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Abstract: This study compares historical simulations of the ter-

restrial carbon cycle produced by 10 Earth System Models (ESMs)

that participated in the fifth phase of the Coupled Model Inter-

comparison Project (CMIP5). Using MODIS satellite estimates, this

study validates the simulation of gross primary production (GPP),

net primary production (NPP), and carbon use efficiency (CUE),

which depend on plant function types (PFTs). The models show

noticeable deficiencies compared to the MODIS data in the simulation

of the spatial patterns of GPP and NPP and large differences among

the simulations, although the multi-model ensemble (MME) mean

provides a realistic global mean value and spatial distributions. The

larger model spreads in GPP and NPP compared to those of surface

temperature and precipitation suggest that the differences among

simulations in terms of the terrestrial carbon cycle are largely due to

uncertainties in the parameterization of terrestrial carbon fluxes by

vegetation. The models also exhibit large spatial differences in their

simulated CUE values and at locations where the dominant PFT

changes, primarily due to differences in the parameterizations. While

the MME-simulated CUE values show a strong dependence on

surface temperatures, the observed CUE values from MODIS show

greater complexity, as well as non-linear sensitivity. This leads to the

overall underestimation of CUE using most of the PFTs incorporated

into current ESMs. The results of this comparison suggest that more

careful and extensive validation is needed to improve the terrestrial

carbon cycle in terms of ecosystem-level processes. 

Key words: Earth system models, carbon use efficiency, CMIP5,

MODIS, gross primary production, net primary production

1. Introduction

Earth system models (ESMs) have been developed in the

past several decades to simulate vegetation changes in space

and time through carbon cycle-related interactions between the

biosphere and the atmosphere. The temporal variations in

atmospheric CO
2
 in the models are driven by CO

2
 emissions

from natural and anthropogenic sources, as well as uptake by

vegetated land surfaces and the ocean. Net imbalances in

carbon fluxes drive the secular trend in CO
2
. The magnitude of

the imbalance is model-dependent and results in differences in

the future warming projected by various ESMs. Previous

studies showed that the observed trend of atmospheric CO
2

was not reproduced correctly during the past century, given the

historical record. There was also substantial spread among

models, even though they were forced by identical anthropo-

genic emissions (Friedlingstein et al., 2006, 2014; Hoffman et

al., 2013; Zhao and Zeng, 2014). The model bias persists into

their future projections. Hoffman et al. (2013) pointed out that

the spread of projected CO
2 

concentrations among fifteen

Coupled Model Intercomparison Project (CMIP5; Taylor et al.,

2012) ESMs in 2100 was approximately 20% of their multi-

model average. Friedlingstein et al. (2014) showed that the

degree of surface temperature warming by 2100 was different

by more than a factor of two, depending on the models and

representative concentration pathway (RCP) 8.5 scenarios used.

Previous studies (Friedlingstein et al., 2006, 2014; Booth et

al., 2012; Anav et al., 2013; Arora et al., 2013; Hoffman et al.,

2013) have suggested that the uncertainty in CO
2
 concen-

trations simulated by ESMs should be largely attributed to the

terrestrial carbon uptake, rather than to the uptake by ocean.

Hoffman et al. (2013) and Friedlingstein et al. (2014) com-

pared the carbon uptake by land and ocean, simulated by

ESMs and found that the amount of carbon accumulated by the

ocean is positive in all models by 2100, whereas the models

exhibited a large spread in the amount of carbon taken up by

the land; the results even had different signs. Arora et al.

(2013) indicated that the simulated sensitivity of terrestrial

carbon storage to the atmospheric CO
2
 concentration was 3-4

times larger than that of ocean. This suggests that the terrestrial

carbon cycle is one of the important factors that need improve-

ment for minimizing uncertainty in future climate predictions. 

It is generally recognized that changes in the carbon pools in

the biosphere should play a key role in determining atmos-

pheric CO
2
 concentration levels in the future. Shao et al.

(2013) showed that the net biome production (NBP) simulated

by CMIP5 ESMs is enhanced in the 21st century and that the

biomass particularly increases over tropical rainforests and

vegetated surfaces in the mid-latitudes through the CO
2
 fer-

tilization effect. Not only long-term increases in biomass but

also future changes in its seasonal cycle would significantly

affect CO
2
 concentrations. Zhao and Zeng (2014) indicated

that the amplitude of the seasonal cycle of atmospheric CO
2
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tends to increase in the future, due to an increase of 68% in the

seasonal cycle of NBP during the growing season in their

future simulations. Comprehensive model intercomparisons on

the simulation of biome production at various ecosystem levels

are needed to explain the differences among simulations and

minimize projection uncertainties. 

The exchange of carbon between the atmosphere and ter-

restrial ecosystems consists of complicated biogeochemical

processes operating over a heterogeneous surface, and the

quality and the performance of the global model simulations is

often diagnosed using carbon cycle variables such as gross

primary production (GPP) and autotrophic respiration (Ra) by

plants. Net primary production (NPP) is defined as GPP minus

Ra. Heterotrophic respiration (Rh), involving the decomposition

of soil litter, is also an important process involved in the

carbon cycle. By validation using ground and satellite obser-

vational data, previous studies identified the systematic biases

of ESMs and discussed the possible reasons for these biases.

Anav et al. (2013) indicated that current ESMs tend to over-

estimate terrestrial biomass and global GPP (Anav et al.,

2013). Shao et al. (2013) showed that ESMs exhibit large

disagreements in the relationship between carbon cycle vari-

ables and hydrological variables, such as precipitation and soil

moisture, emphasizing the importance of the hydrological

cycle in terms of its effects on the terrestrial carbon cycle. The

simulated soil carbon amount in the subsurface root zone,

which is the major source of plant growth, showed systematic

biases and large model spread, from 40 to 240%, compared

with observational data (Todd-Brown et al., 2013). That study

suggested that it might be responsible for the large spread of

atmospheric CO
2
 concentrations simulated by the models. 

While most previous intercomparison studies involving ESMs

have focused on the validation of the global mean budget of

terrestrial carbon pools and fluxes (Anav et al., 2013; Shao et

al., 2013; Todd-Brown et al., 2013), which is useful for

evaluating the overall performance of ESMs and quantifying

simulation uncertainties, more detailed analyses addressing

regional scales and different vegetation types are needed to

identify the key sources of systematic biases in the models.

Anav et al. (2013) evaluated regional changes in biogeo-

chemical variables for two hemispheres and the tropical region

separately. In particular, an investigation of systematic biases

in different types of ecosystems is required to improve the

existing parameterizations of terrestrial carbon fluxes by vege-

tation. In contrast to the many observational studies in biology

that address various plant function type (PFT) levels (De Lucia

et al., 2007; Zhang et al., 2009; Zhang et al., 2014), studies that

benchmark model simulations of PFT levels have obtained less

attention, and this is one of the primary motivations of this

study. 

For a better elucidation of systematic biases in the models,

this study focuses particularly on the comparison of carbon use

efficiency (CUE), which is sensitive to the various PFTs. For

the short-term carbon cycle, Ra is a primary measure of the

release of carbon to the atmosphere, and its magnitude is

known to be about half of GPP for most vegetated surfaces

(King, 2006; Piao et al., 2010). CUE is defined as the ratio of

NPP to GPP, which is a useful diagnostic measure for the

comparison of parameterizations for the terrestrial carbon

fluxes driven by vegetation that are implemented differently in

current ESMs. The absolute magnitudes of the production

terms are the results of feedbacks between climate and vege-

tation. Normalized flux terms can highlight the differences

among simulations driven by parameterization differences in

terrestrial carbon fluxes. Previous studies based on in situ (De

Lucia et al., 2007) and satellite (Zhang et al., 2009) data

analyses have indicated that CUE is not a constant with a value

of approximately 0.47 (Gifford, 1994; Dewar et al., 1999) but

varies depending on climatic conditions and PFTs. In this

regard, the Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite data provide the global coverage of GPP

and NPP as a useful reference for the model validation for

CUE at the PFT level. Zhang el al. (2014) suggested observed

CUE by MODIS tends to slightly increase in the recent years.

However, MODIS has been debated for using validation for

ESMs due to uncertainty of the biomass types and meteor-

ological data to derive GPP and NPP. To warrant for using

MODIS dataset, we compared MODIS GPP and GPP from in-

situ station data using previous studies and this study (section 2a).

The purpose of this study is the intercomparison of CMIP5

ESMs in terms of their simulations of the terrestrial carbon

cycle, based on a quantitative evaluation of the performance of

terrestrial carbon flux parameterizations in their land surface

models (LSM). This analysis specifically focuses on the

assessment of CUE at the PFT level and makes an effort to

provide useful suggestions to the modeling community for

reducing systematic biases in the terrestrial carbon cycle in

current ESMs. Although the heterotrophic respiration (Rh)

needs to be examined to close the terrestrial carbon budget

(Bond-Lamberty and Thomson, 2010), this study does not

include the analysis due to a lack of reliable reference data

from observations. This study consists of following sections:

Section 2 describes the observational data and model output

used in this study. Section 3 compares the model simulations

in terms of their climate and terrestrial carbon cycle variables,

comparing first the multi-model ensemble (MME) average to

diagnose common and systematic biases in the current models

and then identifies differences among simulations across the

ESMs in their simulated climates and carbon fluxes. The com-

parison of CUE at various PFT levels is followed by more

comprehensive comparisons for identifying differences among

simulations driven by model parameterizations. Finally, Section

4 provides a summary and conclusions. 

2. Data and analysis methods

a. Observational data

This study used GPP and NPP as primary variables to

validate the global carbon cycle as simulated by various
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ESMs. Reference observational data were obtained from the

NASA MODIS MOD17 data product, which includes the first

satellite-driven estimates of carbon fluxes on vegetated sur-

faces on a global scale (Running and Gower, 1991; Zhao et al.,

2005). 

The MODIS algorithm uses a data model based on the

radiation use efficiency logic of Monteith (1972) to estimate

GPP, which is basically a linear function of the amount of

Photosynthetically Active Radiation (PAR) absorbed. The frac-

tion of PAR and the leaf area index (LAI) are provided to the

model by the MODIS MOD15 products. A conversion

efficiency parameter relating absorbed radiation to the actual

productivity depends on vegetation type and climate condition.

The upper limit of conversion efficiency uses the Biome

Parameter Lookup Table (BPLUT) for different vegetation

types. The vegetation types include evergreen needleleaf forest

(ENF), evergreen broadleaf forest (EBF), deciduous needleleaf

forest (DNF), deciduous broadleaf forest (DBF), mixed forests

(MF), open and closed shrublands (SHR), grasslands (GRA),

and croplands (CROP), which are based on the land cover

classification from the MODIS MCD12Q1 (https://lpdaac.usgs.

gov/dataset_discovery/modis/modis_products_table/mcd12q1).

Figure 1 shows the horizontal distribution of vegetation types

from MODIS. The conversion efficiency is modified by climate

conditions such as incoming solar radiation, temperature, and

vapor pressure deficit, which are obtained from atmospheric

reanalyses developed by NASA’s Global Modeling and As-

similation Office and the NCEP/NCAR Reanalysis II. The

NPP estimation by MODIS calculates daily leaf and fine root

maintenance respiration, annual growth respiration, and annual

maintenance respiration of live cells in woody tissue, which

are subtracted from the GPP. Biome-specific physiological par-

ameters are also specified by BPLUT for respiration calcu-

lations. 

The MOD17 dataset provides 8-day, monthly, and annual

mean GPP and NPP for 2000-2012. This study used the

gridded GPP and NPP products, which have a spatial reso-

lution of 30 arcsec (0.0083 degree), provided by the Numerical

Terradynamic Simulation Group (NTSG) of the University of

Montana (NTSG MOD17 v55). 

Although MODIS is affected by uncertainties in biomass

types and meteorological data sets (Zhao et al., 2005), the

derived GPP and NPP values are able to capture realistic spatial

and temporal variations over different biomes and climate

regimes. Heinsch et al. (2006) demonstrated that the data are

consistent with ground-based flux tower measurements of GPP

and field-observed NPP estimates with high correlation (r =

0.86) between the data containing seasonal variation. When

this study also compared the annual gridded MODIS GPP data

averaged for 6 years (2000-2005) with the nearest station data

from 53 FLUXNET tower sites, the r-squared value was as

high as 0.56. This value is comparable with the ones in other

studies (Zhao et al., 2005; Turner et al., 2006), showing the

gridded MODIS data are reliable for the model evaluation. 

For comparison with MODIS, this study also used GPP

estimates from FLUXNET-MTE (Multi-Tree Ensemble; Jung

et al., 2011), which is an upscaled data set providing global

coverage that is derived from 178 surface flux tower obser-

vations using a machine learning technique. FLUXNET-MTE

provides an explicit estimate of carbon fluxes over vegetated

surfaces. The dataset provides monthly data at a 0.5
o
× 0.5o

(latitude × longitude) spatial resolution and covers the period

1982-2007. Although this gridded global dataset is useful for

validation of ESMs, its key limitations are also discussed in the

literature (Jung et al., 2011). Wide geographical regions are not

represented by measurement stations; for example, there is a

lack of samples over Siberia, Africa, South America and

tropical Asia compared with North America and Europe. Esti-

mates of annual-mean upscaled ecosystem respiration have

higher certainty than the anomalies and show approximately 5-

10% underestimation. Additionally, the data have limitations

in accounting for disturbances due to land use changes, given

that unchanged land cover data from the International Geo-

sphere-Biosphere Program (IGBP) satellite are used for all

periods. This may introduce spurious trends into the GPP

estimates from the FLUXNET-MTE project. The dataset does

not provide estimates of Ra, but instead provides the summa-

tion of Ra and Rh. The geographical distribution of satellite-

derived GPP from MODIS shows a high degree of consistency

with that from in situ FLUXNET observations. Figure 2

compares the annual GPP distributions from MODIS and

FLUXNET for the same period, 2000-2005. A notable differ-

ence between the two appears in the Amazon, where MODIS

tends to underestimate the productivity significantly. In the

remaining regions, MODIS tends to produce slight under-

estimates in the tropics and overestimates in the high latitudes

when compared with FLUXNET. The annual GPP values from

MODIS and FLUXNET are 108.76 GtC and 107.41 GtC,

respectively, for the averaging period of 2000-2005, with a

small difference that is no more than 1% of the total value. The

pattern of differences did not change significantly even if the

Fig. 1. Horizontal distribution of dominant plant function types
(PFTs) using the MODIS land cover data that include evergreen
needleleaf forest (ENF), evergreen broadleaf forest (EBF), decidu-
ous needleleaf forest (DNF), deciduous broadleaf (DBF), mixed
forest (MF), shrub land (SHR), grass (GRA), cropland (CROP) and
non-vegetated area (NON). 
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FLUXNET data were averaged over a longer period (1983-

2005). In fact, the interannual variation did not modify the

global-mean annual GPP value significantly when the reference

period was extended to 1983-2005, which yielded a small

reduction to 106.55 GtC using the FLUXNET data. 

This study also used the observed surface air temperature

and precipitation data from the Institute for Climate Impact

Research based on the CRU (Climate Research Unit) meteor-

ological dataset (Harris et al., 2014). In this data product,

temperature and precipitation at stations worldwide were

interpolated to a horizontal resolution of 0.5o
× 0.5o (latitude ×

longitude) covering the global land surface.

b. Model data

Historical simulations performed using 10 ESMs were used

in this study. Brief descriptions of these models is provided in

Table 1. The historical simulations (that is, experiment 5.2 or

the ESM historical 1850-2005 simulation; Taylor et al., 2012)

were forced by gridded CO
2
 emissions data for fossil fuel

consumption from Andres et al. (2011). While conventional

CO
2 
concentration-driven runs have no vegetation feedback on

atmospheric CO
2
, these emissions-driven runs enable climate-

carbon cycle feedbacks via changes in vegetation. Note that

three models - GFDL-ESM2M, GFDL-ESM2G, and MPI-

ESM LR - of them enabled the dynamic vegetation model in

their historical simulations for 1850-2005, which model was

able to consider dynamic change of PFT boundaries by climate

conditions (Table 1). Hurtt et al. (2011) produced the land use

change data, where the vegetation change was represented

with the four basic land units (primary, and secondary vegeta-

tion, cropping, and pasture), Each ESM categorized the data

from Hurrtt et al. (2011) into their own PFTs and specified the

vegetation change during the historical run. Atmospheric CO
2

concentrations are simulated prognostically from the net budget

of natural and anthropogenic carbon fluxes to and from the

atmosphere. The simulation of GPP is directly controlled by

the formulae representing photosynthesis in the models. As

shown in Table 1, the parameterization of photosynthesis by

vegetation is formulated similarly in the 10 ESMs. This par-

ameterization is mostly based on Farquhar et al. (1980) for C3

plants in cold climates, with revisions for C4 plants in warm

climates by Collatz et al. (1992). Leaf photosynthesis in CLM4

is proportional to the concentration of carbon dioxide in the

atmosphere, as well as the temperature and moisture sur-

rounding leaves. It adjusted the minimum rate among the light-

use, water-use and carbon assimilation approaches in CLM4. 

NPP is diagnosed in ESMs by subtracting Ra from GPP.

Parameterizations for Ra are more diverse in formulation across

the models compared to that of photosynthesis. Note that

CESM1-BGC and NorESM-ME1 incorporate identical land

surface models, in which the nitrogen cycle is allowed to limit

plant assimilation for the parameterization of carbon fluxes by

terrestrial vegetation, so called the interactive carbon-nitrogen

(CN) cycle. Respiration is proportional to temperature and

nitrogen concentration. The models without interactive nitrogen

cycles diagnose nitrogen concentrations from the carbon con-

centration in each carbon pool, whereas the models with

interactive nitrogen cycles predict the nitrogen concentrations.

The only exception is MRI-ESM, which uses an empirical

formula for estimating NPP based on Obata (2007). In the

model, the monthly NPP is empirically derived from physical

variables such as temperature and precipitation from the Miami

model (Lieth, 1975; Friedlingstin et al., 1995).

The model data were obtained from the Earth System Grid

Federation (ESGF), an international network of distributed

climate data servers (Williams et al., 2011). For the purposes

of comparison, the model outputs, as well as the MODIS data,

Fig. 2. Spatial distributions of annual-mean GPP from MODIS (upper left), FLUXNET (upper middle), and MODIS minus
FLUXNET (upper right) averaged for 23 years (1983-2005). Bottom panels show the GPP from FLUXNET averaged for 6 years
(2000-2005, bottom left), and its difference from MODIS averaged for 6 years (bottom right). The unit is gC m2 mon−1.
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were interpolated onto the same 1o
× 1o grid (latitude ×

longitude). 

c. Analysis methods

In Section 3.3, CUE is diagnosed at the ecosystem level for

the MODIS observations and the various ESM simulations.

For simplicity, an identical distribution of vegetated surfaces

based on to the MODIS classification (Fig. 1) was applied to

both the observed and the simulated fluxes. This is because

each model has their own vegetation classifications, which are

not available from the CMIP5 data archive. 

It is noted that the deficiency in the simulation of CUE by

individual models is not only caused by deficiencies in the

parameterization of carbon fluxes due to vegetation but also by

differences in the classifications of PFTs, which are specified

differently in each model. For example, LM3.0 in GFDL

ESM2 M and ESM2G simulate 5 PFTs (i.e., 3 types of trees

and 2 types of grasses), while NCAR and NorESM’s CLM4.0

specifies the PFTs in much greater detail by including 17

different types (i.e., 8 types of trees, 3 types of shrubs, 3 types

of grasses and 3 types of crops). Although referencing PFTs

from the observations instead of using own PFTs in each

model might not be a perfect comparison, it is still meaningful

to identify the first order differences driven by parame-

terization method and the classification difference as well

where the latter is regarded as the model bias too.

3. Results

a. Systematic biases in the multi-model ensemble

Systematic biases in the ESM simulations are examined first

by taking multi-model ensemble averages (MME) for simu-

lated surface air temperature and precipitation, respectively

(Fig. 3). Despite the realistic representation of annual-mean

surface temperatures, MME exhibits systematic biases with

significant hemispheric differences. Warm biases are seen in

the Northern Hemisphere, particularly in northeastern Asia and

North America, whereas there exists a cold bias in most of the

Southern Hemisphere. MME generally shows wet biases in

precipitation, except over South America. The individual model

biases in temperature and precipitation show less variation

across the models (See the supplementary Figs. S1 and S2).

Wet biases seem to be consistent with cold biases in the

tropical regions, where the deep convective rainfall tends to

produce deep clouds that attenuate incoming solar radiation at

the surface. The bias patterns of ESMs in surface temperature

and precipitation obtained from this study are consistent with

the validation results from Anav et al. (2013) using a slightly

different collection of CMIP5 ESMs and for a longer validation

period (1986-2005).

The global-mean values of GPP, NPP, and Ra are compared

in Fig. 4. Note that spread of the simulations is large, par-

ticularly due to the outlier value produced by MRI-ESM1.

Fig. 3. Annual-mean surface air temperature (top panels, Unit: K) and precipitation (bottom panels, mm d
−1

) averaged for 2000-
2005 from the CRU observations (left), and the multi-model ensemble (MME) mean (middle), and the model biases (MME minus
CRU, right). 
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MRI-EMS1 uses the empirical formulation for GPP and Ra.

This aspect will be revisited in Section 3c where the simulation

dependence on model formulation is discussed. The median

value of GPP simulated by ESMs is centered slightly above

the value from MODIS and is approximately 20% higher (+18

GtC). The median value of NPP is also overestimated by 10.2

GtC compared with the 52.1 GtC NPP from MODIS. The

median value of Ra is underestimated. 

The annual GPP, NPP and Ra values from the MODIS

observations and the MME are compared in Fig. 5. In MME,

we exclude MRI-ESM1 as an outlier to avoid the over-

whelming bias caused by it. The observed GPP values from

MODIS are generally high in areas of EBF in tropical regions,

such as Amazon, South Asia, and Central Africa, and in areas

of DBF, such as those in Indochina, China, India, Europe and

the southeastern part of North America. GPP is observed to be

small in areas of SHR in Australia and in boreal regions of MF

and GRA in northern Eurasia. GPP is close to zero over dry

and non-vegetated surfaces, such as the Sahara Desert and

central Australia. The MME of the ESMs tends to reproduce

these geographical differences realistically, although the esti-

mated magnitudes are too large over most of the globe except

the Amazon region. Although Ra tends to be overestimated as

well, MME shows a net positive bias in NPP in most terrestrial

regions, suggesting that the MME should underestimate the

observed trend of atmospheric CO
2
 increase. 

The bias patterns in GPP and NPP tend to reflect the impacts

of simulated climate. The warm and wet bias in MME cor-

responds to the overestimation in GPP and NPP in the boreal

region (c.f. Figs. 3c, 5c, and 5f), particularly in North America

and the northeast Eurasia. In the low-latitudes, the GPP and

Fig. 4. Global-mean values of GPP, NPP and Ra from MODIS and
CMIP5 ESMs. The values are the average over the land grids only
with latitude weighting for the period of 2000 - 2005. Boxes are
upper and lower quartile and median values are in the solid lines in
the boxes. 

Fig. 5. Same as in Fig. 3 except GPP (top), NPP (middle), and Ra (bottom) from the MODIS observations and
MME. MRI-ESM1 is excluded in MME as an outlier. See the text for detail. The unit is gC m2 mon−1. 
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NPP biases in MME show more dependence on precipitation

(c.f. Figs. 3f, 5c, and 5f). MME exhibits wet biases over the

regions where GPP and NPP show positive biases, whereas the

negative biases in GPP and NPP in Amazon correspond to the

dry bias. MME exhibits overall cold bias in most of the tropics

and the Southern Hemisphere, which has less relationship with

the GPP and NPP biases. This result is consistent with the

previous studies. Nemani et al (2003) and Piao et al. (2009)

suggested that temperature, water availability and radiation are

related with the terrestrial primary production based on the

observational data. They showed that temperature is a major

contributor in the Northern Hemisphere high latitudes, while in

the tropics and sub-tropics the water availability impacts more.

The formulations of GPP and Ra are closely related to

temperature and precipitation (Rahman et al., 2005; Yang et

al., 2006), and the model biases in those carbon fluxes might

be driven both by systematic biases in climate conditions such

as temperature and precipitation and the uncertainty in the

parameterization formulations themselves. The Taylor diagram

is a common and useful measure for simulated spatial distribu-

tions that calculates spatial correlation coefficients between

observed and simulated values and the normalized standard

deviation of simulated values from the global mean over the

whole domain of comparison. Fig. 6a and 6b show Taylor

diagrams (Taylor, 2001) for the annual mean surface air tem-

perature and precipitation, respectively. The MME simulation

of temperature by the CMIP5 ESMs is quite close to the CRU

observations. The spatial correlations are greater than 0.95 in

all models. The normalized standard deviations are within the

range of 0.81 to 1.50, which is relatively small compared with

other simulated variables. The Taylor diagram of precipitation

shows less accuracy and more model spread than that of SATs.

The spatial correlation of the MME is approximately 0.76; the

MME also shows higher normalized standard deviations com-

pared with temperature, suggesting that current ESMs exhibit

relatively larger discrepancies in precipitation and the terrestrial

water cycle. Spatial patterns of GPP simulated by the ESMs

(Fig. 6c) show even larger systematic biases with lower spatial

correlations and larger spatial changes (i.e., higher normalized

standard deviations) than the observed values. Model spread

becomes much larger than that of temperature and precipi-

tation. The simulated pattern correlations from the ESMs are

lowest for NPP (Fig. 6d). The correlation for the MME is

slightly higher than 0.5. The models also exhibit much higher

spatial variation than the observed values for both GPP and

NPP. 

The much larger spread in GPP and NPP simulated by the

ESMs compared to that in temperature and precipitation

suggests that there should be much larger uncertainty in the

parameterization of terrestrial carbon cycle in the current

ESMs. Biases and model spread are even larger in NPP com-

pared with GPP, implying that the simulation uncertainty is

much larger when the photosynthesis and the respiration are

combined. The performance of the MME in terms of GPP and

NPP is not necessarily higher than that of the individual

models in this case, due to the presence of persistent and large

deficiencies in the individual models. Individual models have

the different bias patterns of GPP and NPP. Therefore, MME

shows the good simulation skills for spatial distributions of

GPP and NPP in CMIP5-ESMs.

b. Model dependences

The simulation of annual GPP values shows significant

model dependence as shown in Fig. 4. MRI-ESM1 shows the

largest value among the models. The three models, ESM2G,

ESM2 M, and MPI-ESM-LR, simulate relatively larger values

of GPP than the rest of the models. As the simulation of Ra

shows relatively small model dependence, models that simulate

larger GPP values tend to produce larger NPP in general. MRI-

ESM1 is an exception, and the simulated GPP of this model is

significantly reduced by its large Ra, leading to an NPP value

close to the median value. The two models, CESM1-BGC and

NorESM1-ME, that share the same land surface model simu-

late the smallest NPP values, which is a significant under-

estimation relative to the MODIS estimate. 

To examine further what causes the global bias in carbon

fluxes, the spatial distribution of the GPP bias pattern in

carbon fluxes simulated using each model is compared in Fig.

7. Each model exhibits its own systematic biases. MRI-ESM1

shows a significant positive bias in most vegetated regions,

which is particularly pronounced in tropical rainforests. The

Fig. 6. Taylor diagram of CMIP5 ESMs for annual-mean dis-
tribution of (a) surface air temperature, (b) precipitation, (c) gross
primary production (GPP) and (d) net primary production (NPP)
with respect to the corresponding observations for 6 years (2000-
2005). Only the vegetated grid points were included. The observed
values are from CRU for temperature and precipitation are MODIS
for GPP and NPP. 
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group of models with higher global-mean GPP values in Fig. 4

(i.e., MPI-ESM1-LR, ESM2 M, and ESM2G) shows GPP bias

patterns that are remarkably similar to each other. GPP is

overestimated in most regions in these models except for the

upper inland region of the Amazon. The rest of the models

show mixed spatial patterns of positive and negative biases.

The large negative GPP bias in part of the Amazon is primarily

responsible for the lowest global-mean GPP values, which are

simulated by CanESM2 and BCC_CSM1 M. The negative

bias is clear in the boreal high-latitude regions above 40oN in

the CESM1-BGC and NorESM1-ME models. The systematic

biases in the models reflect the uncertainties in the param-

eterized carbon cycles, as well as in the simulated climates.

Mao et al. (2012) suggested that simulated GPP using offline

CLM4 experiment with observed forcing showed similar biases

of GPP spatial distribution as like CESM1-BGC in CMIP5

(positive over tropics and negative over high latitude in

northern hemisphere). It suggests consistently that the bias in

climate simulated by ESMs is not the single major reason for

the biases in GPP and NPP simulations.

Most models simulate larger production in the tropics, due to

abundant rainfall and high temperatures, and smaller pro-

duction in high latitudes due to less precipitation and low

temperatures. As GPP is much larger in magnitude than Ra,

the NPP bias pattern in each model is mostly dominated by

that of GPP rather than Ra, leading to consistent patterns (c.f.,

Fig. 7 and Fig. 8). The two GFDL models implemented with

the same LM3 land surface model (i.e., ESM2M and ESM2G)

and the other two models that use CLM4 (CESM1-BGC and

NorESM1-ME) show NPP biases with opposite signs in the

boreal regions above 40oN, highlighting significant model

differences in parameterizations of carbon fluxes due to

vegetation. 

c. Carbon use efficiency

The bias patterns of GPP and NPP simulated by the various

ESMs presented in Fig. 7 and 8 are the result of complicated

feedbacks between the carbon cycle (mostly by terrestrial

vegetation) and climate. As the magnitude of the bias is also a

function of biomass, this study further compared carbon use

efficiency by dividing NPP by GPP. This normalized carbon

flux ratio can highlight the difference among simulations

driven by parameterization differences in terrestrial carbon

fluxes by vegetation. Moreover, CUE is one of good indicator

for measurement of carbon cycle over terrestrial region. The

spatial pattern of CUE obtained by MODIS shows significant

variations (Fig. 9). In MODIS, most tropical areas with high

Fig. 7. Spatial distribution of annual GPP from the MODIS observation (top left), MME (top middle) and the simulation bias in
each model (model minus MODIS). The unit is gC m2

 mon
−1

. 
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GPP values generally show low CUE values below 0.4, parti-

cularly over the Amazon, central Africa and Southeast Asia. In

contrast, CUE is in general greater than 0.5 over wide areas in

high latitudes and a few low-latitude, high-elevation regions.

The spatial distribution of CUE apparently depends on climate

conditions such as precipitation and temperature in that regions

with large amounts precipitation and warm climates show low

CUE values, while regions experiencing dry and cold climates

show high CUE values. Overall, the MME of 10 ESMs tends

to reproduce the observed distribution from MODIS reason-

ably well. However, the MME values are lower than the

observed values in most regions, which can largely be

attributed to the underestimation of CUE values by MRI-

ESM1. The bias pattern of CUE differs strongly among the

models. Note that the bias pattern of CUE tends to characterize

the parameterization differences in the terrestrial carbon fluxes

used in the ESMs. The bias patterns of CUE are almost

identical to each other for models that share the same land

surface model, such as BCC-CSM1 and BCC-CMS1M, and

ESM2M and ESM2G, and CESM1-BGC and NorESM1-ME,

respectively. The two BCC models tend to overestimate CUE

in Eurasia, North America, and Africa, while they produce

underestimates in Australia and South America. CanESM2

shows a similar pattern as the two BCC models. MPI-ESM1-

LR shows a similar bias structure except in that it produces

overestimates in South America. CESM1-BGC, NorESM1-

ME, and MRI-ESM1 exhibit an underestimation of CUE over

most terrestrial regions. 

The model dependence is depicted better by the zonal mean

CUE distribution (Fig. 10). The observed CUE values show a

clear latitudinal dependence and generally increases with

latitude. The zonal mean of CUE from MODIS ranges from

0.3 to 0.7, with a global average of 0.49. It indicates that the

biomass in high latitudes tends to take up atmospheric carbon

more efficiently compared with that in tropics. Even though

the model spread is larger, the zonal mean MME is able to

reproduce the observed relationship between CUE and latitude.

Some models, such as CESM1-BGC, NorESM1-ME and

MRI-ESM1, are notably different from the other models, as

well as from MODIS, and simulate low values, particularly at

middle to high latitudes. These results are consistent with those

in Shao et al. (2013). They suggested that respiration decreases

more rapidly than production in response to latitudinal de-

creases in mean temperature in all models expect NorESM1-

ME and CESM1-BGC. The reason for the underestimation of

CUE in the two models are caused by their low estimates of

NPP. Using the same data from MODIS, Zhang et al. (2009)

suggested that there exists a clear relationship between CUE

and climate conditions, such as surface air temperature and

precipitation, that are critical for biomass growth. 

Fig. 8. Spatial distribution of annual NPP from the MODIS observation (top left), MME (top middle) and the simulation bias
in each model (model minus MODIS). The unit is gC m2 mon−1. 
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Figure 11 compares the relationship from MODIS with the

model simulations. The observed CUE from MODIS is more

influenced by temperature than precipitation, as is particularly

clear in dry regions with precipitation below 50 mm yr−1. In

general, the observed CUE decreases with increasing tem-

perature. Moreover, observed CUE values show the sensitivity

Fig. 9. Spatial distribution of annual CUE from the MODIS observation (top left), MME (top middle) and the simulation bias
in each model (model minus MODIS). CUE is a positively-defined ratio as NPP divided by GPP and less than or equal to 1. 

Fig. 10. The zonal mean CUE from MODIS (black), MME (grey), and 10 ESMs.
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of CUE to precipitation in the tropics, where plant growth is

more sensitive to precipitation compared with high latitudes.

The MME basically follows this temperature sensitivity,

although it tends to underestimate CUE. It is caused by the

overestimation of Ra in most models compared with the

MODIS estimates (See the supplementary Fig. S3). Individual

models show their own deficiencies. For example, the GFDL

models (ESM2 M and ESM2G) tend to overestimate the

sensitivity of CUE to precipitation in tropical regions com-

pared with MODIS. It indicates that the gradients in CUE with

temperature in the GFDL models are weaker than those in

MODIS. In contrast, the models based on CLM4.0, such as

CESM1-BGC, NorESM1-ME and MRI-ESM1, show a weaker

sensitivity of CUE to both temperature and precipitation than

the other models. This result might be caused by other limiting

and trigger processes, such as nitrogen limitation, which are

larger than the sensitivity to temperature and precipitation.

This large divergence in the model sensitivity of CUE to tem-

perature and precipitation induces differences in the atmos-

pheric CO
2
 concentrations in the future among the full coupled

ESMs. 

Figure 12 compares the observed values and differences

among simulations in terms of CUE depending on the

dominant PFTs according to the classification in Fig. 1. In the

MODIS observations, the CUE values over broadleaf forests

(DBF and EBF) are generally lower than over needleleaf

forests which usually represents to gymnosperms (DNF and

ENF), implying that dense forests tend to not only take up

large amounts of atmospheric carbon for photosynthesis but

also release large amounts of carbon to the atmosphere though

respiration. In this regard, the efficiency of carbon uptake by

the broadleaf forests is smaller than that of needleleaf forests. 

The observed variations in CUE depending on the PFTs are

reproduced realistically by the MME. The differences between

MODIS and the MME is large in areas of DNF and DBF, but

those vegetation types occupy relatively small fractions of the

vegetated surface. The model spread is large, regardless of

plant function types. This is primarily due to the low CUE

values produced by three of the models, CESM1-BGC, MRI-

ESM1 and NorESM1-ME, for all of the plant function types.

These three ESMs have their own unique formulations in

parameterizing terrestrial carbon fluxes. In the case of MRI-

ESM1, it determines the monthly Ra empirically based on a

function of the surface air temperature and precipitation (Obata,

2007). The simulated NPP in MRI-ESM1 is the residual term

between GPP and Ra that is evidently different from that of the

other ESMs. The two CLM 4.0-based models, CESM1-BGC

and NorESM1-ME, include coupled carbon and nitrogen (CN)

cycles, which seems to lead to dramatic differences in CUE

compared with the other models that do not represent

interactions between the carbon and nitrogen cycles. Inclusion

of the nitrogen cycle in the models tends to constrain the

amount of carbon uptake in vegetated land surface (Zaehle et

al., 2014; Friedlingstein et al., 2014) and produces higher

simulated growth respiration than in other models (Shao et al.,

2013).

To examine the impact of the CN cycle in the model further,

this study conducted two additional sensitivity experiments

using CESM1-BGC, one with interactive carbon-nitrogen cycle

(CN) and the other with no nitrogen cycle (Only C). The Only

C experiment assumes the saturation of nitrogen nutrients in

the soil, and it is not limiting the plant assimilation and the

carbon cycle. Both runs were integrated for 156 years (1850-

Fig. 11. Scatter plot of CUE with the variation of surface air tem-
perature (x-axis) and precipitation (y-axis). Color indicates CUE. 

Fig. 12. CUE averaged for each PFT. The box widths are pro-
portional to the root mean square of number of grids. The co-
efficients of proportionality box widths in each PFTs are: ENF
(0.80), EBF (0.48), DNF (0.12), DBF (0.11), MF (1.25), SHR1
(0.91), SHR2 (1.78), GRA (0.70) and CROP (0.73).
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2005) from the initial states obtained from the long-term

equilibrium run driven by prehistorical forcing. Atmospheric

initial CO
2
 concentration was 273 ppm. Other historical changes

such as in land use and land cover, anthropogenic emission,

and atmospheric nitrogen deposition were specified according

to the CMIP5 experimental design. The last 30 years were

analyzed in this study. 

Figure 13 shows that CN tends to decrease GPP in most of

areas compared with Only C, which suggests that the im-

plementation of nitrogen cycle in this model reduces the

amount of carbon uptake by vegetation drastically as a limiting

factor. Accordingly, NPP also tends to decrease in most of the

regions at the decrease of GPP. It is interesting to see that CUE

decrease is particularly significant in mid- to high-latitudes

rather than in the tropics. This result is quite consistent with

the simulation difference between the CN models (CESM1-

BGC and NorESM1-ME) and the rest of ESMs (e.g., the zonal

mean CUE shown in Fig. 10). 

This study further compares the observed and the MME-

simulated CUE sensitivity to the surface temperature for each

plant function type (Fig. 14). The MODIS observations show

more scatter in CUE values for a given temperature, suggesting

that the natural carbon cycle is not simply determined by

temperature, but is also controlled by other factors. In most

PFTs, the observed CUE is maintained close to or even higher

than 0.6, particularly in low canopy plants such as SHR,

CROP and GRA, for surface temperatures lower than 10oC.

CUE tends to decrease significantly at temperatures higher

than 10oC. This observed feature may be interpreted based on

the ecological significance of the resistance to low tempera-

tures by plants (Allen et al., 2010). Low temperatures tend to

reduce biosynthetic production by plants and can even disturb

vital functions to cause permanent injuries and death. The

survival capacity of plants tries to make its metabolic pro-

cesses continue to function under low temperature stresses and

using its cold resistance (Larcher and Mair, 1968). It suggests

that the CUE values of vegetation may be lowered in favorable

environmental conditions, such as warm temperatures and

abundant precipitation, as there is plenty of production and

plant growth. Vegetation experiencing cold temperatures and

insufficient precipitation adapts to survive by increasing CUE. 

In contrast, even though the multi-model ensemble average

Fig. 13. Spatial distributions of annual GPP, NPP and CUE and their differences from the interactive carbon-
nitrogen cycle simulation (CN) and the run with no nitrogen cycle (Only C) by CESM-BGC. The units of GPP and
NPP are gC m2 mon−1. CUE is a positively-defined ratio as NPP divided by GPP and less than or equal to 1.
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is taken for the various ESMs, the simulated CUE variation

shows a clearer change with temperature, suggesting that the

parameterization of the terrestrial carbon cycle in current ESMs

depends too much on temperature conditions. A decreasing

trend is clear in the MME regardless of PFTs in response to an

increase in temperature. From the MME simulation results,

CUE values in all PFTs shows a clear linear change in re-

sponse to temperature variation. This implies that the current

models do not adequately consider the observed ecological

resistance to temperature, and the balance between respiration

and production in the models is more simplified than the

observations. 

In fact, the parameterizations of most land surface models

are based on conceptual leaf-level formulations, such as those

used in the calculation of biochemical photosynthesis pro-

cesses and the dependence of CO
2
 exchange on stomatal

conductance, which use temperature and soil moisture expli-

citly in their formulations. The comparison results in this study

suggest that the models might need to consider ecosystem-

level parameterizations which simulate carbon and nitrogen

fluxes and vegetation and soil pools and are estimated at a long

(e.g., monthly) time step based on spatially explicit information

on climate, ecosystem type, soil type, and elevation (Zhu and

Zhuang, 2015) to reflect the nonlinear relationship for the

interaction between climate condition and vegetation. 

It is noted that the soil moisture is also an important factor to

affect vegetation production and respiration. Knapp et al.

(1993) investigated that the relationship between the soil water

content and NPP is linear (R2 = 0.66). Shao et al. (2013) showed

soil moisture is positively correlated with carbon fluxes in the

current ESMs, although the relationship shows a large spread

across the models. In our analysis (not shown), the CMIP5

ESMs show a similar and coherent bias patterns in annual-

mean soil moisture simulation, with less resemblance to the

bias patterns of annual GPP or Ra. This suggests, even though

the soil moisture is one of the important factors in terrestrial

carbon flux, the biases in GPP and Ra are affected more

dominantly by model parameterizations. 

4. Summary and concluding remarks

The simulations of climate and the terrestrial carbon cycle

have been examined by comparing surface temperatures and

precipitation, as well as GPP, Ra, and NPP values, simulated

by 10 different CMIP5 ESMs with the CRU surface obser-

vational data for climate-related variables and the MODIS

satellite estimates for the carbon cycle over 6 years (2000-

2005). 

Despite the systematic biases with significant hemispheric

differences, the spatial distributions of temperature and pre-

cipitation, which are closely related to biogeochemical vari-

ables (Rahman et al., 2005; Yang et al., 2006), are relatively

similar when compared with observations. More model dis-

crepancies appeared in the simulation of the carbon cycle,

which reflects overestimation of GPP over most of the globe.

The terrestrial carbon fluxes simulated by the ESMs are

diverse, and the models exhibit large spread, even though the

multi-model ensemble mean (MME) shows strong resemblance

in terms of its spatial distribution to the observed pattern by

cancelling out the systematic biases in each model. The results

show that the biases of terrestrial carbon fluxes are due less to

the bias in the spatial distribution of climate conditions but

more to the larger uncertainty in their parameterizations.

We also analyzed carbon use efficiency (CUE) by dividing

NPP by GPP, which is a physiological parameter defined as the

proportion of carbon acquisition (e.g., GPP) to vegetation

growth (NPP). Actually, the MODIS gridded data are not

perfect observation data. Even though, MODIS GPP and NPP

are based on the light use model with satellite forcing data. It is

best and only one data to evaluate global distribution of CUE

in ESMs. For evaluation of MODIS data compared with site

based observation data, we compared carbon use efficiency

(CUE) from our studies and previous studies which are site-

based observation data in Table S1. DNF is highest CUE

values in our study and all previous studies. In addition, the

plants with short canopy height (SHR, GRA and CROP) are

around 0.5 and needleleaf forest (ENF, DNF) is relatively

higher than other PFTs in all studies. Therefore, MODIS

satellite data is reasonable to use evaluation of gridded ESMs.

Analyzing CUE help us to understand the carbon storage in

simulated terrestrial ecosystem in ESMs. At first, the spatial

distribution of observed CUE from space (e.g., MODIS)

Fig. 14. Scatter plots of CUE (y-axis) as a function of temperature
(x-axis). Each panel shows the plot for different PFT. Satellite-
derived values from MODIS are presented with black dots and the
multi-model ensemble (MME) average of 9 CMIP5 ESMs excect
for MRI-ESM1 are with red dots. MRI-ESM1 is excluded in MME
as an outlier. See the text for detail.
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depends on climate condition such as precipitation and tem-

perature. For example, the regions of large precipitation and

warm climate show low CUE, while the regions of dry and

cold climate show high CUE. It indicates that CUE at the

regions with warm temperature and abundant precipitation

could be lowered as there is a plenty of production and plant

growth. The vegetation in cold temperature and insufficient

precipitation adapts to the environmental condition for survival

by increasing CUE. 

In contrast with MODIS, we found clear difference of CUE

between ESMs. The bias pattern of two ESMs from BCC

showed the hemispheric contrast to positive in NH and negative

in SH. The strong negative bias of CUE over southern

hemisphere is shown in GFDL’s models. The CUE in ESMs

based on CLM4 (e.g., CESM-BGC and NorESM-ME) are

significantly underestimated globally. This large uncertainty of

CUE in individual models is influenced by biogeochemical

parameterization of land surface model. In the MME, the

spatial distribution of CUE is reasonably simulated. However,

Strong negative bias is found over Amazon. It is caused that

unbalanced ratio of GPP and Ra in the terrestrial carbon fluxes

over tropical forest such as evergreen broadleaf forest the most

models. The inverse relationship between temperature and

CUE is reasonably simulated in the MME over dry regions.

Generally, Ra is more sensitive to temperature than GPP in the

real world over a certain range of temperatures (Woodwell et

al., 1990; Ryan, 1991; Piao et al., 2010). It means that the

sensitivity of temperature to photosynthesis is weaker than that

of respiration (Arnone III and Körner, 1997; Enquist et al.,

2007). Actually, the sensitivity of CUE is not only function of

temperature (Tucker et al., 2013) but also nitrogen availability

(Zha et al., 2013). However, most ESMs in CMIP5 don’t

consider nitrogen cycle except CESM-BGC and NorESM.

Moreover, ESMs adapted nitrogen cycle are not perfect (e.g.,

nitrogen fluxes and amounts are too much dependence onto

carbon fluxes and amount in the models). It might lead non-

linearity and complex relationship between CUE and tempera-

ture in the real world.

The CUE variation depending to the PFTs, MME is

realistically reproduced in every PFTs. The model spread is

large. It indicates a wide spread due to the different PFTs in

each land models and systematic bias such as failure of PFT

description in land models. The observed CUE values show a

reasonable degree of non-linearity in terms of its response to

temperature. In contrast, the stronger sensitivity of CUE to

temperature increases in the MME is reflected by the sys-

tematic biases of simulated biogeochemical processes which

depends on temperature conditions strongly in every PFTs. 

However, most of the advanced ESMs have adopted leaf-

scale biogeochemistry which involves parameterizations of

photosynthesis and respiration based on small spatio-temporal

scales that depend on laboratory experiments and limited in

situ studies. It makes up one of the major uncertainties of

carbon cycle processes in future climate change simulations

from recent advanced ESMs. Atkin et al. (2008) suggested that

most biogeochemical models are adjusted and incomplete

parameterizations of biogeochemical processes. Due to the

lack of observational data, many biogeochemical studies have

focused on the total amount of primary production and

respiration. Therefore, understanding and evaluating the global-

scale ecosystem is challenging, based on the leaf scale biogeo-

chemical parameterization used in the models. This leaf-level

parameterization for biogeochemical processes is insufficient

for long-term simulations (Zaehle et al., 2014). For develop-

ment of terrestrial parameterization of global-scale ecosystem,

more fine spatial and temporal in-situ observation data are

necessary. For realistic long-term simulations, such as climate

change experiments including the carbon cycle and feedback

processes, parameterizations representing idealized and gener-

alized ecosystem-level processes are needed, rather than site-

specific and leaf-level processes. 
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Supplementray Figures and Tables

Table S1. Comparison of averaged CUE for each PFTs. 

This study De Lucia et al. (2007) Amthor (2000) Choudhury (2000) Zhang et al. (2009) Average (STD)

ENF 0.59 0.41 0.61 - 0.56 0.54 (0.09)

EBF 0.41 0.32 0.54 0.42 0.32 0.40 (0.09)

DNF 0.63 0.59 0.76 - 0.59 0.64 (0.08)

DBF 0.42 0.46 0.67 - 0.51 0.52 (0.11)

MF 0.60 0.45 - - 0.41 0.49 (0.10)

SHR 0.54 - 0.50 0.45 0.52 0.50 (0.04)

GRA 0.54 - 0.49 0.52 0.51 0.51 (0.02)

CROP 0.52 - 0.45 0.56 0.52 0.51 (0.05)
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Fig. S2. Spatial distribution of annual-mean precipitation from the CRU observation (top left), MME (top middle) and
the simulation bias in each model (model minus CRU). The unit is mm d−1

. 

Fig. S1. Spatial distribution of annual-mean surface air temperature from the CRU observation (top left), MME (top
middle) and the simulation bias in each model (model minus CRU). The unit is K. 
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