unclear.
Do seasonal/interannual cold or warm events in the
south and equatorial Atlantic typically originate with
subsurface anomalies in the western ocean propagating
along the equator and then southwards along the coast,
or are other mechanisms more important such as those
that may derive predictability essentially from the SST
field? Previous ocean modeling studies such as that by
Carton et al. (1996) established that equatorial SST
anomalies were dominated by equatorial wind variabil-
ity, but for a coupled system this leaves much unre-
solved. Off-equatorial SST anomalies are normally as-
cribed to latent heat anomalies driven by wind varia-
tions, and on decadal time scales this is argued to be a
possible mechanism for variability (Chang et al. 1997),
but the exact roles of heat flux–SST feedbacks, cloud
feedbacks, and teleconnections on the interannual vari-
ability remain to be established.

Several centers use coupled global seasonal forecast-
ing systems for real-time forecasting, for example, the
European Centre for Medium-Range Weather Fore-
casts (ECMWF), the Met Office (UKMO), and the Na-
tional Aeronautics and Space Administration (NASA)
Seasonal-to-Interannual Prediction Project (NSIPP), but
to date their performance in the tropical Atlantic has not
been documented. Another notable source of coupled
GCM forecasts for the Atlantic sector are integrations
from the European Union–funded Development of a
European Multimodel Ensemble System for Seasonal
to Internannual Prediction (DEMETER) project,
which has run seasonal forecasts with a set of seven
different global coupled models. This gives a rich
dataset for investigating Atlantic predictability and as-
sessing the model dependence of the results. In this
paper we present results from the ECMWF operational
forecasting system (Anderson et al. 2003) and from the
DEMETER models (Palmer et al. 2004). In the case of
DEMETER, we choose to look at only six of the seven
models. This is because the quality of the Atlantic SST
forecasts depends strongly on the wind field that was
used to initialize the ocean component of the model.
For the six models this wind field was provided by the
40-yr ECMWF Re-Analysis (ERA-40) Project (Uppala
et al. 2005), which gives a reasonable specification of
the winds. The seventh model instead used winds de-
rived from an atmosphere GCM forced by observed
SSTs. In the equatorial Atlantic unforced variability
in the winds is important, and this does not give
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an adequate basis for model initialization. The six
DEMETER models have forecasts available on four
start dates per year from 1982 to 2001. Each model has
a nine member ensemble. Six of these ensemble mem-
bers use ocean initial conditions prepared with the ad-
dition of wind perturbations in the surface forcing,
simulating the uncertainty in the wind. Although these
perturbed initial conditions represent an important part
of the forecast uncertainty, they give less accurate fore-
casts on average, and in some of our analyses we take
only the three “unperturbed” ensemble members per
model, giving an 18-member multimodel ensemble.
Some DEMETER integrations, for example, with the
ECMWF model, covered much longer periods, and we
use these where appropriate.

3. The ability of coupled GCMs to simulate the
mean climate of the Atlantic sector

The first challenge for a coupled GCM prediction
system is to produce a reasonable simulation of the
mean state of the Atlantic sector. Moderate levels of
error will not destroy all predictive skill—in the case of
ENSO variability in the Pacific, for example, we know
that coupled GCMs can give useful forecasts despite
significant errors. The interplay between forecast er-
rors, mean state error, and the model failings, which
produce the mean state error, is typically complex and
dependent on the physical mechanisms giving rise to
predictability. Nonetheless, a simple a priori starting
point is that the greater the errors in the model mean
state, the more likely we are to have trouble with our
forecasts, and that, if the mean state starts to look quali-
tatively different to reality, then we should expect to be
in difficulty.

Past experience has shown that simulating the mean
state in the tropical Atlantic is not easy. For example,
the Study of Tropical Oceans in Coupled Models
(STOIC) project (Davey et al. 2002) examined the
tropical climate in a set of nonflux corrected coupled
GCMs. When looking at the SST along the equator, the
models exhibited a considerable range of absolute val-
ues of equatorial SST in the Pacific and typically had
problems near the eastern boundary, but in all cases the
gradient in midocean was reasonably represented. In
the Atlantic, all of the models, bar one, had the mean
zonal gradient of SST the wrong way round!

The results from STOIC were based on the climate of
long runs from coupled GCMs, and in the shorter runs
typically used in seasonal forecasting systems (e.g.,
around 6 months) the model climate does not behave
quite so badly in terms of SST. Nonetheless, the
DEMETER runs show that models still have difficulty

in reproducing the observed rate of seasonal cooling in
the eastern equatorial Atlantic in July and that, at least
at this time of the year, the zonal SST gradients are
poorly represented. Figure 1 shows the time evolution
of SST bias in the eastern equatorial Atlantic for the
various DEMETER models for forecasts starting on 1
February. Although the absolute SSTs vary between
the models, the observed rapid cooling in June/July is
not reproduced by any of them. From short lead times
(e.g., forecasts from 1 May), a minority of models are
able to cool quite rapidly, and this better representation
of the mean state does seem to be associated with dif-
ferent behavior of the SST forecasts. Sensitivity experi-
ments on this topic will be presented in section 6.

It is important to note that the errors in SST are
associated with errors in the dynamical forcing of the
ocean within the coupled system. The easterly surface
zonal winds in the western equatorial Atlantic are too
weak in the coupled models in the months preceding
(and often during) the period of rapid observing cool-
ing in June and July. This error in the surface winds acts
to depress the equatorial thermocline in the east rela-
tive to the position it should take, reducing the cooling
effect of the upwelling. This will result in substantial
changes in the sensitivity of the model SST to subsur-
face anomalies, with a deeper thermocline giving less
sensitivity. The fact that the SST errors in the equato-
rial Atlantic appear to be driven by dynamical errors
(rather than, e.g., just problems with heat flux) makes it
likely that the coupled system will respond relatively
poorly to anomalies in the ocean initial conditions.

The errors in the zonal wind in the coupled integra-
tions can be amplified by coupled interactions—a re-
duction in SST gradient will reduce the zonal winds that
help maintain that gradient—but uncoupled integra-
tions show that the atmosphere GCMs have significant
wind errors even when run with observed SST. For

FIG. 1. The mean seasonal cycle of SST in the ATL3 region
(3°N–3°S, 20°W–0°) from six coupled GCMs run in forecast mode
from 1 February (thicker lines) compared to the observed mean
seasonal cycle of SST (thin-dashed line). All models fail to repro-
duce properly the rapid cooling observed in June and July.
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example, Fig. 2 shows the April–June bias in 10-m zonal
wind from the latest version of the ECMWF atmo-
sphere model. The substantial westerly bias at the
equator is clearly visible. The proper analysis of errors
in atmospheric GCMs is a substantial task that we will
not undertake here. Nonetheless, one common diffi-
culty in GCMs is getting correct precipitation over
tropical land areas, with insufficient precipitation in the
Amazon being a particular problem. It may well be that
the wind errors are related to this problem. Clearly in
the Atlantic basin, a failure to position convection cor-
rectly with respect to land/ocean is serious and is likely
to cause a range of problems in simulating both the
mean state and interannual variability.

In summary, the mean climate simulated by coupled
GCMs in the Atlantic sector still has significant room
for improvement. The models are not so bad as to pre-
clude the possibility of obtaining something useful in
forecast mode, but the problems are serious enough for
us to expect a significant degradation of skill.

4. The quality of ocean analyses in the tropical
Atlantic

Knowledge of the state of the ocean is essential for
initialization of seasonal forecasts. The ocean state can
be estimated by forcing an ocean GCM with prescribed
atmospheric fluxes. But uncertainty in the time evolu-
tion of the wind stress results in significant uncertainty
in the interannual and decadal variability of the upper
ocean, and model errors further contaminate the re-
sults. Combining observations with wind-forced ocean
models through data assimilation techniques is in prin-
ciple the optimal solution for estimating the initial state
of the ocean.

The impact of data assimilation can be evaluated by

comparison with independent data. Figure 3 (top right)
shows the correlation during the period 1993 to mid-
2003 of the sea level from altimeter data with the sea
level from the ECMWF operational ocean analysis
(System 2). This analysis assimilates only temperature
data, although multivariate adjustments are made to
salinity to conserve water mass properties (Troccoli et
al. 2002) and geostrophic corrections are made to the
velocity field (Burgers et al. 2002). For a detailed de-
scription, see Balmaseda (2003). Altimeter data are not
used. For comparison with the assimilation-based
analyses, Fig. 3 (top left) shows the correlation for an
experiment without data assimilation (i.e., a forced
run). In the tropical Pacific, data assimilation improves
the representation of the ocean state: it increases the
peak value of the correlation as well as the area with
correlations above 0.8, which now covers most of the
band of 10°N–10°S. TAO mooring data are the main
source of the improvement (Vidard et al. 2005).

In the Atlantic, the correlation is much lower than in
the Pacific with or without data assimilation. The
forced run shows peak values above 0.7 in a small area
around the east-central equatorial Atlantic. In the as-
similation run, the extension of the 0.7 contour is
slightly increased but remains low compared to the
equatorial Pacific. The equatorial Atlantic is a prob-
lematic area. To begin with, forced ocean models tend
to produce a very diffuse thermocline. Additionally, the
strong salinity stratification contributes significantly to
the vertical stability, while in these experiments only
temperature data are assimilated since observations of
salinity were scarce until the recent development of the
Array for Real-Time Geostrophic Oceanography
(ARGO) network. This makes the equatorial Atlantic
a very demanding test for the multivariate tempera-

FIG. 2. The bias in 10-m zonal wind, averaged over April–June, for the ECMWF atmo-
sphere model when run with observed SST. Based on model version Cy29r1, run as a five-
member ensemble at T95 for 1 April starts from 1987 to 2001, compared to ERA-40 reanaly-
sis. The westerly bias in the western equatorial ocean will depress the thermocline in the
eastern Atlantic, reducing the potential for a rapid cooling in June/July.
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ture–salinity relationship. Furthermore, the freshwater
fluxes (river discharge, precipitation � evaporation)
are poorly known, which causes errors in the represen-
tation of the water mass characteristics.

The presence of systematic error can also be damag-
ing for the representation of interannual and decadal
variability since it can lead to aliasing of variability with
changes in the observing system. In fact, one factor that
contributes to the degradation of sea level in the as-
similation run is the change in the observing system,
namely, the introduction of the Pilot Research Array in
the Tropical Atlantic (PIRATA) buoys after 1998. The
impact of PIRATA manifests itself as a systematic de-
crease in the sea level over the equatorial Atlantic (Seg-
schneider et al. 2000; Vidard et al. 2005). This differ-
ence in the mean state leads to an artificial variability in
sea level and therefore to an apparent degradation to
the correlation with altimeter (Vidard et al. 2005).
Moreover, several studies have shown that ocean data
assimilation is typically correcting the systematic error,
which can be caused by errors in the forcing, errors in
the models, or errors in the assimilation methods
(Alves et al. 2004; Vialard et al. 2003; Balmaseda 2003;

Bell et al. 2004). The presence of systematic error can
deteriorate the state estimation if the assimilation
methods are not robust enough to cope with it. In fact,
in several cases the assimilation method itself can be
causing the error. These results suggest that appropri-
ate methods to handle systematic error, such as those
advocated in Dee and Da Silva (1998), Bell et al.
(2004), or Vidard et al. (2004), are needed in order to
obtain consistent climate reanalyses that are not con-
taminated by the developments of the observing sys-
tem. This does not imply that the effect of PIRATA is
in itself damaging. In fact, if the correlation with the
altimeter is computed only for the post-PIRATA era,
the results are more optimistic. Figure 3 (bottom)
shows the correlation during the period from 1998 to
mid-2003 for both forced (left) and assimilation (right)
runs. The correlations for the forced run are higher for
the recent period (apart from the central/east equato-
rial Atlantic), probably due to more accurate wind
fields. With assimilation the correlation increases, with
peak values of 0.8 located around the PIRATA array
(black thick-dashed lines), which suggests that the data
provided by the moorings are valuable.

FIG. 3. Correlation of sea level from altimeter data with sea level from the ECMWF operational ocean analysis, for the periods (top)
January 1993–June 2003 and (bottom) January 1998–January 2003, with (left) no data assimilation and (right) with in situ temperature
assimilation.
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Figure 4 (top panel) shows the impact of PIRATA
moorings on the top 300-m temperatures. This is ob-
tained through an Observing System Experiment
(OSE). In these experiments, permutations of combi-
nations of the available observation systems are used in
an analysis of the oceanic state, in which one system is
excluded from the analysis, so providing an estimate of
the impact of the omitted system [for more global con-
sideration about ocean observing system, refer to Vi-
dard et al. (2005)]. In this case, it shows that the main
impact of PIRATA is a cooling of the equatorial At-
lantic, significantly stronger in the east. The bottom
panels show a cross section of the mean temperature in
2002–03 along the equatorial Atlantic for the forced run
(right), the assimilation of Argo and XBTs (middle),
and the assimilation of all data (left). The assimilation
tends to tighten the thermocline and make it steeper,

which is a desirable feature. Notice that both compo-
nents of the observing system contribute to this en-
hancement.

Despite this improvement of the mean temperature
fields, the inability of the system to produce high cor-
relation with altimetry in the tropical Atlantic implies a
very clear need to improve key components of data
assimilation techniques such as the multivariate con-
straints, as well as development to make direct use of
the salinity data that is now becoming available from
ARGO. Such developments are now in an advanced
phase at ECMWF, and early results are promising
(Haines et al. 2006).

As well as improving the assimilation methods it is
desirable to reduce the error of the ocean simulations,
both by improving the ocean models (mixing physics,
resolution) and by improving the surface fluxes. The

FIG. 4. (top) Mean differences in averaged temperature over the top 300 m for the years 2002–03 between one assimilation
experiment using all XBT, mooring, and Argo temperature data and one using only XBT and Argo data. (bottom) Zonal sections of
temperature at the equator for (from left to right) assimilation of all data, all data but mooring, and no assimiliation.
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importance of surface fluxes can be illustrated by look-
ing at results produced by the same GCM forced by
different wind stresses. Figure 5a shows the time evo-
lution (averaged over the equatorial Atlantic 5°N–5°S)
of two different wind stress products: one used by the
operational ocean analysis (referred as ERA-15/OPS in
what follows, represented by gray) and one provided by
the ERA-40 atmospheric reanalysis (black). The largest
differences occur in the mid-1990s, particularly in 1996.
In general we believe the ERA-40 stresses to be more
accurate, and wind-forced runs of the ocean correlate
better with altimetry data when ERA-40 forcings are
used. Nonetheless, the differences between the two
wind stress products are thought to be a reasonable
proxy for the true uncertainty. The impact on the ocean
can be measured by the evolution of upper-ocean heat
content (average T in the upper 300 m), shown in Fig.
5b. In the equatorial Atlantic, uncertainty in the
stresses leads to uncertainties in the ocean state that are
almost as large as the interannual variability. Data as-
similation should reduce this uncertainty but, as we
have shown, our ability to do this effectively in the
equatorial Atlantic is still rather limited.

5. The skill of coupled GCM forecasts of tropical
Atlantic SST

a. Results from ECMWF models

A set of ensemble forecasts with a single coupled
GCM provides an estimate of both the predictability
limit and the actual prediction skill. The predictability
limit relates directly only to the model used; how good
an estimate it is of the real-world predictability depends

on the verisimilitude of the model. The model predict-
ability limit for a given lead time is defined here as the
unbiased estimator of the standard deviation of the
forecast ensemble at that lead time. To form the aver-
age across different start dates, the mean variance is
calculated and the square root then taken. This defini-
tion of model predictability is directly related to rms
error: in a perfect model scenario, the verifying “truth”
and the ensemble members are indistinguishable, and
their rms distance from the ensemble mean over a large
enough sample will be the same; that is, for a perfect
ensemble forecasting system, the rms error will equal
the predictability limit. In discussing the estimated skill
of tropical Atlantic SST forecasts, an issue to note is
that the statistics vary appreciably depending on the
period being verified. There are plausible hypotheses
that might explain this (low frequency variations of At-
lantic climate; a diverse range of processes that drive
SST variability, with different predictability and model
skill; sampling from only a limited number of significant
events), but rather than explore these we simply stress
that caution is needed when trying to draw absolute
conclusions about forecast skill based on results from a
particular period.

Figures 6 and 7 show forecast statistics for the longest
period available to us, the 43-yr period from 1959 to
2001. The forecasts come from the ECMWF model
used in DEMETER and consist of a nine member en-
semble made four times per year with February, May,
August, and November start dates. The ocean model
was initialized by driving it with fluxes from ERA-40,
while additionally relaxing the model SST to observed
values with a feedback of 400 W m�2 °C�1. Statistics
are shown for three indices of SST. The first is the
ATL3 index (3°N–3°S, 20°W–0°) introduced by Zebiak
(1993). Variability in this region is thought to be partly
due to an ENSO-like mechanism (where ocean initial
conditions should be important) and partly forced by
teleconnections from ENSO. The other two indices are
NTA (5°–28°N, 80°W–20°E) and EQSTA (20°S–5°N,
60°W–20°E), covering the north tropical Atlantic and
the equatorial and south tropical Atlantic, respectively.
The definition of these regions follows Servain (1991),
who used these indices to form the much-discussed “di-
pole” of Atlantic SST variability. Here we simply look
at the two regions separately. On interannual time
scales there is a moderately strong correlation between
the EQSTA and ATL3 indices. This is not simply due
to EQSTA including the equatorial region, but involves
true covariability of SST in equatorial and off-
equatorial regions. Our primary references as to how
well the forecast system works are to compare it to

FIG. 5. (top) The time evolution of the wind stress anomalies
averaged over the equatorial Atlantic from ERA-15/OPS (gray)
and for ERA-40 (black). Note the large difference in 1996. (bot-
tom) The evolution of the upper-ocean heat content (average
temperature in the upper 300 m) when the different fluxes are
used to drive the same ocean model.
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anomaly persistence, on the one hand, and the model’s
own diagnosis of the predictability limit, on the other.

Figure 6a shows that in rms error terms, ATL3 fore-
casts are better than persistence at all lead times al-
though much worse than the model predictability limit.
In fact, the rms error is helped at longer lead times by
an underprediction of the amplitude of observed vari-
ability, and Fig. 7a shows that, in anomaly correlation
terms, the forecast has an appreciable benefit over per-
sistence only for the first two months. Observed ATL3
SST variability shows relatively strong, short-lived
anomalies, thus making persistence a poor predictor
more than two or three months ahead. One might hope
that models have the potential to do somewhat better,
but it is doubtful that a high level of predictability exists
beyond the first three months.

In the NTA (Figs. 6b and 7b), the actual rms errors
are only modestly larger than the predictability esti-
mate, and the forecasts beat persistence clearly in both
rms and anomaly correlation terms. A time series of
ensemble mean forecast values shows that the model is
fairly active and often reproduces the growth of anoma-
lies (e.g., positive in 1966, 1983, 1987, and 1998; nega-
tive in 1976 and 1984) as well as their decay. In general
terms, it seems that the coupled model forecasts are
doing a reasonable job of picking up a substantial por-
tion of the “remotely driven” SST variability in this part
of the ocean and, although there are clearly more errors
than would be expected in a perfect forecasting system,
the overall performance is not too bad. This conclusion
is consistent with the work by Huang et al. (2002), who

FIG. 6. Rms error of SST forecasts from 1959 to 2001 in (a)
ATL3, (b) NTA, and (c) EQSTA regions. Solid line shows fore-
cast skill, dashed line shows model estimate of predictability limit,
and thin dot–dash line shows skill of persistence forecast.

FIG. 7. Anomaly correlation of SST forecasts from 1959 to 2001
in (a) ATL3, (b) NTA, and (c) EQSTA regions. Solid line shows
forecast skill and thin dot–dash line shows skill of persistence
forecast.

6054 J O U R N A L O F C L I M A T E — S P E C I A L S E C T I O N VOLUME 19



showed that in the north subtropical Atlantic much of
the SST variability is remotely driven.

The plots for EQSTA (Figs. 6c and 7c) show that
forecast performance is not as good as for the north
subtropical Atlantic: rms errors are no better than per-
sistence and much worse than the model predictability
limit, and anomaly correlation is substantially worse
than persistence.

We can look more closely at forecast performance in
EQSTA by using the ECMWF operational forecast sys-
tem, for which retrospective forecasts exist only since
1987, but which is run at one-month intervals rather
than the three-month intervals of the 1959–2001 runs.
Figure 8 shows the first 3 months of every forecast in
the period from 1987 to 2004, plotting each of five en-
semble members separately to allow a reasonable as-
sessment of whether the observations and forecast are
consistent for each forecast. Some periods stand out as
successful—notably 1997/98, but also the warmings of
1987 and 2003. Others stand out as being consistently
poor—1991/92 and 1999/2000 both contain extended
periods where every month, every ensemble member
wanted to go in completely the wrong direction. This is
clearly not a case of “lack of predictability,” but tells us
that something was seriously wrong with the initializa-
tion, the external forcings, or the physical evolution of
the model. Which combination of these factors is hurt-
ing the forecasts is unknown.

When we look at the equator, for example ATL3,
different issues are at play. A notable factor is that the
forecasts are more successful at some times of year than
others. A particularly difficult period is boreal summer
(JJA): SST anomalies can develop at the start of this

period, with the model completely failing to capture
them. Unfortunately, JJA is a key period in which SST
in the equatorial Atlantic and Gulf of Guinea has a
significant impact on the West African monsoon, so we
would like to understand why our forecasts often fail at
this point. Figure 9 shows the rms errors for the ATL3
region as a function of the seasonal cycle. Forecasts
verifying in July have high errors regardless of lead
time. Persistence is also a poor predictor for July, even
at short leads. January is well predicted by the model,
however. The poor performance of forecasts for July is
also evident in anomaly correlation scores (not shown):
the high rms errors are not just due to the higher am-
plitude of SST anomalies at this point in the seasonal
cycle. There is some modest seasonality in forecast be-
havior in the other Atlantic regions, but it is not suffi-
ciently important to be discussed here.

b. Multimodel results from DEMETER

So far we have looked at the SST prediction results
only from ECMWF models. What happens when we
broaden our view to include the other DEMETER
models? A multimodel ensemble is formed by taking
the ensemble forecast for each model (corrected by the
mean forecast bias specific to the model concerned)
and putting them together to form a large ensemble.
The ensemble mean of the multimodel forecast is sim-
ply the mean of the ensemble means of the individual
models. The ensemble spread is the standard deviation
of the whole ensemble and is contributed to both by the
spread within the individual model ensembles and the
difference between different model ensemble means.

FIG. 8. SST forecasts for the EQSTA region (20°S–5°N, 60°W–20°E) from the operational
ECMWF forecast system. Each forecast from a five-member ensemble is plotted starting
every month, and only the first three months of each forecast are plotted.
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On one view of multimodel ensembles, a “perfectly
sampled” multimodel ensemble will have a variance as-
sociated with the model error of the ensemble mean,
which is only a factor of 1/n of the variance associated
with the model differences, where n is the number of
independent models. So for a perfect sampling of
model error, the overall multimodel ensemble spread
will be somewhat larger than the rms forecast error of
the multimodel ensemble mean. In practice, a collec-
tion of models will not properly span and perfectly
sample the space of model errors, so the spread will be
less than the theoretical maximum; but an enhanced
ensemble spread is nonetheless a good sign that we are
effective in sampling a significant amount of model er-
ror.

Figure 10 shows the impact of multimodel averaging
on rms error in three regions where the multimodel
ensemble consists of three forecasts from each of six
models. In the Pacific, the error is substantially reduced
and the spread is substantially enhanced such that the
ensemble spread is, in fact, a little larger than the fore-
cast error. In ATL3, the spread is increased somewhat,
especially in the first two or three months, but the skill
improvement is small, and a large gap remains between
ensemble spread and forecast error. Further investiga-
tion shows that the extra spread in the first months is
greatly contributed to by short range forecasts for June/
July SSTs, where one or two of the DEMETER models
produces a reasonable mean state cooling, facilitating
extra spread both within and between different models.
The longer range forecasts for June/July SST, by con-
trast, have very little spread to accompany their large
errors—consistent with the fact that none of the
DEMETER models produce the observed mean state
cooling at this forecast range. The relationship between

mean state and forecast error is discussed below. In
EQSTA the situation is even more hopeless: the mul-
timodel ensemble has only a very modest impact on
both spread and skill, resulting in an ensemble that
does not come close to sampling the forecast error.
Seasonality is not evident, and specific mechanisms re-
sponsible for the failure do not suggest themselves.

Figure 11 shows a concrete example of a “failed”
longer-lead multimodel forecast for ATL3 SST, with
significant errors from the first month onward and the
substantial warming in May–August being missed en-
tirely. On this occasion the EQSTA forecast failed in a
similar way. It is possible that in this particular case the

FIG. 9. SST prediction rms errors for the ATL3 region as a
function of the seasonal cycle, based on ECMWF forecasts from
1959 to 2001. Thick gray line is from the model, thin dot–dash line
is persistence. Curves are plotted for both 3-month and 6-month
lead times. Forecasts verifying in July have high errors, regardless
of lead time.

FIG. 10. The impact of multimodel averaging on SST errors and
ensemble spread in (a) Niño-3.4, (b) ATL3, and (c) EQSTA. Solid
lines are rms errors; dotted lines are ensemble spread. Gray is for
the ECMWF model only; black is for the multimodel ensemble.
The multimodel ensemble is bigger, which reduces its rms errors
slightly just because of ensemble size. Ensemble spread estimates
are not affected by ensemble size due to use of unbiased estima-
tors.
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relatively large wind perturbations still fail to capture
the initial condition uncertainty. But the general in-
crease in initial condition uncertainty over that already
diagnosed would need to be implausibly large to ex-
plain the forecast error statistics. The hypothesis that
the lack of mean upwelling in the models is a substan-
tial contributor to the forecast error is plausible, how-
ever. The evolution of the observed SST anomaly in
this (not atypical) case is suggestive of the upwelling of
a preexisting subsurface temperature anomaly. If this is
true, then it is possible to predict such events: all we
need is knowledge of the subsurface initial conditions,
and realistic models. An alternative hypothesis is that,
while the mean upwelling is necessary to “sensitize” the
coupled system, the actual development of the anomaly
is spontaneously produced by unpredictable wind fluc-
tuations, and that consequently SST predictability will
remain low even with good models and good data.
Where the truth lies between these two viewpoints re-
mains to be established.

c. Role of the subsurface in SST predictability

We can use a set of experiments with the ECMWF
model to gain some insight into the role of the subsur-
face in determining SST predictability. Figure 12 shows
the estimated SST predictability (i.e., the unbiased es-
timator of the standard deviation of the ensemble about
its mean) from two pairs of experiments for each of
several regions, covering the years 1987–2001. The
black solid line shows the result when using wind per-
turbations to create an ensemble of initial conditions

when no data assimilation is used. The black dotted line
shows the result when wind perturbations are not used
so that the ocean subsurface is the same in the initial
conditions of all ensemble members. In both cases, SST
perturbations are applied in the surface layers at the
start of the forecast. Comparison of the ensemble
spread from these two experiments reveals what impact
typical uncertainties in the unconstrained subsurface
ocean have on SST predictability. Figure 12a shows that
in the Niño-3.4 region of the Pacific, the wind pertur-
bations create a very large spread in the SST forecasts,
additional to that which depends only on surface per-
turbations. This is a nice demonstration that the sub-
surface state of the ocean is important for predicting
SST. We now again consider forecasts with and without
wind perturbations, but this time in a system that as-
similates subsurface ocean data (light gray curves, solid
and dotted as before). The data assimilation greatly
reduces the spread produced by the wind perturbations
(gray solid versus black solid), although the spread is
still larger than in the case of no wind perturbations
(gray solid versus gray dashed), so that the data assimi-
lation has not completely removed the effect of the
uncertainty in the wind. Thus for ENSO forecasting we
can demonstrate (i) that the subsurface is important
and (ii) that for the period 1987–present, we are able to
use in situ data to constrain the system against any
significant uncertainties in the wind field that may exist.

We now look at the tropical Atlantic. Figure 12b
shows the same curves for the ATL3 region. Compar-
ing the black solid and dashed curves shows that the
influence of the wind perturbations is much less than in
the Pacific. Indeed, assuming that the wind perturba-
tions are reasonably efficient at perturbing the ocean
subsurface, as we would expect in the equatorial ocean,
this shows that in the model the subsurface is only mod-
estly important in determining SST variability in ATL3
beyond the first month. Note that “in the model” is an
important caveat. Comparing the gray solid and dashed
curves shows that data assimilation does not reduce the
admittedly modest impact of the wind perturbations on
the forecast spread. This is consistent with the rather
pessimistic assessment of the Atlantic Ocean analyses
given earlier and suggests that for this period (1987–
2001) the in situ data and our methods of using them
are not sufficient to overcome errors in the wind forc-
ing.

Results from EQSTA are shown in Fig. 12c. The
spread grows more slowly than in the equatorial Atlan-
tic in all cases, perhaps due to the larger area and
slower physical processes being important for the SST
evolution. In relative terms, the contribution of the

FIG. 11. A multimodel forecast of ATL3 SST, initialized on 1
Feb 1999, using nine ensemble members from each of the six
models. The warming of May–August 1999 was not captured by
any of the ensemble members.
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wind perturbations is similarly modest, however, and
again the assimilation of in situ data does not usefully
constrain the system. Finally, Fig. 12d shows NTA,
where the spread in the early months is essentially un-
affected by the subsurface ocean perturbations and the
data assimilation becomes irrelevant. Analysis of a
longer period (1958–2001) shows that there is a small
component to the spread that comes from the wind
perturbations, but it is the smallest of the regions con-
sidered here.

These results graphically illustrate one reason why
coupled ocean–atmosphere SST forecasting systems for
the Atlantic are little developed in comparison to the
Pacific, at least given the present state of the models.

We have already noted that the models systemati-
cally fail to produce the observed strong seasonal cool-
ing in ATL3 in June/July, and that this failure is plau-
sibly related to a lack of spread in forecast SST and
insensitivity to the ocean subsurface at this time. A
direct way to address this question is to run a coupled
GCM with a flux correction applied to the zonal equa-
torial wind stress, designed to ensure that the coupled

model does upwell water in its mean seasonal cycle.
Such an experiment has been made, in idealized form,
using a recent version of the ECMWF coupled model
(Cycle 28r3) and covering the years 1993–2002. The
additional wind stress is applied in the equatorial band
only and is constant in time and longitude around the
globe with a strength of �0.02 N m�2. This is equal and
opposite to the peak seasonal error in the uncorrected
model in May, averaged across the equatorial Atlantic,
and compares to the observed climatological zonal
stress that varies seasonally between �0.02 and �0.03
N m�2. The evolution of mean SST in the ATL3 region
shows a much stronger seasonal cooling with the addi-
tional wind stress term although, if anything, the cool-
ing is still slightly underestimated despite the stress be-
ing on average a little too strong. The additional wind
term puts the coupled model into a different regime
that is closer to observations, but still not perfectly re-
alistic.

Figure 13 shows the impact on the ATL3 SST fore-
casts. Only results from forecasts including July as a
verification month are shown to focus attention on this

FIG. 12. SST ensemble spread as given by four experiments for (a) Niño-3.4, (b) ATL3, (c) EQSTA, and (d) NTA. Black lines are
from experiments which have ocean initial conditions prepared without data assimilation; gray lines are from experiments that did
assimilate subsurface ocean data. Solid lines are from experiments with wind perturbations applied, and dotted lines from experiments
without. The vertical scale varies between the panels. See text for interpretation.
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part of the seasonal cycle. The ensemble spread of the
forecasts is dramatically increased by the change in
coupled model mean state, confirming that at this time
of year the coupled models are very sensitive to the
mean state. However, note that the rms error of the
forecasts is also increased and, indeed, the anomaly cor-
relation deteriorates slightly also. The better mean
state, and the stronger communication of the subsur-
face to the surface, has not resulted in better forecasts.
There are numerous other problems still affecting the
forecasts, but the lack of skill improvement might again
point to limitations in the quality of the ocean subsur-
face initial conditions.

6. Conclusions

Present day SST forecasts in the tropical Atlantic on
the seasonal time scale leave much to be desired. This
statement is based on comparing the quality of fore-
casts against the model-estimated predictability limit
and also against the skill achieved by a very simple
empirical scheme—persistence. The best region is the
north tropical Atlantic (NTA), where model forecasts
are acceptably good, beating persistence on all mea-
sures and not being so much worse than the estimated
predictability limit. In the equatorial ocean, the margin
over persistence is modest, and largely restricted to the
first two months. In the southern Tropics, model skill is
often worse than persistence. It is not just the ECMWF
forecasts that perform poorly—all of the DEMETER
forecasts do, as does the multimodel ensemble.

It is apparent that the coupled GCMs are typically
unsatisfactory when measured against what is needed
to ensure reasonable seasonal forecast performance.
The most obvious manifestation of model imperfec-

tions is the evolution of the mean state in June/July,
when the models do not produce the observed intensity
of SST cooling. As a direct consequence of this, they
substantially underestimate the spread in SST forecasts
that should occur at this time of year and are unable to
represent important processes that drive observed SST
variability. But the failure of the models is more serious
than this: misrepresentation of convection and winds in
and around the Atlantic, which causes the mean state
errors, is liable to produce many other erroneous re-
sponses when used in a seasonal forecasting system.
Again, problems are not restricted to one or two mod-
els but appear to be endemic.

Next, it seems that ocean analyses in the tropical
Atlantic are of limited quality, as is apparent when
comparing to independent data such as altimetry. At
least in the past, in situ data has been insufficient to
overcome the uncertainties in the wind forcing. There
are particular difficulties relating to salinity, which have
been compounded by a lack of data. We believe there
is real scope for improving the ocean analyses for past
dates, but effort is required and the eventual level of
success remains uncertain. The adequacy of today’s ob-
serving system is still uncertain. Our analyses from the
PIRATA era (1998 onward) give slightly better equa-
torial analyses, but these are still poor relative to what
is desired. The era of ARGO float coverage is still very
short. There are good physical arguments for the desir-
ability of enhanced coverage by equatorial and near-
equatorial moorings, but convincing experimental evi-
dence for the potential impact on seasonal forecast
scores may be hard to produce anytime soon.

Given the above problems, our ability at this time to
produce reliable insights into the physics of the fore-
casting problem is limited. Our analysis of the role of
subsurface variability on SST forecast spread demon-
strated that there was in general only a small role for
the subsurface in the Atlantic compared to the Pacific.
In the case of the equatorial Atlantic in the June/July
period, this conclusion is clearly untrustworthy, given
the evident model problems. But in other regions and at
other times the results may not be that far from reality.

An outstanding question from this paper is the true
level of predictability for the ATL3 region in June–
August. If we have poor initialization of the ocean sub-
surface, practical predictability may be limited to peri-
ods of strong remote forcing. If we can specify the
ocean subsurface correctly, then it could be that pre-
dictability, at least for two months or so, is relatively
high. However, a reliable assessment of this will need
models with a good mean state and a good representa-
tion of atmospheric variability.

The models perform particularly badly in the

FIG. 13. ATL3 SST rms error (solid lines) and ensemble spread
(dotted lines) from two experiments, verifying forecasts from 1
April and 1 July start dates only. Gray: a recent version of the
ECMWF coupled model (28r3). Black: the same model, but with
a constant additional wind stress term. The additional mean wind
causes a big increase in ensemble spread.
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EQSTA region with extended periods of forecasts in-
consistent with observations. This is a large region and,
although we might expect a role for processes along the
eastern boundary not fully resolved by the model (Ben-
guela Niños; Florenchie et al. 2004), without some un-
known feedbacks it is not clear that these will be suffi-
cient to explain the amplitude of the discrepancies.
Forecast models do capture some of the processes that
drive SST variability in this region, as shown in Fig. 8,
but the reasons behind the overall poor performance
remain unclear.

So, how is our seasonal forecasting capability in the
tropical Atlantic to be improved? As mentioned, we
need better ocean analyses. High quality forcing fields
are important, and the combination of scatterometer
winds and NWP systems should give us reasonable
winds in the future. The in situ ocean observing system
is better than at any time in the past. Progress will be
made on improving the assimilating systems them-
selves. Nonetheless, the signals in the equatorial Atlan-
tic are relatively small in amplitude and spatial scale,
certainly compared to the interannual variability of the
Pacific. Geophysical noise from the eddy field is large.
There are only two moorings in the western half of the
Atlantic equatorial waveguide, the key source region
for shorter range seasonal prediction of equatorial At-
lantic SST, and it is doubtful that these are sufficient to
constrain the equatorial initial conditions to the extent
that a reliable forecast system would want. Further at-
tention to the equatorial Atlantic observing system is
warranted.

There is also a clear need for better coupled models.
The usual list of desiderata apply: better convection,
wind and clouds in the atmosphere models, more cred-
ible treatment of equatorial and eastern boundary up-
welling, and mixing in the ocean models. Other factors
may be particularly important in the Atlantic sector due
to the relative proximity of land: variations in soil mois-
ture, vegetation and albedo, and the role of aerosols.
Significant improvements take time, but will come
eventually. As models become more realistic, our un-
derstanding of the predictability of the Atlantic sector
will mature.

Finally, for predicting equatorial SST in particular, it
may be most valuable to pursue relatively short range
forecasts with lead times of one or two months. These
are the time scales where most predictability is likely to
exist, and reliable and informative forecasts at these
lead times are still of great potential value. Present day
forecast systems have many weaknesses, but this im-
plies that there is scope for substantial progress in the
years to come.
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