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Abstract

A data assimilation method based on the Kalman-filter theory is presented and tested with the NOAA/GFDL
Modular Ocean Model (MOM_2). The method is used to assimilate observed tropical Atlantic Ocean surface and
subsurface temperatures obtained from the PIRATA moored buoy array. Comparison between model results with and
without assimilation shows that the method works properly, and that it has some advantages in relation to a standard
Kalman-filter technique. It provides better agreement with the observed temperature intraseasonal variability, and it
does not require linearity of a numerical model. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Data assimilation; Fokker—Planck equation; NOAA/GFDL MOM_2 ocean circulation model; PIRATA
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1. Introduction

In recent years, data assimilation methods have been developed and used in many research
areas. The first application of data assimilation techniques were in meteorology, and today it is a
key component of numerical weather and climate forecasts. Satellites and in situ measurements
are routinely providing new oceanographic data and bringing the daily practice of physical
oceanography closer to that of dynamic meteorology. There are large observational data sets of
temperature and salinity covering oceanic areas because of international projects such as WOCE,
SECTIONS, TOGA-TAO, COARE, PIRATA, and others.

Improvements in assimilation techniques may contribute to the full exploitation of the new
observational facilities. Data assimilation improves the estimate of the ocean and atmosphere
physical state by combining the data from measurements and from dynamic models in an optimal
way. In this sense, it extracts as much as possible information from the available resources. Data
assimilation may be used to improve initial and/or boundary conditions, to create new data for
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diagnostic studies of the climate system, and to evaluate poorly known model parameters.
Therefore, it can improve model weather and climate predictability.

Data assimilation in ocean models has been discussed in the scientific literature for approxi-
mately 30 years (see [1] for a review). It is necessary to understand which processes can realisti-
cally be described by ocean models, and what is the role of the measurements. There are two
extreme opinions about this issue. The first one considers the ocean as a quasi-stationary medium,
such that it would be sufficient to make few measurements to get a good description of the ocean
state. From this point of view, numerical models are not important and data assimilation tech-
niques are restricted to a statistical correction process. The second opinion considers the ocean as
a highly turbulent fluid, which does not have a memory of its previous states. In this case, in-
formation generated by measurements would become meaningless in short time intervals. As-
similation methods would be mostly needed to provide initial conditions to complex dynamical
models, which would describe the real processes in the ocean. Reality, however, lies somewhere in
between these two extreme points of view. Therefore, there is the scientific question on how to
represent this situation numerically. The answer depends on both the model and the data as-
similation techniques, as well as on the local dynamics.

Two general concepts on the mathematical formulation of data assimilation methods have
been discussed in the literature. The first is the variational/adjoint method, which has been the
most popular scheme, e.g. [2-5]. As an example of this technique, let the model initial and/or
boundary condition be unknown and the observational data be distributed over some time-
interval. The technique seeks an optimal initial and/or boundary condition with respect to some
criteria by comparing the model trajectory with measurements. This can be formulated as a
constrained minimization problem. The present paper does not deal with this class of methods.

The other class of methods is the sequential data assimilation. Starting from some initial
condition, the model solution is sequentially updated whenever measurements are available. The
model solution approaches the observed state under certain conditions. This class of methods
requires an updating scheme, which combines the model solution and the measurements to find
the “best” state estimate. The Kalman-filter method belongs to this class and is used in this paper.

The Kalman-filter theory is derived in a number of books on the control theory (e.g. [6,7]). In
oceanography, Kalman-filter has been applied in [8,9] and others. The main idea of this method is
to write and solve the dynamic equations for the error covariance matrix, where error is defined as
the difference between the model and the observational values. Solving these equations is com-
putationally expensive, and, in addition, linearity of the dynamic system operator is assumed.
There are some attempts to extend the Kalman-filter theory to non-linear operators, but they also
require other simplifications, e.g. [10,11].

In this paper, another method to solve the dynamic equation system on the error covariance
matrix is developed. The present work is a continuation of the discussion presented in [12]. This
method is based on stochastic process theory and parabolic partial differential equations.

Stochastic processes are commonly used in the turbulence model proposed by Kolmogorov [13]
and in climate models with stochastic forcing (e.g. [14]), but they have not been very much applied
to data assimilation. Some discussions in this direction have been shown in [11], but it remained
unclear of how to apply it. The method presented here is relatively simple. It does not require
intense computations, but contains the basic features of the physical processes in the region of
interest. The main idea is to consider the time variability in phase space, avoiding the necessity to
follow each spatial point. The diffusion approximation is used to describe the time variability of
the error, and then the Fokker-Planck (FP) equation is solved to obtain the joint probability
distribution of each pair of measurements. The ordinary Kalman-filter method requires O(n?)
operations to invert the model operator to obtain the covariance function, where # is the number
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of grid points. This method requires the inversion of the operator only with respect to the number
of measurement points. It is much simpler because the number of observational points is com-
monly less than the number of grid points. The method does not depend on whether the model is
linear or not. However, it has some weaknesses. A discussion about the advantages and disad-
vantages of the method compared with another data assimilation methods is presented below.

The present method is used with the NOAA/GFDL primitive equation ocean model MOM_2
[15,16]. The goal is to demonstrate the usefulness of the assimilation technique. MOM_2 has been
widely applied in forecast and simulation experiments, e.g. [17]. Here, it is used only as a tool to
calculate the thermodynamic fields and their variability.

This paper also uses the Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data
set [18], which contains surface and subsurface temperatures at several levels up to 500 m depth
and some other quantities. This project is being carried out by three countries, USA, France and
Brazil. Data are collected by a number of moored buoys in the Tropical Atlantic since the end of
1997. PIRATA also provides data to diagnostic studies on the Atlantic circulation, model de-
velopment, model validation and initialization of weather and climate forecasts. Data used here
were taken from the public website www.ifremer.fr/orstrom/pirata. The authors have done no
analysis with these data.

The assimilation technique is discussed in Section 2, and its numerical realization in Section 3.
The results are discussed in Section 4, and the last section presents the summary of the work and
the conclusions.

2. Data assimilation technique

Let ¢(¢,x) be an unknown real or “true” variable, which is sought in some ocean domain Q .
The model approximation for ¢ is written in Cartesian coordinate system as

o A0 (1)
where A(¢) is the known model operator, in general, non-linear, frepresents time and x = (x, ,z)
denotes an arbitrary spatial point of the domain. The symbol ‘bar’ above is used to distinguish a
spatial point from its coordinate.

To obtain the model variable ¢, (z,x) Eq. (1) is integrated from the initial known state at fp = 0
up to ¢ = T. During this period, it is assumed that the observed values ¢,(z,x(t)) of the variable ¢
are available at time 7, 0 < 7 < T. The problem is to construct the optimal estimation of the
variable ¢(z,x) using both model and observed data.

Hereafter, it is assumed there is no difference between the observed and the real values of
variable ¢(z,x). In general, it is possible to consider the case where the real value is equal to the
observed one plus an error of measurements. However, there is no need to do it, because it does
not add anything essentially new, but complicates the formula. And, also the error due to
modeling is normally much greater than the error in the measurements.

A basic hypothesis of the Kalman-filter theory is that the variable ¢(z, x) satisfies the expression:

0
ot
where the operator A(z) is given in formula (1), and 7 is a random noise with a known stochastic

distribution. Let 0 = 0(¢,X) = ¢(¢,X) — ¢, (2, X) be the error due to modeling, simply referred to as
error. If A(z) is linear, from Egs. (1) and (2) it is obtained that

A(t)c+n, (2)
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o0
—=A)0+ . 3
= A0+ G)
If the operator is non-linear, Eq. (3) may also be valid to represent the error, but of course with a
different distribution of a noise. The following standard conditions for the noise are assumed to
hold

En=0, En(x,0)n(y,1) = R(r)o(r — 7). (4)
In formula (4), E denotes the mathematical expectation, d(¢) is the Dirac-function, and

r=dis®y) = [ —x) + 01 —») + (21 — )]

is the distance between two spatial points X, y. The function R is supposed to be known.

In the present paper, two kinds of averages are considered. Let symbol E be the ensemble
average, and the symbol () be the spatial average.
If in addition it is assumed that

E0(0,x) =0; A(0)=0,
then and by (3) and (4) the equality
EO(t,%) =0 (5)

follows for any ¢.

The following problem is considered ([19,20] and others): find the optimal estimation (¢, x) or
the optimal filter of ¢(z,x) satisfying the conditions:
(@) E(¢—¢)=0;
(b) E(¢ —¢)* = min E(w — ¢)° for any estimation .
This is the well-known problem of searching an unbiased estimation with minimum variance.
Condition (a) and Eq. (5) lead to

E::‘(t,}?) = Cm(tax)'
The optimal filter is sought by the expression:

N{)

&, %) = gul(t,%) + /0 t > o(r,%,%)0(, %) dr, (6)

i=0

which is an optimal linear filter with unknown weight coefficients o; = «(z,x,x;). In this for-
mulation, without loss of generality, observation times are continuously distributed, and the
locations of observation are discrete in space. Let N(t) be the number of observations at time
7. The unknown weight-coefficients o, = a(7,x,%;) should be determined using condition (b).
The optimal linear filter can be found out as in [19], where it was proved that, under some
conditions, the optimal linear filter would be the best among all filters with the same risk
function.

After some mathematical manipulations, the necessary minimum condition
(9/00,)E(¢ — ¢)* = 0 leads to the following equation for a:

N(7)

K(t,x,x,-):/o > (e %, %)K (1 — 7, %, %) dr, (7)

j=0
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where K = K(¢,x,y) is the covariance function of the error, given by
K(1,%.5) = E0(t,%)0(1,y) — EO(t,9)E0(1,5), i=1,...,N().

When the covariance is known, Eq. (7) is solved with respect to o, and the solution is inserted into
formula (6) to obtain the optimal linear filter. However, the main problem of the Kalman-filter
theory is to find the error covariance function and its variability in time. If the operator A(¢) is
linear, (3) leads to the equation for the covariance function

aK(z,)‘c,y) = A(t)K(t,x,y) + R(t,X,¥) (8)

(see e.g. [1,6]). If the operator is non-linear, (8) is not valid. But even in the linear case, the
problem of solving Eq. (8) is very difficult. First, this equation should be solved to all pairs of grid
points. It is easy to calculate that if the number of grid points is around 10*-10°, the number of
operations to invert the operator matrix exceeds 10° and even modern supercomputers are unable
to do it. In addition, this is not justified, because Eq. (7) needs the covariance only at the mea-
surement points. Second, Eq. (8) requires initial and boundary conditions to the covariance.
Because of the absence of real information, any initial value is set up artificially and this will
influence the final result. It is possible to say even more about the boundaries.

Another way is suggested to solve the equation for the covariance function and its time evolution.
This approach can be used for non-linear operators. According to the definition, the error covari-
ance is

K(t,x,y) = EO(t,x)0(t,y) — EO(t,X)EO(t, ).

Let p(¢,s1,s,) be joint distribution of the error of two spatial points, i.e., 0(¢,x) = sy, 0(¢,y) = s,
with the probability p(z,sy,s,). Then, the covariance can be written as

K(t,x,9) / / s15op(t, s1,52) dsy ds,
—/ / s1p(t,s1,82) ds; dsz/ / sop(t,s1,52)dsydsy. 9)

It is important to note that, in general, the average value of the error at a fixed point X does not
equal zero. Equality (5) is correct for an a priori considered point. But if this point is taken a
posteriori, Eq. (5) is not valid. In other words, Eq. (5) is correct if an average is taken over a field.
Following (9), the problem of the determination of the covariance is solved after the joint dis-
tribution p(¢,sy,s;) is found.

Let 0(¢) = (0(¢,%), 0(¢, 7)) denote the vector of a pair of errors at two points. The increment of
this vector in phase space can be represented by the following stochastic differential equation, the
so-called Langevin equation,

d0(r) = a(t, 0‘) dt+B<t, é) aw, (10)

where a = (ay,a,) is the drift vector, B = (b;;), i,j = 1,2 is the diffusion matrix, and W is a two-
dimensional Wiener process [20]. Parameters of Eq. (10) are defined by [20]

a(t,s) = %E(d@(r)/é(t} - 5), (11.1)

B(t,5) = %E[dé(r)(dé(z))’/é(r) - 5], (11.2)

where the symbol “” denotes the transpose of the vector.
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Formulas (11.1) and (11.2) use the conditional average and the conditional variance to de-
termine the drift vector and the diffusion matrix. Using Eq. (3), formulas (11.1) and (11.2) can be
rewritten after simple mathematical transformations as

a(t,s) = E(A(t)é(t) (1) = §), (12.1)

B(t,5) = E[A(t)é(t)(/l(t)é(t))' 0(t) = 5} +R(t,7) (12.2)

in which it was taken into account that E(y1') = R(r).

Formulas (12.1) and (12.2) allow obtaining the values @, B. They show that knowing the value
0 at time ¢ the operator A can be applied, the average and the variance are calculated. Despite the
error field 0 being unknown, its values are known under the given conditions. In other words, it
means that any variable with the same values can be used and the same results will follow. The
methodology applied to obtain the solution will be considered in the next section.

After the determination of the drift vector a and the diffusion matrix B, the probability dis-
tribution is found by the FP equation

@pétl,s) _ _a(a(t,gsfa(t,s)) % % (B(1,5)p(1,5)). (13)

The following notation was used

O(ap) _ Oa\p n Oayp
os 0sq 0s» ’

o o o’ 0?

— (Bp) == (b 2—(b — (byp).

a§2< p) 6.5‘%( llp)+ aslasz( 12p)+asg( 22p)

The FP equation (13) requires initial and boundary conditions. For the boundary conditions,
Sommerfeld conditions are naturally imposed, with the probability vanishing as ftends to infinity,
1.€.,

p(t,+00) = p(t, —o0) = 0.

The initial conditions for the probability distribution are defined as follows. If two observations
are done at the same time #°, it means that at this moment the error is known. Let the error be
5% = (s7,53). Hence, the initial probability density at moment ¢° is the two-dimensional Dirac J-
function, p(#°,5) = (s — 5°). It is easy to be generated when two measurements are done con-
secutively, at time #{, 7, #) < #. So, the problem to set up the initial distributions of any pair of all
measurement points is solved without artificial assumptions. However, it is more difficult to define
the initial distribution between an arbitrary spatial point of the domain and a measurement point
according to the left side of Eq. (7). The simplest way to do it is to make an interpolation of the
covariance from the nearest measurement point. The accuracy of this interpolation should have
the same order of the model accuracy. But a good coverage of the domain by observations is
needed. Within some selected radius 4., where the error field is assumed to be homogeneous (local
homogeneous assumption) at least three observations should be available, and they should not lie
on the same straight line (non-degenerated case). Then, the new covariance can be reconstructed
by
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K(x,x;) Zyu (X:,X;), (14)

where X;, X; are points of observations, ¥ is an arbitrary grid point, and y;; are the interpolation
coeflicients. Only, the linear interpolation is considered. There is no need to write a precise for-
mula for these coefficients, since the linear interpolation is commonly used. The radius 4. cannot
be chosen very large because of both the interpolation accuracy and the local homogeneous as-
sumption.

If there are insufficient observations or three or more points belonging to the same line, this
method does not work. In this case, it is necessary to introduce additional hypothesis. One of
them, which is used in the experiment realization is as follows. An additional “artificial” point of
observation is introduced in the neighborhood of two real observational points, in such a way
that the three points do not lie over the same straight line. At that point, the distribution of error
is taken a priori, e.g., as a Gaussian with zero average and variance equal to the variance of the
noise. Then, the FP equation is applied to obtain the covariance between this additional point and
its two real neighbors. This reduces the problem to the previous case. Of course, this approach is
not ideal, but at least it strongly restricts the indefinition on the initial conditions. Naturally, it is
desirable to introduce as less additional artificial observations as possible.

In the end of this section a summary of the method considered here is presented. Step-by-step
the procedure is:

1. Perform the model integration according to Eq. (1) from the known initial field ¢y(x) until the
first assimilation time #;

2. Computate the model field ¢, (¢ + d¢,x);

3. Determine the drift vector a and the diffusion matrix B using both model and observed values

(formula (11.1) and (11.2));

4. Apply the FP equation to find the covariance at time ¢ (Eq. (13));
5. Interpolate the covariance from the points of observations to an arbitrary grid point of the do-

main (formula (14));

6. Calculate the weight-coefficients o with respect to Eq. (7);
7. Determine the optimal filter ¢(¢,x) (formula (6)).
This completes the description of the methods.

3. The numerical realization

This section focuses on the description of the algorithm to perform the numerical realization
with the method discussed above.

Let the model equation (1) be integrated numerically from # until ¢, and let ¢, ..., be the
times at which data assimilation or correction is done. Suppose that the new corrected fields ¢;(x)
have already been constructed until time ¢, = ¢. The transition from time ¢, to time ¢, is pre-
sented according to the sequence below. The numbers labeling each step refer to the steps 1-7 of
the previous section. The numerical realization requires:

1-2. The numerical solution of equation (1). This does not need a special description since it is
not the goal of this paper.

3. The computation of the drift vector and the diffusion matrix. This requires the construction
of the conditional probability of the error p(0,,, = /0, = 5) = p,(i1/5) according to formulas
(11.1) and (11.2). The known field ¢, = ¢,(x) — (¢,(¥)) is taken as a condition. As it has already
been mentioned above, the only requirement this field should have is an average equal to zero.
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Instead of the unknown “‘ensemble” mean value, the spatial average (¢) is taken as its estimation.
Then, all grid points, where ¢, = § are selected. Let these points be N; # 0. At time ¢,,, grid points
are sought among the selected grid points where the model field ¢, = #. Let these points be N;.
Then p,(u/5) = N;/N;. Obviously, 0< p,(u/s) <1, i.e., it is really probability. Then, the condi-
tional average and the variance are defined with respect to formulas

als) =4, [ (@=s)ptafs)dn

55 =" [ @=9)a—s)(plafs)da+ &

0
}vn =lyy1 — by

It is important to note that the number of computations to define the conditional probability is
not large. Indeed, it is easy to note that p,(#/5) = 0 when abs(z — 5) > L for some not very large
L. Also, because of the symmetry of the conditional probability p,(u/s) = p,(5/u), there is no
need to calculate this value twice. Both of these properties strongly restrict the necessary number
of operations.

4. The numerical solution of the FP-equation. This is a two-dimensional parabolic differential
equation on an unbounded plane. Well-known numerical methods were developed to solve it.
Peaceman—Rachford’s algorithm [21] has been applied in the present paper, but with one mod-
ification. The numerical scheme is written as

pHr_p 1 1+1)2 ; , z 1

— =3 |:(b11p))?x +2(b1ap)g; + (bzzp)y—y} + (a1p); + (a2p);,

pPl—p 1 141/2 ; " ) 1
— =3 [(bllp))?x + 2(b12p) sy + (b22p)y, } + (a1p); + (azp)y-

Here, [ is the iteration number. As usual, the following notations are introduced to describe the
finite-difference approximation:

DPi+1j — Dij | _ Dij—Di-1j Pty — 2pijt+pivyy _ Pit1j — Di-yj
px_h—la Dx hl 5 P = h% ) pf—z—hl
The same notations are used in the y direction with the substitution of index i by j. Here, i, j are
indices of the grid in a phase-space, /4, (%,) is the grid-size in the x(y) direction in a phase-space, p is
the known function at the previous time-step and 7 is the time-interval. The calculations end when
abs(p'*! — p') < ¢ for a small-defined value ¢. This determines the probability distribution at any
time n from the previous time-step s with the initial probability distribution p°.
The two-dimensional Dirac ¢-function used as initial condition is approximated as

Flsss) = 20) 'k Pexp (3 (54

with some small parameter k.
This scheme gives the solution of FP equation at each time-step. But because the solution is the
probability density, it should satisfy the conditions
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pl{/.éO, /plds:l.

The first inequality always holds, but the second condition may not be satisfied because of nu-
merical errors. To keep the second condition true, the following correction has been introduced at
each time-step. The numerical values p!/, have been substituted by p, = p/,/ [p'~'ds in which
information from the previous iteration is taken. This stabilizes the procedure and accelerates the
computations.

5. This step does not require special discussion.

6-7. The numerical solution of the linear system of equations with a symmetric matrix. This is a
well-known procedure. Here, the algorithm of “maximum element” was applied [22].

An estimate of the necessary number of operations required by the algorithm is provided
below. It will be assumed that the forward computations with a rank N matrix need O(N)
operations, and the inversion algorithm with the same matrix needs O(N?) computations. Let
N be the number of grid-points in the model domain, L be the grid-size in the phase-space and
M be the number of observations. Then, an estimate of the number of operations per time-step
is

1-2. O(N) for the forward problem with N points.

3. O(L?) for the computation of conditional average and variance.

4. O(M>L) for the FP solution, since this equation is solved for each pair of observations with

respect to the grid-size L.

5. The number of operations in this step can be neglected.

6-7. O(M?) for the inverse problem to solve Eq. (7).
The maximum consumption to solve the FP equation is ~M?>L, which can be considered as the
total. In practice N ~ M?L ~ L> < N? is used. Because of this, the present algorithm has an es-
sential advantage when compared with the Kalman-filter.

4. The numerical experiments and results

The presented method has been applied to the observational data from the PIRATA project.
Daily means of surface and subsurface temperature at 11 levels up to 500 m depth from 10 buoys
since 1 January 1999 until 31 May 1999 were used in the assimilation experiments. For the
purpose of this paper, it is important to have long-time series of good quality data to be as-
similated into the numerical model.

The widely used GFDL global ocean model MOM_2 was used in this study in conjunction
with the data assimilation technique. No detailed description of this model will be given here. For
more information, see e.g. [15,16]. In the present study the focus is on the tropical Atlantic.
MOM_2 was set up to a grid resolution of 0.5° in the meridional direction between 20°S and
20°N. The grid spacing increases linearly to 1.5° towards 40°S and 40°N. The zonal spatial res-
olution is 1.5° constant through the entire globe. This version has 20 levels from sea-top until
bottom with the higher resolution in the first 15 levels from 0 to 1000 m. The temporal resolution
is 30 min, 48 steps per day.

The model dynamics is governed by initial and boundary conditions. Climatological heat fluxes
and wind stresses from the Oberhuber Atlas [23] are applied on the boundary at the sea-surface.
The initial fields for the data assimilation experiments are prepared after 25 years of spin-up, since
the model is first initialized at rest with the temperature-salinity structure from the Levitus Atlas
[24].
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Despite the fact that the GFDL model is global, no investigations have been done here beyond
the tropical Atlantic zone. The model domain and buoys locations are shown in Fig. 1. Also, the
two additional points mentioned above are displayed by the “cross” symbol.

Two kinds of experiments have been carried out. In the first kind, the observed data were
assimilated day-by-day according to their realizations. In the second one, the inflow of real data
was stopped after some time, and all other corrections have been done with respect to the previous
information. This experiment is designed to address the memory the system has of its previous
state.

Several parameters have to be defined before the practical realization of the method. First, the
noise model should be set up. The covariance function of the noise at time 7 is defined as

N(n)
Ry(r) = (N(n) = 1) (Z 9?) /(1 +77),

where 0; is an error at point X; , r is a distance, and N (n) is the number of measurements at this
moment. Also, two radii are introduced. Let C, be a cut-off radius. It means that any covariance
between two points is prescribed to be zero if the distance between them exceeds C,. And let 4, be
a radius of homogeneity, i.e., within this radius, the error field can be considered as homogeneous,
and it is possible to apply formula (14). In the experiments discussed below, these values are
equaled to 10° and 3°, respectively.

In the first series of experiments, the model computes the temperature-salinity ocean state on
the next day starting from the known initial temperature-salinity field after 25 years of spin-up.
The real data are assimilated on the same day. Model predicted fields with assimilated obser-
vations create the new ocean state, which is taken as the initial conditions for the next day. This
procedure is carried on for one month. For the next month the model starts again from the
climate initial state.

Now, the results of the experiments will be discussed. Let o2 (¢) be the variance of the model
error without any assimilation, i.e., the error between model results and observations. Along with
the variable o2 (), two other variances o;(¢), and ¢2(¢), are introduced. They are variances before
and after the correction, respectively. The variable a7 (¢) shows the difference between the model
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Fig. 1. Location of the buoys in the tropical Atlantic.
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values and the observations at moment ¢, or at time-step znin the numerical realization, if the
correction has been done in the previous time-step. And o>(¢) shows the difference after the
correction at the same time-step. It is clear that the variable ¢2(¢) should be small, “close to zero”
but not exactly zero, if the method works correctly.

As an example, Fig. 2(a) demonstrates the time behavior of these three variables during March
1999 at the 40 m level. The top curve shows the model error variance o2 (¢). This curve defines a
natural boundary of the error, which must decrease after manipulation with any technique aiming
to approximate the model results to observations, e.g., by improving the boundary parameter-
ization, initial conditions or model parameters. The variance remains almost steady during all the
month, around 1.5-2°C?. A little spike is observed in the end of the month due to the occurrence
of a warm anomaly near the equator. The model could certainly not predict it, since it was forced
with the climatologed data. Therefore, this spike was inevitable. The second curve demonstrates
the time-behavior of the variance a7(¢). During the first four days, its values are even greater than
o2 (¢). It means that the model needs an adjustment time to come to an agreement with the ob-
servations. But after four days, this curve plunges under the first one and its values remain sig-
nificantly smaller during all other days. Also, in the end of the month, a similar spike is observed,
but the method reacts quickly and precisely. It forces the model to hold the same level of error,
around 0.5° C2. The last curve is o2(7). Its values are almost constant, around 0.25° C* during all
the period. This confirms that the method works correctly and it really assimilates data.

A similar picture is presented in Fig. 2(b). It shows the time behavior of the same variables, but
averaged over the first 500 m depth. The errors become significantly greater, but their main
features remain the same. The initial error is 6.8°C?. This can be explained by both the ocean
model deficiencies and by interpolation errors, since model and measured levels are not coincident
except at the 40 m level. However, the method ignores the increasing of the initial error. The error
variance of the method ¢%(¢) is approximately the same, and even the values of a7(¢) are not
substantially different from their counterpart in Fig. 2(a).

This assimilation method has been compared with another one, a version of the Kalman-filter
(Eq. (8)). One of the most common approaches has been used here [10,25,26]. The covariance is
assumed to be very small in comparison with the variances, which are the diagonal elements in
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Fig. 2. (a) Time-behavior of the error variance at the 40 m level in March 1999. The solid line shows the variance of the
model error without assimilation; the line marked with circles shows the error variance at time 7 if the correction has
been done at time n — 1; the dashed-line shows the error variance after correction at the same time. (b) The same as in
(a), but averaged through the top 500 m of the model domain.
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Eq. (8). Therefore, Eq. (8) is rewritten only for the variances. Actually, the variance is found from
the non-homogeneous transport equation

2 = 2 2
W:—(wz, U) + AAd? +Baa—+R() (15)

where U is the three-dimensional velocity vector, 4 and B are the viscosity coefficients defined
from the GFDL model, and the covariance function of the noise R(¢) was introduced before. As
usual, symbol V = (, ai, 9 is the gradient, A is the two-dimensional Laplace operator, and the
symbol (@, b) represents the scalar product of vectors @, b. Eq. (15) is solved with the boundary
and initial conditions for the variance equal to zero. After solving Eq. (15), the covariance be-

tween the two spatial points X, ¥ is given by

K(t,%,9) = a(t,%)a(t,y) exp(—ir?), (16)

where A is a known parameter.

Figs. 3(a) and (b) show the comparison between the two methods. The results are presented at
the 40 m level Fig. 3(a) and averaged over the first 500 m Fig. 3(b) for January 1999. As in Fig. 2,
the top curve shows the model error regardless of observations. The model error grows during the
month and accelerates from the day 19 on. The dashed-line is the error variance before assimi-
lation with the Kalman-filter version, and the last curve with circles is the error variance of the
method presented here. There are advantages to the latter. It gives smaller variance and faster
adjustment after unexpected spikes. Fig. 3(a) shows this in the beginning of the month and
around day 20. It should be pointed out that both assimilation methods work properly, but
differently. Their different behaviors can be clearly seen in Fig. 3(b). In this figure, the two lines
dashed and with circles are similar during first few days, but the variance of the Kalman-filter
method is higher. Around day 15 they get closer. It means that the Kalman-filter needs more time
to adjust to observations. Fig. 3(b) shows that the adjustment time increases with the depth, and
this also confirms the correctness of the methods.

Fig. 4 shows the differences between the mean January 1999 temperature for the two methods
at the 75 m level. Fig. 4(a) displays the mean January 1999 model temperature, and Fig. 4(b) the
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Fig. 3. (a) Comparison of the two methods at the 40 m depth during January 1999. The solid line presents the model
error variance regardless of observations; the dashed-line shows the error variance at time n after the correction at time
n — 1 with the Kalman-filter technique; and the line marked with circles illustrates the same variable with respect to the
presented method. (b) The same as in (a), but averaged through the top 500 m of the model domain.
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Fig. 4. (a) Monthly averaged temperature in the tropical Atlantic for January at the 75 m depth after 25-years of spin-up
forced by climatological wind-stresses and heat fluxes. (b) Temperature difference between model results with Kalman-
filter assimilation and model results shown in (a) for January 1999 at the 75 m depth. (c) The same as in (b), but for the

presented method.



668 K.P. Belyaev et al. | Appl. Math. Modelling 25 (2001) 655-670

difference between the model temperature with and without assimilation with the Kalman-filter
method. The latter shows that almost all changes are around the buoy locations (see Fig. 1). The
differences are up to 3.5°C and have the order of the errors. This is clear because of formula (16)
for the covariance. The real spatial dependence is ignored and replaced by the rapidly vanishing
function away from the buoys. Note that as A decreases in formula (16), a larger region of in-
fluence of the input data is imposed, but the covariance matrix becomes unstable. And within the
reasonable range 1073 < 1 <1077 cm™! it weakly influences the pattern. The result of the presented
method is shown in Fig. 4(c). This figure displays the difference between the model computations
with and without assimilations with the discussed method. It produces smaller changes at the
observational points with a maximum up to 2.5°C. Although the region of influence is larger it
covers almost all the tropical zone. Also, Fig. 4(c) shows a highly non-homogeneous covariance.
This is physically much more reasonable. Finally, one more detail deserves consideration. Fig. 4
shows that, even out of the cut-off radius, the correction may be different from zero. This occurs
because of the feedback between currents and temperature-salinity conditions. The perturbations
appeared due to data assimilation spread away from the buoy positions. This involves other
dynamic phenomena. Both methods contain these characteristics, but it is much more evident in
the present scheme.

Few more comments on a second series of experiments are discussed, since they may give an
important information on the assimilation method. In this series, the flow of observational data
was interrupted after some time, but the assimilation continued on along time according to Eq.
(13). The results showed the maximum of the probability, solution of Eq. (13), became very small
after 3-6 days, and made the covariance negligible. This means that the maximum period between
data collection in the assimilation process should be around 3-6 days, to allow the model to keep
memory of the data. This also limits the spatial region of influence because of the Lorenz relation
L < UyT. If the order of the velocity is ~100 cm/s, the Lorenz relation imposes a radius of in-
fluence of ~600 km. But the influence due to wave propagation might be greater than this. The
problem of connections between different ocean locations and the non-linear interaction among
ocean variables is indeed an open research area.

5. Discussion and conclusions

The major advantage of the presented method is its ability to represent the real dependence in
time and space according to Eq. (3). The FP equation reflects this dependence through the pa-
rameters ¢ and B. But the diffusion approximation (10) is valid only under some restrictions. First,
the time-interval between two sequential corrections should be significantly smaller than the time
of integration. Second, the error variance should be limited. This condition can be expressed
mathematically, but there is no need to do it here. Physically, it simply means that the model
should not be too wrong or be completely unrealistic. These two conditions are physically
reasonable.

Few points should be discussed on the practical application of the method. It is necessary to
prove its stability with respect to perturbations on the data. Also, it is desirable to show its
possible application to other research areas.

The stability of the method can be proved theoretically. Without loss of generality, only the
one-dimensional case is considered. Let the drift coefficient a(z,s) and the diffusion coefficient
b(t,s) be represented as

a(t,s) = ao(t,s) + pai(t,s), b(t,s) = bo(t,s) + ubi(t,s),
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where ay(t,s), ai(t,s) (bo(t,s), bi(t,s)) are the initial non-perturbed and perturbed drift (diffu-
sion) coefficients, respectively, and u is a small parameter. Using standard methods in the per-
turbation theory the solution of the FP equation with coefficients a(z,s) and b(¢,s) is given by

p(l‘, S) :p()(t, S) + up (t,S),
where py(t,s), pi(t,s) are satisfied by the equations

Opo(t;s) _ B(aopo(t,s)) L1 O (bopo(t,5))

at 6s 2 6S2 ’ (17)
opi(t,s) _ O(aopu(t,s)) +l P (bopi(t,5))  O(aipo(t,s))
o Os 2 0s? Os '

Here, only the perturbation for the drift is considered, since the proof for diffusion is the same.
Because py(t,s) is a probability density, the last term in Eq. (17) is bounded in average, i.e.,

abs(/ o(arp) ds) < 00.
e Os

This gives the stability of the FP equation in average and hence, the stability of the method, in
general. However, in practical applications, the question of stability is not so clear and should be
tested numerically. This is an issue for further studies.

The method can be significantly improved by involving additional information such as salinity,
velocities, chemical tracers, satellite observations, and so on. Of course, it will increase the
computations but it will allow both an optimization of the structure of the observational array
and take into account the physical connections in time and space among the different oceanic
variables. This should be performed in future works.

Finally, few words about the possible application areas of the method are presented. In cli-
matology, it can be used with long-time series to investigate the seasonal-to-interannual vari-
ability of the climate system. It can help to evaluate the heat fluxes, mass transport and vertical
mixing. In weather and climate forecasts, it can be used to produce optimal initial condition to
improve the predictability of ocean or coupled ocean—atmosphere models.
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