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ABSTRACT

Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the
simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative
forcing for 1850–2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for
2006–2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial
patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread
in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount
and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics,
four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average
of the four models performs more skillfully than the multimodel ensemble average.

All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across
the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distri-
bution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and
increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected
best-performing models project a significant reduction in global-mean cloud amount of about −0.99% K−1 and net radiative
warming of 0.46 W m−2 K−1, suggesting a role of positive feedback to global warming.
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1. Introduction

A rapid increase in the concentration of greenhouse gases
is one of the primary causes of the observed warming trend
in the global mean surface temperature for the past hundred
years (IPCC, 2013). Although state-of-the-art climate mod-
els are able to reproduce the warming trend unanimously with
increasing greenhouse gases in their historical runs, there
are considerable differences in the degree of warming across
the various model simulations (IPCC, 2013). This is largely
caused by the uncertainty in the interaction and feedback pro-
cesses between clouds and the Earth’s climate system (Soden
and Held, 2006; Randall et al., 2007; Dufresne and Bony,
2008; Waliser et al., 2009; Andrews et al., 2012; Vial et al.,
2013; Li et al., 2013 and references therein). This uncertainty
also leads to huge differences among their projections of
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future climate in the next century (Bony and Dufresne, 2005;
Stephens, 2005; Bony et al., 2006; Randall et al., 2006; Webb
et al., 2006; Wyant et al., 2006; Clement et al., 2009). There
still exists a large spread in the climate sensitivity, which is
defined as the global-mean surface temperature change under
a doubled concentration of atmospheric CO2, simulated by
current climate models, with a range from 1.9 to 4.4 K (Ran-
dall et al., 2007; Andrews et al., 2012; Vial et al., 2013). Us-
ing 11 global models participating in the Coupled Model In-
tercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012),
Vial et al. (2013) estimated that the cloud feedback, as the
primary source of model uncertainty in future climate projec-
tions, is responsible for approximately 70% of the intermodel
spread in the climate sensitivity.

Clouds exhibit high temporal and spatial variation with
a variety of types. Considering a significant role of clouds
in regulating Earth’s radiation balance and temperature dis-
tribution, a comprehensive assessment of the simulated cloud
variation in space and time with reliable observations is a first
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necessary step to evaluate the model biases and uncertainties.
This will help us to understand the dominant mechanisms
from the analysis of the observed cloud variation, from which
one can further identify the key source of problems in the
models, such as in the response of the simulated cloud to sea
surface temperature (SST) and large-scale atmospheric forc-
ings. Several studies (e.g., Klein and Hartmann, 1993; Norris
and Leovy, 1994; Wood and Hartmann, 2006) have focused
on the large-scale environmental controls of cloud variation,
especially with respect to low-level clouds. Those studies
have shown that changes in large-scale dynamic and thermo-
dynamic conditions can explain much of the cloud variability
on daily to interannual time scales. Clement et al. (2009) ex-
amined the relationship between low clouds and large-scale
meteorological conditions in the Coupled Model Intercom-
parison Project Phase 3 (CMIP3) model simulations. Their
study suggested a positive feedback in the global warming,
induced by low-level cloud changes, based on model simula-
tions. In a CMIP5 model assessment, Vial et al. (2013) also
indicated that simulated cloud feedbacks in the tropics, par-
ticularly over the regions where shallow cumulus and stra-
tocumulus clouds prevail, are significantly different across
models.

Zelinka et al. (2012a, 2012b) proposed a way to compute
cloud feedback by using an ISCCP simulator-produced cloud
fraction histogram, which is a function of cloud-top pressure
and optical depth. Based on this method, they separately
computed the cloud amount, altitude and optical depth feed-
backs in the Cloud Feedback Model Intercomparison Project
Phase 1 (CFMIP1), as a subset of CMIP3. This method al-
lowed them to assess the relative roles of these processes in
longwave, shortwave and net cloud feedback. Zelinka et al.
(2013) also assessed the cloud response to rapid adjustments
and feedbacks in models participating in CMIP5/CFMIP2.
Klein et al. (2013) then extended their analysis to the com-
parison of the climatological annual cycle of cloud amount,
cloud-top pressure and optical thickness between CFMIP1
and CFMIP2. They showed significant improvements in the
simulation of optical depth in CFMIP2 compared to CFMIP1.

Though many evaluations in terms of CMIP5 model sim-
ulations of clouds have been carried out thus far, the diagnos-
tics suggested in this study include more rigorous compar-
isons of cloud amount and associated large-scale variables.
More specifically, this is one of the first and most extensive
studies in which the cloud diagnostics in the latest model col-
lection of CMIP5 are compared, and will therefore act as a
reference for the next CMIP phase. In this study, we develop
comprehensive evaluation metrics to carefully examine the
modeled cloud variation and the feedback using the most re-
cent 32 climate projection models in CMIP5. As suggested
by Vial et al. (2013), local and remote physical processes
controlling low-cloud variations in the tropical oceans need
to be better understood using observations and model simu-
lations in order to assess the relative reliability of the differ-
ent model responses. The model validation metrics are de-
signed for evaluating whether they represent the observed re-
lationship between clouds and large-scale dynamic and ther-

modynamic variables. The metrics include: (1) the spatial
distribution of the annual-mean cloud climatology; (2) the
monthly variation of clouds; and (3) the interannual varia-
tion of clouds. Most of the metrics consist of global- and
regional-mean coefficients of spatial pattern correlation and
root-mean-squared errors between the observed and the simu-
lated variables. Regarding the metric for the interannual vari-
ation of cloud, the approach of this study basically follows
Clement et al. (2009) and Shin et al. (2014), who examined
the relationship between low clouds and large-scale environ-
mental conditions. Clement et al. (2009) proposed a method
to test the realism of cloud simulation in current-generation
climate models through the cloud-meteorology correlation
test. They suggested that a larger number of climate models
should be considered with regard to the relationships between
cloud cover and regional meteorological conditions, to ensure
greater confidence in the sign of the low-cloud feedback re-
sponse to future changes in greenhouse gas concentrations.
Based on quantitative and aggregated evaluation metrics, this
study selects the best performing models and examines their
cloud projections in the future with enhanced confidence in
a warming climate. Section 2 describes the validation data
and the CMIP5 models used in this study. The spatiotem-
poral variation of clouds simulated by the CMIP5 models is
evaluated in section 3, from which the best and most reliable
models that realistically reproduce observed cloud variations
are selected. Section 4 describes the future climate changes in
association with cloud radiative effects (CREs) according to
the best models. In addition, section 5 discusses the transient
trend of clouds and their impacts on climate. A summary and
conclusions are given in section 6.

2. Models and validation

2.1. Models

The model simulation data are obtained from the CMIP5
multi-model data archive (http://cmip-pcmdi.llnl.gov/cmip5/
index.html). This study uses two types of experiments: the
historical runs (available from 1850 to 2005), and the Repre-
sentative Concentration Pathways (RCP) 4.5 runs from 2006
to 2100. The historical runs are used to evaluate the degree
to which the models are realistic and robust in simulating
the cloud variations in the recent past. The RCP4.5 run is
used to estimate the cloud feedback and uncertainties in the
future climate projections. The historical run is driven by
observed natural and anthropogenic greenhouse gas forcings
in the past, whereas the RCP4.5 run is driven by the future
scenario of radiative forcing induced by the increase in the
concentrations of greenhouse gases. The latter is the cen-
tral scenario of CMIP5, which assumes an increase in radia-
tive forcing for the next century and stabilization at 4.5 W
m−2 after 2100 (Taylor et al., 2012). Table 1 lists the model
names, their institutions, atmospheric component horizontal
resolutions, and ensemble member numbers, for the 32 mod-
els used in this study. Due to the difference in ensemble mem-
bers, only one ensemble member for each model is chosen
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for a fair comparison. Similar to the observational data, each
simulation dataset is interpolated onto the same 2.5◦ latitude
×2.5◦ longitude grid. In our analysis, the multimodel ensem-
ble (MME) mean is defined as the simple arithmetic average
of the model runs. As in the observation, the model climatol-

ogy is defined as the average of 1984–2005.
In Table 1, seven models (CanESM2, GFDL-ESM2M,

HadGEM2-CC, HadGEM2-ES, MIROC-ESM, MPI-ESM,
and NorESM1-M) are Earth System Models, able to simu-
late the biogeochemical cycles of carbon across the oceans,

Table 1. Details of the CMIP5 models used in the study.

Index Institution Coupled model
AGCM resolution

(Lon × Lat)

No. of
ensemble
members

1 Commonwealth Scientific and Industrial Research Organization and
Bureau of Meteorology, Australia (CSIRO-BOM)

ACCESS1.0 1.875◦ ×1.25◦ 1

2 Commonwealth Scientific and Industrial Research Organization and
Bureau of Meteorology, Australia (CSIRO-BOM)

ACCESS1.3 1.875◦ ×1.25◦ 1

3 Beijing Climate Center (BCC), China Meteorological Administration BCC CSM1.1 2.8125◦ ×2.8125◦ 1
4 Beijing Climate Center (BCC), China Meteorological Administration BCC CSM1.1(m) 1.125◦ ×1.125◦ 1
5 College of Global Change and Earth System Science, Beijing Normal

University (BNU)
BNU-ESM 2.8125◦ ×2.8125◦ 1

6 Canadian Centre for Climate Modeling and Analysis (CCCma) CanESM2 2.8125◦ ×2.8125◦ 1
7 National Center for Atmospheric Research (NCAR) CCSM4 1.25◦ ×0.9375◦ 1
8 Centre National de Recherches Météorologiques/Centre Europeen de

Recherche et Formation Avancees en Calcul Scientifique (CNRM-
CERFACS)

CNRM-CM5 1.40625◦ ×1.40625◦ 4

9 Commonwealth Scientific and Industrial Research Organisa-
tion/Queensland Climate Change Centre of Excellence (CSIRO-
QCCCE)

CSIRO Mk3.6.0 1.875◦ ×1.875◦ 1

10 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
and CESS, Tsinghua University (LASG-CESS)

FGOALS-g2 2.8125◦ ×2.8125◦ 4

11 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
and CESS, Tsinghua University (LASG-CESS)

FGOALS-s2 1.667◦ ×2.8125◦ 2

12 First Institute of Oceanography, SOA, China FIO-ESM 2.8125◦ ×2.8125◦ 1
13 Geophysical Fluid Dynamics Laboratory (GFDL) GFDL CM3 2.5◦ ×2◦ 1
14 Geophysical Fluid Dynamics Laboratory (GFDL) GFDL-ESM2G 2.5◦ ×2◦ 1
15 Geophysical Fluid Dynamics Laboratory (GFDL) GDDL-ESM2M 2.5◦ ×2◦ 1
16 NASA Goddard Institute for Space Studies (NASA GISS) GISS-E2-H 2.5◦ ×2◦ 1
17 NASA Goddard Institute for Space Studies (NASA GISS) GISS-E2-R 2.5◦ ×2◦ 1
18 Met Office Hadley Centre HadCM3 1.875◦ ×1.24◦ 1
19 Met Office Hadley Centre HadGEM2-CC 1.875◦ ×1.24◦ 3
20 Met Office Hadley Centre HadGEM2-ES 1.875◦ ×1.24◦ 1
21 Institute for Numerical Mathematics (INM) INM-CM4 2◦ ×1.5◦ 1
22 L’Institute Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR 3.75◦ ×1.875◦ 1
23 L’Institute Pierre-Simon Laplace (IPSL) IPSL-CM5A-MR 2.5◦ ×1.258◦ 1
24 L’Institute Pierre-Simon Laplace (IPSL) IPSL-CM5B-LR 3.75◦ ×1.875◦ 1
25 Atmosphere and Ocean Research Institute (University of Tokyo), Na-

tional Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology (MIROC)

MIROC5 1.40625◦ ×1.40625◦ 1

26 Atmosphere and Ocean Research Institute (University of Tokyo), Na-
tional Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology (MIROC)

MIROC-ESM 2.8125◦ ×2.8125◦ 1

27 Atmosphere and Ocean Research Institute (University of Tokyo), Na-
tional Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology (MIROC)

MIROC-ESM-CHEM 2.8125◦ ×2.8125◦ 1

28 Max Planck Institute for Meteorology (MPI-M) MPI-ESM-LR 1.875◦ ×1.875◦ 1
29 Max Planck Institute for Meteorology (MPI-M) MPI-ESM-P 1.875◦ ×1.875◦ 1
30 Meteorological Research Institute (MRI) MRI-CGCM3 1.125◦ ×2.25◦ 1
31 Norwegian Climate Centre (NCC) NorESM1-M 2.5◦ ×1.875◦ 1
32 Norwegian Climate Centre (NCC) NorESM1-ME 2.5◦ ×1.875◦ 1
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atmosphere and terrestrial biosphere. Some of the models
also include interactive aerosols, chemistry, and dynamic
vegetation components (Taylor et al., 2012). Therefore, the
CMIP5 models may have larger model spread and uncer-
tainty in their responses than those of CMIP3 (Yeh et al.,
2012). In addition, some of the models have a higher hor-
izontal resolution. Further details and related papers on the
models and experiments can be found at PCMDI [http://cmip-
pcmdi.llnl.gov/cmip5/experiment design.html; also see Tay-
lor et al. (2012)].

2.2. Validation
For validation of the models, this study uses the long-term

satellite observations from the adjusted cloud amount and ra-
diative flux data of the International Satellite Cloud Climatol-
ogy Project (ISCCP). These data were originally archived by
the ISCCP (Rossow and Schiffer, 1999) but adjusted because
of several artifacts in the original dataset. To remove the spu-
rious long-term variability related to changes in satellite orbit,
instrument calibration, and other factors, the adjustment has
been applied in the original ISCCP D2 monthly-mean cloud
product during 1984–2008. This adjustment has not altered
the spatial structure of the long-term observed cloud climatol-
ogy [more detailed information on the adjustment processes
and a discussion is provided in Clement et al. (2009)]. Note
that the adjusted ISCCP datasets are useful for investigating
regional cloud changes because the long-term artificial trends
have been removed. Shin et al. (2014) used the same data for
the validation of CMIP3 models. Clement et al. (2009) com-
pared these data with other sources of data such as COADS
(Comprehensive Ocean Atmosphere Data Set) (Worley et al.,
2005) and PATMOS-x (Pathfinder Atmosphere’s Extended
dataset) (Pavolonis et al., 2005), and found good agreement
in the total and low-level cloud amounts over the Northeast
Pacific (not shown). These data also show good consistency
with MODIS (Platnick et al., 2003) in terms of the seasonal
variation over major subtropical marine stratocumulus re-
gions, which are the main regions of focus in this study (black
box in Fig. 1).

The ISCCP radiative flux data are also adjusted and used
for the analysis of CREs (or cloud radiative forcing), de-
fined as the difference in radiative fluxes between cloudy and
cloud-free conditions. Other large-scale variables used in
the analysis include the HadISST v1.1 SST from the Hadley
Centre reanalysis (Rayner et al., 2003) and the sea level
pressure (SLP), vertical velocity, and surface winds from
ERA-40 (Uppala et al., 2005). Using these data, the lower-
tropospheric stability (LTS) is defined as the potential tem-
perature difference between 700 hPa and the surface. All
data are interpolated to a common 2.5◦ latitude ×2.5◦ lon-
gitude grid. As the ISCCP data are available from 1984, the
observed climatology is defined as the average of 1984–2005.

In section 3, we calculate the seasonal variation of clouds
and CREs as

SSD =

√∑N
n=1(xn− x̄)2

N −1
,

where “seasonal variation” represents the seasonal standard
deviation (SSD), N = 12 (months), x is the climatological
monthly mean, and x̄ is the annual and climatological mean.
This value is used to define the amplitude of the annual cycle.

The interannual variability of the simulated clouds by var-
ious CGCMs is examined, which includes comparisons of the
temporal correlation of cloud cover with large-scale variables
such as SST, LTS and SLP. The correlation is calculated us-
ing monthly anomalies of each variable by removing long-
term monthly averages for 22 years (1984–2005). As indi-
cated, this is the period when the ISCCP cloud observations
are available. As in Clement et al. (2009) and Shin et al.
(2014), the model validation is conducted over the ocean grid
points only for 60◦S–60◦N, which is done in order to better
elucidate the variational mechanisms and the role of marine
stratocumulus in the global radiation budget.

3. Evaluation of the historical runs

3.1. Spatial distributions of clouds

The observed and simulated cloud distributions are ex-
amined in Fig. 1, where the annual-mean total cloud amount
(TCA), low cloud amount (LCA), and high cloud amount
(HCA) are compared, separately. In the observations, the
TCA is particularly large over the major tropical convective
regions and the storm track regions over midlatitude oceans.
These are in fact mostly accounted for by high clouds in the
tropics and midlatitudes. In contrast, low clouds are most
abundant in the subtropical oceans, particularly in the east-
ern basins. The western basins in general show the small-
est amount of low cloud, where small trade wind cumuli are
the predominant cloud type (Klein and Hartmann, 1993). Al-
though the MME tends to underestimate the cloud amounts
globally, it reproduces the observed patterns fairly well, in-
cluding cloudy areas over the oceanic intertropical conver-
gence zones and the regions of major storm tracks in the ex-
tratropical Pacific, in which high clouds are realistically sim-
ulated. However, the models have great difficulty in simulat-
ing realistic low cloud cover; specifically, they underestimate
the low cloud over the eastern subtropical oceans.

Changes in the horizontal and vertical distribution of
clouds affect the global radiation balance significantly. The
impacts of clouds on Earth’s radiation budget can be
quantified by the CRE, which is defined as the radiative
flux difference between clear conditions and all-sky con-
ditions (Ramanathan et al., 1989; Hartmann et al., 2001).
Climatological-mean patterns of the CRE are also analyzed
in Fig. 1, for net, shortwave and longwave radiation, sepa-
rately. The net CRE is the sum of the longwave CRE (LCRE:
warming effect) and shortwave CRE (SCRE: cooling effect).
The cooling effect of observed clouds is particularly evident
over the eastern subtropical oceans, where low-level clouds
are prevalent; whereas, it becomes weak over the warm pools
in the western Pacific and the Indian Ocean. In the tropics,
the SCRE and LCRE are both strong and nearly cancel each
other out by strong greenhouse warming and high reflective
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Fig. 1. Comparison of cloud climatology (1984–2005) between observations (ISCCP) and the MME of the 32 CGCMs
for the TCA (%), LCA (%), HCA (%), net CRE (W m−2), SCRE (W m−2), and LCRE (W m−2). Each number in
parentheses is averaged value over the ocean area of 60◦S–60◦N (latitude) and 180◦W–180◦E (longitude). The black
box indicate four low cloud regions defined in Fig. 9.
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cooling by deep convective clouds. Although the MME cap-
tures the basic features of the geographical distribution of
the CRE, it also shows some discrepancies. For example,
both the SCRE and LCRE are underestimated over the Indo-
Pacific warm pool region, where the amount of deep convec-
tive clouds is underestimated in the MME. The MME also
fails to capture the large reflection by clouds in the eastern
subtropical oceans due to the shortcomings of the model sim-
ulation for low clouds.

In terms of quantitatively measuring the simulation per-
formance for annual–mean cloud, we compare the pattern
correlation coefficients (PCCs) and normalized root–mean-
square error (NRMSE) between the observation and the sim-
ulations from individual models and their MME over 60◦S–
60◦N and 180◦W–180◦E (Fig. 2). The NRMSE is defined as
the RMSE divided by the observed standard deviation, which
is calculated with respect to the global mean. Figure 2 (left-
hand panels) shows that the CMIP5 models can reproduce
the observed HCA more realistically than the LCA. The wide
spread of the PCC and NRMSE scores for the TCA is primar-
ily caused by intermodel differences and poor simulations for
low cloud. While the MME is better than any single model
in the simulation of HCA, this is not the case for LCA. Fig-
ure 2 (right-hand panels) also presents the PCC and NRMSE
scores for the CREs. In general, the models with higher PCCs
tend to show smaller NRMSEs for all CREs. It is also inter-
esting to note that the CREs represented by the MME exhibit
better resemblance to the observed than any individual model
simulation. The wide spread of the CRE, as shown by the
PCC and NRMSE scores, across the models, is mostly due
to intermodel differences in the SCRE caused by model de-
ficiencies in low cloud simulation. To summarize the spatial
pattern test for the annual-mean cloud amount and CREs, we
define a good model group using the median value of models’
PCCs and NRMSEs. The good model group, comprising AC-
CESS1.0, ACCESS1.3, CanESM2, GFDL-CM3, HadGEM2-
CC, and HadGEM2-ES, shows a commonly larger PCC and
smaller NRMSE in all variables compared to the other mod-
els.

3.2. Monthly variation of cloud amount
In Fig. 3, the amplitude of the annual cycle for TCA,

LCA and HCA are compared between the ISCCP observation
and the MME simulation, separately. Strong annual variation
in TCA is found over the tropical eastern Pacific, Arabian
Sea, Bay of Bengal, and the warm pool ocean to the north
of Australia—mostly the deep convective regions. The ob-
served cloud area shifts north and south according to the sea-
sonal migration of ITCZs, which produces regions of strong
seasonal variation straddling the equator. The annual varia-
tion of TCA is dominated by low cloud over the southeastern
Pacific and southeastern Atlantic and high cloud related to the
seasonal migration of ITCZs. The MME reproduces the ma-
jor observed features, including the seasonal shifts of ITCZs
over the western Pacific and seasonal variation of LCA over
the subtropical eastern Pacific and Atlantic. However, the
MME has difficulty in simulating realistic patterns of high

cloud over the eastern Pacific and low cloud maxima over
the South China Sea. Although the MME tends to greatly
underestimate the amplitude of the seasonal cycle of cloud
amount, it tends to capture the correct phase of the LCA and
HCA variation over the eastern subtropical oceans and the
ITCZ over the eastern Pacific, respectively (not shown).

Figure 4 compares the PCC and NRMSE scores for the
annual cycles of cloud amounts and CREs. Again, the MME
performs better than individual models in terms of the an-
nual cycle of the amplitude of TCA and HCA, but not LCA.
The MME is again better than individual models in terms
of simulating the annual amplitude of CREs. Overall, AC-
CESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES
produce better simulations both for the annual cycles of cloud
amounts and the CREs.

3.3. Interannual variation in cloud amount
Next, we examine the relationship between SST and the

three different types of cloud amount (TCA, LCA and HCA)
for observations and model simulations, separately (Fig. 5).
The covariability between the SST and cloud amount de-
pends on the cloud type, even changing its sign. In most
regions, the LCA correlates negatively with SST, apart from
a weak positive correlation over some off-equatorial ocean
regions and the equatorial Indian Ocean. Negative correla-
tion is particularly pronounced over tropical convection re-
gions, which is consistent with previous observation-based
studies (Norris and Leovy, 1994; Wyant et al., 1997; Clement
et al., 2009; Eastman et al., 2011). On the other hand, the
HCA correlates positively with SST over the tropical con-
vection regions, but elsewhere shows little correlation. The
correlation pattern of TCA with SST is actually a superposi-
tion of the two patterns—one from the pattern of LCA domi-
nated by negative correlations with SST over the subtropical
oceans, and the other from the pattern of HCA dominated
by positive correlations with SST over the tropical convec-
tion regions. The MME roughly reproduces the spatial pat-
tern of the correlations between SST and TCA in the tropi-
cal convection regions and subtropical oceans. The strength
of the positive correlation for HCA and the negative corre-
lation for LCA are too weak over the SPCZ and warm pool
regions and in the subtropical oceans, respectively. On the
other hand, some individual models, such as ACCESS1.0,
CCSM4, HadGEM2-CC, HadGEM2-ES, IPSL-CM5B-LR,
and NorESM1-ME, reproduce the observed spatial pattern
fairly well (not shown). The spatial extent and strength of the
positive and negative correlations are best expressed, com-
pared to observation, in ACCESS1.0, with maximum nega-
tive correlation of 0.4–0.6 over the subtropical marine area
and maximum positive correlation of 0.6–0.8 over the equa-
torial central Pacific.

Figure 6 shows the correlation patterns of LTS with TCA,
LCA and HCA, separately. While LCA correlates negatively
with SST, it shows strong positive correlation with LTS. Ac-
cording to Klein and Hartmann (1993), low cloud variation
is more closely correlated with low-level atmospheric sta-
bility variation, rather than with SST. Increasing SST tends
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Fig. 2. The PCC (abscissa) and the domain-averaged RMSE normalized by the observed spatial standard deviation
(NRMSE, ordinates) of 32 models (marked by the model number in Table 1) and the MME (marked by “M”) for the
TCA (%), LCA (%), HCA (%), net CRE (W m−2), SCRE (W m−2), and LCRE (W m−2). The analysis domain is
(60◦S–60◦N, 180◦W–180◦E). The best four models selected in this study are marked in blue. Note that LCA has a
different y-axis compared to the other variables.
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Fig. 3. Comparison of the seasonal variation of TCA (%), LCA (%) and HCA (%) between observations (ISCCP) and
the MME of 32 CGCMs for the period 1984–2005.

to reduce LTS, which is favorable for the dissipation of low
cloud, as suggested by the modeling study of Wyant et al.
(1997). The HCA shows opposite correlation to that of LCA.
As a result, the correlation of TCA with LTS is positive in
the subtropical oceans, with prevailing low cloud, and nega-
tive in the equatorial convection regions, with prevailing deep
convective high cloud. The MME captures the observed spa-
tial extent and strength of the TCA response to LTS quite
well—for example, the negative correlation in the equatorial
Pacific and the eastern India Ocean, and the positive corre-
lation in the eastern subtropical oceans. However, the MME
produces an overly weak strength of the LCA response to
LTS in the western Pacific and SPCZ, and confines the extent
of the HCA response to LTS to the lower latitudes, compared
to the observation. We note that ACCESS1.0, ACCESS1.3,
CCSM4, GFDL-ESM2M, HadGEM2-CC, and HadGEM2-
ES are again somewhat better than other models in terms of
the strength of the correlation and its resemblance in the spa-
tial pattern with the observed.

The relationship between SLP and each cloud type is ex-
amined in Fig. 7. Local SLP is regarded as the strength of
large-scale subsidence. George and Wood (2010) suggested
that SLP also plays an important role in modulating LCA.
The observed TCA shows a negative correlation with SLP
throughout the tropical and subtropical oceans, with a maxi-

mum value of around 0.6 in the western Pacific. It also shows
significant positive correlation over the eastern subtropical
oceans. Although the MME reproduces the relationship be-
tween SLP and HCA over the western Pacific and Indian
Ocean fairly well, it is less realistic in capturing the positive
correlation between LCA and SLP over the eastern subtrop-
ical oceans. Regarding the simulation by individual models,
some models (e.g., CCSM4 and GFDL-ESM2M) are overly
weak in reproducing the negative correlation in the west-
ern Pacific (not shown). On the contrary, ACCESS1.0, AC-
CESS1.3, HadGEM2-CC and HadGEM2-ES tend to overes-
timate the positive correlation in the subtropical and equato-
rial eastern Pacific.

We further examined the impacts from other variables,
such as relative humidity and surface wind speed, on the in-
terannual variability of the cloud amount, but little correlation
was found (not shown).

3.4. Best model selection
In order to summarize the results from Figs. 5–7, and

compare the model performance in a quantitative way, we
calculate the spatial correlation for the area (60◦S–60◦N,
180◦W–180◦E) between two correlation maps—that of the
observed correlation between TCA and large-scale variables,
and that of the simulated correlation from each model (Fig.
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Fig. 4. As in Fig. 2 except for the seasonal standard deviation patterns for each variable. The best four models
selected in this study are marked in blue.

8). While most models reproduce the spatial pattern of
the cloud response to the change in meteorological vari-
ables poorly, the MME and eight models—ACCESS1.0,
ACCESS1.3, CCSM4, GFDL-ESM2M, HadGEM2-CC,

HadGEM2-ES, MIROC5, and MPI-ESM-P—show better
skill, with PCCs over 0.55, for all large-scale variables. Note
that higher correlation in this respect does not necessarily
suggest the modeled cloud variation is more realistic and with
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Fig. 5. Correlation between the observed SST (UK Met Office HadISST1) and (upper) TCA, (middle) LCA, and (bot-
tom) HCA. Left-hand panels show the observed cloud (ISCCP) and right-hand panels the MME (32 models) cloud
amount, and the SST anomalies are monthly anomalies relative to the long-term monthly means. Stippling indicates
significance at the 99% level.

a more realistic magnitude. Among those eight models, four
of them—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and
HadGEM2-ES—commonly show better PCC and NRMSE
scores in their annual-mean patterns (section 3.1), and their
amplitude patterns of annual cycles (section 3.2). Although
CCSM4, GFDL-ESM2M, MIROC5 and MPI-ESM-P show
comparable pattern correlation skill, they are unable to repro-
duce the observed LCA response in the eastern subtropical
oceans.

Low cloud is the major contributor to the CRE, particu-
larly the reflection of shortwave radiation in the marine stra-
tocumulus regions of the eastern subtropical oceans. After
selecting four areas of prevailing low cloud (black box in Fig.
1), we compare the area-averaged correlation coefficients be-
tween TCA (mostly LCA in those regions) and each large-
scale variable of SST, LTS and SLP across the model simu-
lations (Fig. 9). The observed cloud amount shows negative
correlation with SST, and positive correlation with LTS and
SLP. Again, ACCESS1.0, ACCESS1.3, HadGEM2-ES and
HadGEM2-CC are the realistic models for the observed rela-
tionship between cloud amount and large-scale variables.

Ultimately, we choose the four best models as AC-
CESS1.0, ACCESS1.3, HadGEM-CC and HadGEM-ES,

based on the validation metrics presented above. In fact, the
MME of these four models shows better skill than the MME
of all 32 models. The observations show a net radiative cool-
ing by clouds at the top of the atmosphere of −32.7 W m−2,
which is the sum of longwave warming (27.3 W m−2) and
shortwave cooling (−60.1 W m−2). The observed TCA is
around 71.0%. The four best models (B4MME, hereafter)
agree well with the observations in magnitude, with −24.04,
−52.5 and 28.4 W m−2 for the net CRE, SCRE and LCRE,
respectively, and 60.4% for the cloud amount. The B4MME
also produces the smallest RMSE and the highest PCC for the
annual-mean TCA and the amplitude in the annual variation
of the cloud amounts and the CREs.

4. Future change in CREs by global warming

In this section, we discuss the possible future changes in
clouds and their impact on climate, by comparing the simu-
lations between the historical run (1950–99) and the RCP4.5
run (2050–99) using the B4MME models chosen in the previ-
ous section. The primary goal is to understand how the cloud
radiative feedback will operate in a future global warming
scenario, because current GCMs are diverse in their results
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Fig. 6. Correlation between LTS and (top) TCA, (middle) LCA, and (bottom) HCA. Left-hand panels show the obser-
vations and the right-hand panels show the MME of 32 CGCMs.

Fig. 7. As in Fig. 6 but for SLP.
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Fig. 8. PCCs between the observed and the model-simulated patterns for the serial correlations between TCA
and the large-scale variables in their interannual variations. Each coefficient is averaged over the ocean area of
60◦S–60◦N (latitude) and 180◦W–180◦E (longitude). Each number indicates the model identification number
in Table 1.

Fig. 9. Comparison of the correlation coefficient between TCA and the large-scale variables of SST (black
bars), LTS (slashed bars), and SLP (gray bars) for the observation, MME, and 32 individual models. Four
marine regions in Fig. 1 are compared separately.

when simulating the cloud radiative feedback, even with dif-
ferent signs of change. Figure 10 shows the global-mean
changes in SST, TCA, LCA and CRE projected by vari-
ous CGCMs, where the values indicate the areal mean over
(60◦S–60◦N, 180◦W–180◦E). The magnitude of SST change
varies across the simulations between 1 and 2 K, where INM-
CM4.0 shows the minimum and GFDL CM3 the maximum
among the models. All models project warming in response
to the increase in greenhouse gases, but the degree of warm-

ing depends on the model simulation. Note that the sign and
the magnitude of the CRE change also vary depending on
the model. Almost half of the models show negative CRE
changes (i.e., negative contributions to the SST warming),
whereas the remaining models show positive changes. In
general, the models that project a higher degree of SST warm-
ing show a greater increase in the net CRE. This is largely
induced by the larger reduction in cloud amount and the de-
crease in planetary albedo. Note that this relationship might
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Fig. 10. Global-mean changes in SST, TCA, LCA and CRE according to 32
CGCMs. Change is defined as the departure of the global mean of 2050–99 in
the RCP4.5 runs from the global mean of 1950–99 in the historical runs. Global
mean here is defined as an average over (60◦S–60◦N, 180◦W–180◦E). The ac-
tual values are divided by the surface temperature increases, which are different
among the models, to give the units W m−2 K−1 for the fluxes, and % K−1 for
the cloud cover.

be altered by other climate feedbacks, which tend to compli-
cate the relevant processes. For example, GFDL CM3 ex-
hibits the highest SST warming, whose magnitude is compa-
rable to those of the IPSL models (IPSL-CM5A-MR, IPSL-
CM5A-LR), but it does not show the highest reduction in
TCA and CRE change.

Figure 11 compares the spatial distributions of the change
in TCA, LCA, CRE and SST between MME and B4MME.
The stippled areas show the regions of statistical significance,
where the magnitude of change exceeds one standard devia-
tion of the intermodel spread. B4MME projects a significant
decrease in TCA over most areas of the subtropical oceans,
especially over the Northern Hemisphere, whereas it projects
an increase in the equatorial Pacific, Atlantic Ocean and the
equatorial southeastern Pacific. The changes are more promi-

nent over the eastern basins than over the western ones, which
is mainly due to the changes in LCA. The changes in TCA
correspond well to the changes in the CRE. Reduced TCA
occurs off the west coast of North America, with the local
maximum in SST change. On the contrary, increased cloud
amount (both TCA and LCA) is seen off the west coast of
South America, which is accompanied by the smallest SST
increase. In general, the spatial patterns of change in cloud
amount and CRE correspond well with the pattern of SST
change, and this supports the results from the global averages
in Fig. 10. The increase in SST warming is largely associated
with the large reduction in LCA off the west coast of North
America and the eastern equatorial Pacific, contributing to an
increase in the CRE (warming). The increased TCA in the
equatorial Pacific can be understood as an increase in HCA.
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Fig. 11. Changes in total cloud cover (TCA), low cloud cover (LCA), CRE and SST for the MME and B4MME.
Changes are given for the RCP4.5 simulation for the period 2050–99 relative to the historical simulation for the pe-
riod 1950–99. Stippling denotes areas where the magnitude of the ensemble mean exceeds the standard deviation of
intermodel spread.

Note that the spatial distribution of the projected changes by
the MME is similar to that by the B4MME, although the for-
mer shows a more uniform SST pattern due to the multimodel
average.

Next, we evaluate the cloud-radiative feedback (i.e., the
CRE change) in future climates. Figure 12 shows the CRE
changes for the MME, B4MME, and four individual mod-
els, separately. Here, we divide the CRE changes by the
projected global average of SST change in each model for
evaluating the cloud radiative feedback by the same SST in-
crease. The four best models exhibit quite good agreement
in their projected cloud effect changes, with negative signs
in the longwave radiation and positive in the shortwave ra-
diation. All models exhibit a warming effect (i.e., positive

change in the net CRE) induced by the decrease in TCA,
mainly by the reduction in LCA. This suggests positive feed-
back by cloud, where the low cloud reduction plays a dom-
inant role in the warming of future climate. Note that the
MME of the 32 models exhibits much smaller reductions in
cloud amounts, and weaker changes in the SCRE. This re-
sults in negative feedback by cloud (i.e., negative change in
the net CRE), which is in fact opposite in sign to the result
from the B4MME.

5. Transient trends

This section discusses the transient trend of clouds and
their impacts on climate. Figure 13 compares the anomaly
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Fig. 12. Changes in the cloud radiative forcing in the LCRE, SCRE, net CRE, TCA and LCA. The
actual values are divided by the surface temperature increases, which are different among the models,
to give the units W m−2 K−1 for the fluxes, and % K−1 for the cloud cover. Each value is averaged over
the ocean area of (60◦S–60◦N, 180◦W–180◦E).

time series for the global and multimodel average of the TCA,
CRE and SST for the period 1901–2100, combining the sim-
ulation data from the historical runs and the RCP4.5 future
scenario runs. The anomalies are departures from the clima-
tology defined from 1901 to 1950. The shading in different
colors indicates the model spread of 29 models (pink), and
of the best four models (blue). The B4MME shows a de-
creasing trend in TCA, with a rapid decreasing trend in future
climate. The global mean cloud anomaly reaches approxi-
mately −1.7% by 2100, compared against the climatology of
1901–50. The CRE shows an overall decreasing trend for the
historical run period by 2005, after which there is an abrupt
increasing trend in the future scenario runs. This increasing
trend of the CRE corresponds to the reduction in low cloud
and the shortwave cloud radiative forcing (not shown). The
global-mean SST anomalies also show an increasing trend in
the future, which is highly consistent with that of the CRE,
suggesting a role of positive feedback by low-cloud reduc-
tion.

Individual model projections (pink) for the TCA, CRE
and SST show a huge spread, even with sign changes, al-
though the MME from the 29 models (red line) and the
B4MME (blue line) show good agreement with each other in
the ensemble mean time series. Despite the progress in cloud
modeling in recent years, the individual models participating
in CMIP5 still present diverse cloud change and feedback,
with sign changes in feedbacks. It seems to be the case that
most CMIP5 models cannot represent observed cloud varia-
tions, which are closely related to large-scale environmental
changes.

We find that the changes in cloud differ hugely between
the Northern Hemisphere and Southern Hemisphere (Fig.
13), with a more dramatic decrease in TCA in the former.
The TCA in the Northern Hemisphere decreases by more
than 2.0% up until 2100. On the other hand, the decreas-
ing trend of TCA in the Southern Hemisphere is not statis-

tically significant. The substantial reduction in TCA in the
Northern Hemisphere—induced mostly by the reduction in
low cloud—tends to result in the reduction of the cloud cool-
ing effect, and thus a larger temperature increase in the North-
ern Hemisphere. This will drive an increase in the hemi-
spheric thermal contrast and associated atmospheric circula-
tion changes.

6. Summary

Using observational data and the historical simulations
of 32 CMIP5 CGCMs driven by identical natural and an-
thropogenic forcing data, this study investigates the realism
of their cloud simulations. For a systematic evaluation, this
study constructs model intercomparison metrics, which in-
clude the examination of the time-mean distributions of cloud
and the CRE, their monthly variations, and the interannual
variations affected by large-scale environmental conditions
such as SST, LTS, and SLP. In addition, using the RCP4.5
climate change simulations, where the anthropogenic green-
house gas forcing stabilizes at 4.5 W m−2 after 2100, this
study further investigates the degree to which clouds could
change and how cloud feedback might contribute to global
warming.

Based on observation using ISCCP cloud data and atmo-
spheric reanalysis data, we find that the interannual varia-
tion of LCA is associated with that of LTS. This is in turn
closely tied to the SST and SLP changes; that is, large-scale
subsidence. Clouds at different heights show sign changes
in correlation with SST: high (low) clouds have a positive
(negative) correlation with SST. In addition, the correlation
patterns between the TCA and the large-scale fields clearly
separate the tropical convective regime and subtropical subsi-
dence regime. The former is dominated by high cloud, while
the latter is controlled by low cloud. The mechanisms for
the low-level cloud variation are related in that the SST in-
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Fig. 13. Projected TCA, net CRE and SST by CGCMs. The annual mean value is averaged over (left) the range
(60◦S–60◦N, 180◦W–180◦), (middle) the Northern Hemisphere (0◦–60◦N, 180◦W–180◦E), and (right) the Southern
Hemisphere (60◦S–0◦, 180◦W–180◦E). All values are shown as anomalies from the 1901–50 mean. Red and blue lines
indicate the MME and B4MME, respectively, and shading in pink and sky blue denotes the uncertainty range for the
MME and B4MME, respectively, as assessed by individual model simulations.

crease results in the destabilization of the boundary layer and
reduction of LTS, causing enhanced vertical motion within
and around the cloud deck. On the other hand, the increased
large-scale subsidence (i.e., higher SLP) above the cloud-
topped boundary layer tends to increase the low cloud, being
less affected by SST (Clement et al., 2009; Shin et al., 2014).

In general, the CGCMs show large spread in their sim-
ulation of cloud amounts and their impacts on radiation, as
well as common deficiencies. The observed relationships be-
tween cloud amount and the controlling large-scale environ-
ment are also reproduced diversely by the various models. In
most evaluations, the average of all model simulations (i.e.,
the MME) shows better skill than individual models in repro-
ducing the observed features. This suggests a large model
spread and uncertainty in cloud simulation, which is sub-
stantially canceled out by the MME. Through scoring based
on PCCs and NRMSEs for the annual mean cloud distribu-
tion and their amplitudes in monthly variation, and for the
correlation patterns for cloud amount and controlling large-
scale variables on the interannual time scale, this study se-
lected four models—ACCESS1.0, ACCESS1.3, HadGEM-
CC and HadGEM-ES. The average of these four models (the
B4MME) demonstrates higher skill for the cloud evaluation
metrics than the MME.

By comparing the RCP4.5 runs and historical runs, this
study further addresses the possible future changes in cloud
and CREs simulated by CMIP5 CGCMs. All models eval-
uated in this study project the SST warming due to the in-
crease in greenhouse gases in the future climate, but the mag-
nitude of the SST warming shows substantial intermodel dif-
ferences. The magnitude of the CRE change is also diverse
among models, even with different signs of change. In gen-
eral, the models that project a higher degree of SST warm-
ing show a greater increase in the net CRE. This is largely
induced by the larger reduction in cloud amount and the de-
crease in planetary albedo. In the future climate projection,
the four selected best models show good agreement with one
another in terms of their reduction in low cloud, suggesting a
positive feedback role to global warming. It is also found that
the change is asymmetric between the hemispheres, with the
change in the Northern Hemisphere being greater than that in
the Southern Hemisphere.

In modeling future climate, the CMIP5 models are still
quite diverse in simulating the cloud feedback, even varying
in the sign of feedback. This seems to be largely due to the
poor representation of low cloud variation and the controlling
processes of the large-scale environmental conditions in most
models. The average of the best models tends to reduce the
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bias in cloud and CRE simulations substantially. Their sim-
ulations for future climate change are also robust and consis-
tent across them, generating more confidence in their projec-
tions compared with the average of all models. This study
suggests a more comprehensive method for testing the real-
ism of cloud simulations in current climate models, and ad-
dresses how much the model uncertainty can be reduced by
selecting the best models.

Even though we admit the satellite simulator is an ideal
tool to diagnose cloud radiation interaction (e.g., Zelinka et
al., 2012a, 2012b; Klein et al., 2013), this study compares the
cloud amount diagnosed in each model based on their own
cloud diagnostic assumptions and vertical overlapping, which
is different across the models. This is an inevitable choice, as
the satellite simulator data are not available for every CMIP5
participating model. Comparison based on the satellite sim-
ulator is a whole new avenue of research, and is well beyond
the current scope of this study. Further studies in the context
of satellite simulators should be conducted in the future.
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