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Abstract: Using 14 year (1996-2009) ensemble hindcast runs

produced with the Global Seasonal Forecasting System version 4

(GloSea4), this study evaluates the spatial and temporal structure of

the hindcast climatology and the prediction skill of major climate

variability. A special focus is on the fidelity of the system to

reproduce and to forecast phenomena that are closely related to the

East Asian climate. Overall the GloSea4 system exhibits realistic

representations of the basic climate even though a few model defi-

ciencies are identified in the sea surface temperature and precipi-

tation. In particular, the capability of GloSea4 to capture the seasonal

migration of rain belt associated with Changma implies a good

potential for the Asian summer monsoon prediction. It is found that

GloSea4 is as skillful as other state-of-the-art seasonal prediction

systems in forecasting climate variability including the El-Niño/

southern oscillation (ENSO), the East Asian summer monsoon, the

Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO).

The results presented in this study will provide benchmark evaluation

for next seasonal prediction systems to be developed at the Korea

Meteorological Administration.

Key words: Seasonal prediction, GloSea4, ENSO, MJO, Asian

monsoon, AO

1. Introduction

Global prediction systems have been developed for oper-

ational medium-range weather forecasts and seasonal predic-

tion (e.g., Molteni et al., 1996; Kusunoki et al., 2001; Saha et

al., 2006, 2013; Arribas et al., 2011, hereafter A11; Kim et al.,

2012). These are now being advanced into systems based on

fully-coupled climate system models that include comprehen-

sive dynamics and physics of atmosphere, land surface, ocean,

and sea ice interactions. Recent studies suggest that the pre-

diction skill of these systems still has much room for further

improvement. For example, Wang et al. (2009) pointed out

that individual prediction by the coupled models exhibit

significant biases and limitations over the tropics and East

Asian monsoon region, and suggested that the multi-model

ensemble (MME) method was valuable to reduce systematic

biases and to quantify the forecast uncertainty. Jin and Kinter

(2009) discussed the limits of El Niño and the Southern

Oscillation (ENSO) prediction by a coupled model, and showed

a clear seasonal dependency in the prediction skill known as

the “spring predictability barrier” (Webster and Yang 1992;

Webster 1995; Torrence and Webster 1998; Jin et al., 2008). A

more recent assessment of the seasonal prediction skill for the

Northern Hemisphere winter using long-term hindcasts from

the European Center for Medium-range Weather Forecasts

(ECMWF) and the National Center for Environmental Pre-

diction (NCEP) systems showed somewhat improved skill in

the ENSO prediction and teleconnection patterns (Kim et al.,

2012). However, both systems have difficulty in the winter

temperature prediction in the mid-latitudes over the United

States and northern Europe, presumably due to the low predict-

ability in other climate variability such as the North Atlantic

Ocean (NAO). 

It has been suggested that both the global model and the

initialization of the prediction system require further improve-

ments. The horizontal and vertical resolution of the prediction

systems has been continuously increased. The horizontal re-

solution of the ECMWF Integrated Forecast System (IFS;

Gregory et al., 2000; Bechtold et al., 2008) model has been

increased from TL159 (~125 km) in System 3 to TL255 in

System4 (~80 km). Recently, Met Office has also increased the

resolution of the seasonal prediction system into N216L85 for

atmosphere, which is equivalent to 40 km horizontal resolution

with 85 vertical levels (Maidens et al., 2013). NCEP is now

testing a T382 (~30 km) resolution version of the Climate

Forecasting System (CFS) for the dynamical hurricane pre-

diction (Schemm et al., 2011). There have been many studies

that emphasize the importance of the physical parameteriz-

ations in seasonal prediction. Buizza et al. (1999) improved

the medium-range prediction skill by stochastically perturbing

tendencies calculated from the physical parameterizations in

the system. Studies of Shin et al. (2003), Byun and Hong

(2007) and Ham and Hong (2013) suggest an important role of

the cumulus parameterization scheme in the seasonal prediction

skill. In particular, Bechtold et al. (2008) and Park et al. (2010)

showed that the prediction of the tropical subseasonal vari-
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ability could be improved by improving cumulus parame-

terization. Also there are an increasing number of studies

focusing on the initialization process of the coupled prediction

system. For example, Koster et al. (2010) suggested that the

land surface initialization may contribute, at least over the

North America, to the prediction skill of precipitation and

surface temperature. A new method of using empirical singular

vectors in perturbing initial conditions in the ensemble seasonal

prediction was developed by Kug et al. (2010). Ham and

Rienecker (2012) showed an improvement of the ENSO pre-

diction by improving ensemble generation method from their

20 year-long hindcast experiments. Recent active satellite

observations in Arctic sea ice concentration are also making it

possible to initialize the sea ice model. 

A systematic validation of the prediction system based on

long-term, historical reforecast runs (i.e., hindcasts) is one of

the basic efforts needed to provide a useful guidance for its

further improvement. The Korea Meteorological Administration

(KMA) has been collaborating with the United Kingdom Met

Office (UKMO) for the past years to develop comprehensive

and reliable operational forecast systems that cover from the

short-range weather to seasonal time scale, and even to the

climate projection of multiple decades. For seasonal predic-

tion, the Global Seasonal Forecasting System version 4

(GloSea4) developed by the Met Office Hadley Center (A11)

has been tested, which is a state-of-the-art prediction system

based on a fully coupled climate system model. A series of

hindcasts for the past 14 years (1996-2009) have been con-

ducted at the local supercomputer at KMA (Kang et al., 2011),

and this is the KMA’s first hindcast experiment using a fully

coupled climate prediction system for a routine operation. 

The main objective of this study is to evaluate the basic

performance of the GloSea4 hindcasts. Evaluation is per-

formed specifically focusing on two aspects: quality of hindcast

climatology and prediction skill of major climate variability.

Examination of the hindcast climatology is to identify the

systematic bias of the model thereby providing a useful

guidance for further model development. Under the first ob-

jective, we examine the global energy balance, and patterns of

global sea surface temperature (SST) and precipitation. Spe-

cifically, the model depictions in the East Asian summer

monsoon and the diurnal cycle of warm season precipitation

are examined, which are useful diagnostics for the moist

physics parameterization of the prediction system. We aim at

guiding practical use of the prediction system by assessing the

prediction skill of major climate variability. In this study, we

examine the prediction skill of ENSO, the Arctic Oscillation

(AO), and the Madden-Julian Oscillation (MJO), which are

known to affect the weather and climate variability in East

Asia significantly, as well as the East Asian summer monsoon

itself. We have to mention that the current work is sup-

plementary to the study of A11, in which some of the

evaluations in this work were performed, with a primary focus

on the fidelity of the system to reproduce and to forecast

phenomena that are closely related to the East Asian climate.

Also note that a few changes have been made in the GloSea4

prediction system since A11 (for example, the inclusion of sea

ice initialization), so that the dataset we are using is different

from that used in A11. The possible impacts of these changes in

the performance of the system will be discussed in the text too. 

Sections are followed as: Section 2 provides a brief descrip-

tion of GloSea4 hindcast experiments; Section 3 the examin-

ation of the hindcast climatology; Section 4 the prediction skill

for major climate variability (i.e., ENSO, summer monsoon,

AO, and MJO). Section 5 summarizes the results and provides

major conclusions.

2. Data and method

a. GloSea4 system

GloSea4 is the fourth version of the global ensemble sea-

sonal prediction system developed at UKMO and became

operational since September 2009. The configuration of

GloSea4 used in this study is basically same as that used in

A11, with a few changes. Only a minimal description to the

system and important changes from A11 is provided here for

the discussion purpose. Interested readers are referred to A11

for more details. 

The global model embedded in GloSea4 is the Hadley

Center Global Environment Model version 3 model (Had-

GEM3), which is a fully-coupled global climate model with

atmosphere, land surface, ocean, and sea-ice components

(Hewitt et al., 2011). Atmospheric model is based on the Met

Office Unified Model (UM; Davies et al., 2005), with the land

surface model of Met Office Surface Exchange Scheme

(MOSES; Essery et al., 2003). Ocean model is based on

Nucleus for European Modeling of the Ocean (NEMO; Madec,

2008), coupled with the Los Alamos sea ice model (CICE;

Hunke and Lipscomb, 2010). Each component model is con-

nected though the OASIS coupler developed by Valcke (2006).

Since the study of A11, the version of HadGEM3 has been

updated from r1.1 to r4.0 with the upgrade of Global

Atmosphere version 2.0 (GA2.0) atmospheric model. Vertical

resolution of the atmospheric model has been increased from

38 to 85 levels. The vertical resolution of the ocean model has

been also increased from 42 to 75 levels, whereas the horizontal

resolution of the ocean model remains same (1/3o between

20oS and 20oN and 1o for the rest of the domain). Note that the

most recent operational version at UKMO and KMA is the

GloSea version 5 (GloSea5, Maidens et al., 2013), which has a

newer version of the atmospheric model (GA3.0) and with

increased horizontal resolutions of the component models:

GA3.0 in N216L85 (~60 km in mid-latitudes), NEMO and

CICE in ORCA025L75 (1/4o resolution in the tropics of 20oS

and 20oN). Hindcast data from this newer operational system

are currently being produced at KMA, which are not available

yet for a complete analysis. 
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b. Hindcast experiment

Long-term hindcast experiments using GloSea4 have been

conducted for 14 years (1996-2009) in this study. Each hind-

cast run was initialized using the ERA-interim reanalysis for

atmosphere and land surface (Dee et al., 2011). An anomaly

initialization technique is used for land surface, where the

anomalies of initialized variables (e.g., soil moisture) are

calculated first by subtracting the ERA-interim climatology

and then added to the HadGEM3 model climatology. This is to

avoid the possible drift of the forecast field from the basic state

of ERA-interim to that of HadGEM3. It is noted that the

prescription of the initial states for atmosphere and land in the

hindcasts are different from that in the forecast mode of

GloSea4. For the real-time forecasts, the atmosphere and land

surface conditions are initialized using the Met Office oper-

ational numerical weather prediction (NWP) analysis. Ocean

state was initialized using the data from the Met Office Ocean

Data Assimilation (ODA) system in the hindcasts, which is

identical to the method used in the real-time forecast except

that the Met Office NWP fluxes are replaced by ERA-interim

fluxes. The sea ice initialization scheme has been changed since

A11. Seasonally-varying model climatology was prescribed in

A11, whereas sea ice was initialized by the ocean data

assimilation in the hindcasts used in the current study. Obvi-

ously, the new sea ice initialization method is a more realistic

one, and therefore it is reasonable to expect enhancement of

forecast skill of high latitude climate variability. 

Hindcast runs were started at fixed calendar dates - 1st, 9th,

17th and 25th - in each month, and integrated up to 7 months.

Ensemble runs in GloSea4 do not explicitly represent the

uncertainties in the initial conditions (A11). Instead the model

uncertainties are represented by the use of the stochastic

kinetic energy backscatter scheme version 2 (SKEB2; Shutts,

2005; Tennant et al., 2011). This yields three ensemble runs

for each starting date of the hindcasts. 

In the actual operation of GloSea4 at Met Office, a set of

hindcast were concurrently produced in real time with the

forecast. This is different from the conventional procedure

taken at other centers such as NCEP where all hindcast simu-

lations are completed before running any real-time forecast. As

discussed in A11, this approach has an advantage in that one

does not need to repeat complete and expensive hindcast runs

at frequent changes in the global model and initialization

methods. This is practically useful for dealing with the huge

demand in computing resource in ensemble seasonal predic-

tion. However, a relatively short hindcast period of 1996-2009

in this study is limiting a robust evaluation to the historical

forecast skill. In addition, the predictability change in the mean

state and the reproduction capability by the prediction system

cannot be addressed accordingly. 

c. Validation methods and data

In this study, we define hindcast climatology as a function of

the initialization month and the forecast lead time. Therefore,

168 hindcasts (3 ensemble members per week by 4 weeks by

14 years of the 1996-2009 period) are averaged to obtain a

hindcast climatology initialized from a specific month. This

hindcast climatology has been analyzed to identify the system-

atic bias of the global model and the seasonal prediction

system. Various satellite observations and reanalysis datasets

were used for the validation. Table 1 shows the validation

datasets and their period, data frequency, and the references.

For evaluations of the forecast climatology, we mostly analyzed

the 3 month-lead hindcast. During this forecast lead time, we

expect that the influences of the initial states are gradually

decaying while the model deficiencies are gradually contri-

buting more to the forecast errors. When evaluating forecast

skill of climate variability, the hindcast climatology for the

Table 1. Datasets used for GloSea4 validation.

Validation Data Acronym Resolution Variables Validation Period Frequency Reference

Clouds and the Earth’s Radiant Energy 
System

CERES 1.0o
× 1.0o Radiation 2000-present Monthly

Wielicki et al. 
(1996)

Global Precipitation Climatology 
Project

GPCP 1.0o
× 1.0o Precipitation 1996-2009 Monthly

Adler et al.
(2003)

CPC Merged Analysis of Precipitation CMAP 2.5o
× 2.5o Precipitation 1996-2009 Pentad Spencer (1993)

Modern Era-Retrospective
Analysisfor Research and Applications

MERRA 1/2
o
× 2/3

o SLP, Wind, Surface 
Temperature

1996-2009 Monthly, Daily
Bosilovich 

(2008)

Optimum Interpolation Sea Surface 
Temperature

OISST 0.25
o
× 0.25

o
SST 1996-2009 Daily 

Reynolds et al. 
(2002)

Advanced ‘Very High Resolution 
Radiometer

AVHRR 2.5
o
× 2.5

o
OLR 1996-2009 Daily

Hastings et al. 
(1992)

ECMWF Re-Analysis ERA-interim 1.5
o
× 1.5

o

Temperature, Humidity, 
Wind, Geopotential 

Height, Surface
Temperature

1996-2009 Daily 
Dee et al.

(2011)

Tropical Rainfall Measuring Mission TRMM 0.25o
× 0.25

o
Precipitation 1998-2009 3-Hourly Huffman (2007)
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given forecast lead time is removed in all the prediction fields,

and these anomalies were used. The validation methods and

approaches in this study rely on general and popular choices

taken in the previous literatures for a fair comparison. The

specific methods will be briefly discussed appropriately in the

following Sections. 

3. Structures of climatology

It is important that the improvement in the accuracy of the

seasonal prediction should be attained in robust and reliable

structure of the simulated climatology. In this section, we

evaluate the spatial and temporal structures of the hindcast

climatology produced by GloSea4. 

a. Energy balance at TOA

The radiation budget at the top of atmosphere (TOA) is an

important aspect of a coupled global climate system. The net

TOA radiation flux (the sum of the OLR and the net incoming

shortwave (SW) radiation) is supposed to be close to zero

when a long-term average is taken. In practice, however, this is

hardly zero in the seasonal prediction; imbalance between

initial condition and model climatology, and deficiencies in the

model could introduce a drift of the mean state, which would

produce a non-zero net TOA radiation flux. In Fig. 1, zonal

mean patterns of the net downward SW radiation and OLR are

compared between CERES observations and GloSea4. The

radiation fluxes of GloSea4 are remarkably good and quite

comparable to those from CERES. When the global mean

values are compared (Fig. 1d), the net SW radiation is slightly

underestimated with a difference around 3 W m−2, whereas

OLR is slightly overestimated with a difference less than 2 W

m−2. In the net radiation, about 4.6 W m−2 residual radiative

flux goes out of the system in GloSea4, while the residual

radiation in CERES is very close to zero (−0.02 W m−2), ex-

hibiting a good energy balance at TOA from these 9-year

observations. The energy imbalance at TOA seems a common

problem in many climate models. Even the reanalysis products

experience this kind of energy imbalance, often with a greater

magnitude of bias. A larger planetary albedo in GloSea4 than

CERES (not shown) seems to be partly responsible for the

underestimation of net SW radiation. The energy imbalance at

TOA in GloSea4 is slightly enhanced as the forecast lead time

increases from +4.6 W m−2 in the 1-month lead hindcasts to

+4.8 W m−2 in the 3-month lead hindcasts. The most of the

energy imbalance at TOA is compensated by more upward

energy flux at the surface in GloSea4 (+4.4 W m−2 in the 3-

Fig. 1. Comparisons of the zonal-mean annual-mean (a) net shortwave (SW) radiation, (b) OLR, and (c) net radiation ((a) minus
(b)) at TOA between CERES and GloSea4. The climatological mean is defined for the period of 2000-2009 when CERES is
available. (d) is the global mean radiative fluxes from CERES and GloSea4 with 1 month lead and 3 month lead hindcasts,
respectively. Negative value is defined as the downward flux, and the unit is W m−2.
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month lead hindcasts). During initial 4 months, atmosphere in

the GloSea4 system looses about 0.4 W m−2, which seems to

be contributing to the overall cold bias in the atmospheric tem-

perature in a comparison with the ERA-Interim reanalysis (not

shown). 

b. Seasonal means 

Accuracy of the SST prediction is one of the most important

factors that define the quality of the seasonal prediction

system, as a pronounced portion of the interannual variability

is explained with the tropical SST variation. Figures 2a-d

compare the JJA and DJF SST patterns from the OISST

observations with those constructed using 3-month lead data

from GloSea4 hindcasts. GloSea4 represents the observed SST

patterns reasonably well in both seasons, such as the Indo-

Pacific warm pool region and the cold pool region in the

equatorial eastern Pacific. The sharp gradient of SST from

subtropics to high latitudes is also reasonably resolved in

GloSea4. As shown in Figs. 2e, f, a systematic error in the SST

prediction is also noticeable, particularly in the equatorial

eastern and central Pacific where the observed cold SST region

overestimated. This bias is often referred to as the “cold

tongue” problem, which is common in many ocean-atmos-

phere coupled climate models, and the cause of this bias is not

clearly understood yet (e.g., Mechoso et al., 1995; Yu and

Mechoso, 1999; Latif et al., 2001; Davey et al., 2002; Misra et

al., 2008). In Fig. 3, the bias pattern of SST in the equatorial

Pacific region is compared with that of the cloud radiative

forcing (CRF), which is defined as the difference between

radiative fluxes between all-sky condition and clear-sky con-

dition. It is noted that the CRF bias pattern is coinciding well

with the SST bias pattern, which suggests they might be

related to each other. When the SW and longwave (LW)

Fig. 2. Seasonal-mean SST in JJA (left) and DJF (right) from OISST observation (top) and GloSea4 hindcasts with 3 month lead
time (middle). Bottom panels indicate the model bias (model minus observation). The unit is oC. 
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radiation components of CRF were separately analyzed in the

biased region, it was found that the SW cloud effect is over-

estimated and responsible for the reduction of solar radiation

coming into the equatorial tropical ocean. The cold tongue bias

as well as the bias in other oceanic areas does not depend

much on season. 

Zonal-mean patterns of precipitation in JJA and DJF seasons

are compared in Fig. 4. Overall, the model overpredicts the

zonal-mean precipitation, regardless of season. Particularly the

time-mean precipitation is overpredicted in boreal summer in

the ITCZ region. Zonal-mean evaporation and the meridional

moisture transport are also larger than the observed in the

simulation (not shown), reflecting a too excessive water cycle

in this model. 

Figure 5 compares the horizontal distribution of precipitation

in JJA and DJF. In observations from CMAP (Figs. 5a, b), the

mean precipitation pattern is characterized by the peaks over

the western Pacific, south China sea, Bay of Bengal, south

eastern equatorial Indian Ocean, as well as the zonally-

elongated rainbands (intertropical convergence zone, ITCZ)

over the Pacific and Atlantic ocean. The Glosea4 hindcast

climatology (Figs. 5b, d) captures the observed wet regions

reasonably well, although wet and dry biases are notable in

some regions (Figs. 5e, f). In JJA (Fig. 5e), the simulation

tends to overestimate rainfall over the northeast of the Arabian

Sea, the northeast of the Bay of Bengal, south of Sahel,

western Indian Ocean, and the eastern end of the equatorial

Pacific. Wet bias is also found in the Atlantic ITCZ. On the

other hand the model simulation lacks precipitation over the

western Pacific and eastern Indian Ocean. In DJF (Fig. 5f), the

wet bias over the Andes is noticeable, pairing with the wet bias

in Himalayas in JJA. The regions of equatorial Africa, the

western Indian Ocean, and the central Pacific ITCZ are also

the regions of overestimation. The Atlantic ITCZ is shifted

northward in GloSea4, causing dry bias in the northeast of the

Amazon. 

The comparison of DJF and JJA bias patterns indicates

systematic biases of the simulated rainfall regardless of season.

These include i) a general wet bias over the land area,

especially near big mountains, ii) wet bias over the Maritime

continent and dry bias over the surrounding oceanic area, iii)

Indian Ocean dipole mode-like bias pattern over the Indian

Ocean, iv) overestimation of the strength of central-to-eastern

Pacific ITCZ, Atlantic ITCZ, and South Pacific convergence

zone (SPCZ). It is also noted that the wet biases straddling

north and south of the equator and dry bias at the equator in

GloSea4 seems not to be totally independent of the cold tongue

bias in SST (see Fig. 2). This bias tends to drive a double-ITCZ

pattern in the central Pacific (Schneider, 2002; Zhang and

Wang, 2006; Lin, 2007; Hwang and Frierson, 2013). 

The Taylor diagram is another quantitative measure for the

fidelity of precipitation simulation. For validation, we down-

graded the horizontal resolution of the observed GPCP data

onto a coarse resolution that is equivalent with GloSea4. In

comparison with GPCP, the spatial correlation is slightly below

0.9, regardless of season, demonstrating a high capability of

reproduction for the time-mean precipitation patterns. On other

hand, the spatial variance is underestimated in GloSea4, which

signal is getting clearer in the longer forecast lead time. 

Although not being presented, we note that the zonal-mean

distributions of the simulated CRF are quite realistic in terms

of meridional structure as well as the actual magnitude. We

further examined the simulated distribution of cloud using the

recent CloudSat satellite observation (Li et al., 2012; Graeme

et al., 2008). In Fig. 7, the zonal mean liquid and ice cloud

amounts are separately compared. Only the annual mean is

examined here due to data availability. As in observations,

cloud liquid water simulated by the GloSea4 system is con-

centrated between 900-700 hPa levels in extratropics, while it

extends vertically up to 500 hPa in the tropics because warm

temperature bias shifts the freezing level higher than the

observed. Compared to observations, GloSea4 in general under-

Fig. 3. The model biases in the net cloud radiative forcing (contour,
unit: W m

−2
) and SST (shaded, K). The model bias is estimated against

the CERES observations for the cloud radiative forcing, and the
OISST for SST, respectively. 

Fig. 4. Comparison of the zonal-mean precipitation between CMAP
observations and GloSea4 hindcast climatology with 3-month lead
time. Observations are indicated in solid lines and GloSea4 are in
dashed lines. The unit is mm d−1.
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estimates the amount of cloud liquid water over the mid-

latitudinal region in both hemispheres. For the ice cloud

amount the observation shows a concentration above 500 hPa

in the tropics, while it goes down with latitude in both

hemispheres. GloSea4 tends to simulate the meridional

distribution reasonably well. The model, however, underesti-

mates the amount of cloud ice water in the tropical deep

convective region, whilst it excessively overestimates in the

extra-tropical area.

c. East Asian monsoon

GloSea4 exhibits a realistic simulation of the summer mon-

soon in East Asia, as well as its seasonal evolution. Figures 8a,

b are the seasonal mean precipitation and the 850 hPa zonal (u-)

wind pattern over the South and East Asian domain during

monsoon season (May-August) in observations and GloSea4

hindcasts, respectively. Seasonal cycle of precipitation and 850

hPa zonal wind at two longitude bands (70-80oE and 120-

130oE) are also shown in Figs. 8c-f. As the GloSea4 hindcast

runs are available up to 7 months from the initial time, two

hindcast data from the February and August initialized runs

were synthesized to examine the complete annual cycle of

precipitation and wind. Local maxima of monsoon precipitation

are realistically captured by GloSea4, such as the northeast of

the Arabian Sea and the Bay of Bengal, and the west of the

Philippines. These oceanic regions are the upstream side of the

low-level monsoon flow before the elevated land surface,

coinciding with the convergence area of 850-mb u-winds, and

these aspects are also reasonably captured by GloSea4. Pre-

cipitation amount over these regions tend to be overestimated

in GloSea4, which is also a common feature in current global

Fig. 5. Horizontal distribution of climatological-mean precipitation in JJA (left) and DJF (right). CMAP observations are in top,
GloSea4 with 3 month lead time in middle, and the model biases are in bottom. The unit is mm d−1

. 
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prediction models, particularly at the foothill side of the

Himalayas. Another notable deficiency is in the tropical West-

ern Pacific, where GloSea4 underestimates the rainfall amount.

The simulation is remarkably good over China, Korea, and

Japan where the GloSea4 simulation is able to capture the

zonally-elongated rainband associated with Changma. The

seasonal march of precipitation in the Indian monsoon (70-

80oE) and the East Asian monsoon domains (120-130oE)

coincides well between observation and model hindcast

climatology (Figs. 8c-f). For example, the northward march of

the Indian monsoon rainband during April to July (Figs. 8c, d)

is represented successfully well. In the East Asian domain

(Figs. 8e, f), the bifurcation of rainband, one in South China

Sea and another in the Far East, during June to August is

related with the northward movement of the Changma front.

GloSea4 exhibits rather fast northward migration of the mon-

soon rainband, which reaches further north to 40oN. Associ-

ated with this, observed precipitation over Korea and Japan

exhibits a secondary peak in late summer (September), which

is also captured by GloSea4. Overall, the monsoon simulation

by GloSea4 is realistic, suggesting a potential to predict the

Asian summer monsoon with a high fidelity.

d. Diurnal cycle of precipitation

As one of the fastest cycles resolved in the prediction

system, we compared the observed diurnal cycle from the

TRMM 3-hourly rain rate data and the GloSea4 simulation

Fig. 6. The Taylor diagram of time-mean precipitation simulated by
GloSea4 in comparison with GPCP observations. JJA (June-July-
August) denotes the boreal summer precipitation, and DJF (December-
January-February) is the boreal winter.

Fig. 7. Comparisons of annual-mean zonal-mean cloud liquid and ice amount from the CloudSat satellite observations
(top) GloSea4 hindcasts with 3 month forecast lead time (middle). Bottom panels show the model bias. The left
column shows the cloud liquid water, and the right column shows the cloud ice water. The unit is g m

−3
. 
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from the same analysis period of June-August for 14 years

(Fig. 9). In the comparison of the amplitude of the diurnal

rainfall (Figs. 9a, b), the simulation is consistent with the

observation in a sense that the signal is clear in the continents

and adjacent oceans. Except the region of Tibetan Plateau,

where the signal of diurnal cycle is much stronger than the

observed, GloSea4 tends to underestimate the amplitude (for

example, the tropical Maritime Continent, Southeast of the

United States, and the northeast of Brazil). More striking

difference is in the phase (Figs. 9c, d), where the seasonal

prediction system exhibits too early convection both over the

continents and oceans. Not shown here, most of land areas

between 20oS-40oN shows the peak time in the late afternoon

to early evening (1700-1900 LST) in the observations, whereas

Fig. 8. Climatological-mean precipitation (shaded) and zonal wind at 850 hPa (contour, above 3 m s
−1

) from (a) CMAP and ERA-
interim, and (b) GloSea4 during May to August averaged over 14 years (1996-2009). (c) and (d) compares the latitude-time cross-
section of climatological mean daily precipitation and 850-hPa zonal wind over the Indian region (70-80oE) and (e) and (f) over the
East Asian region (120-130o

E). 
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that in the GloSea4 simulation shows a peak around the noon

time (1100-1300 LST). It is noted that this bias is also evident

in the winter. Regardless of season, it is a substantial bias in

the rainfall, roughly 6 hours earlier than the observed. 

The simulation of the diurnal cycle of precipitation in warm

season is frequently examined for a purpose of diagnosing the

Fig. 9. Amplitude (a, b) and phase (c, d) of the diurnal cycle of summer (June-August) precipitation. (a) and (c) are from TRMM
observations for 12 years (1998-2009) and (b) and (d) from GloSea4 for 14 years (1996-2009). Regions with statistically significant
at 95% level are shaded. 
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physical parameterization of the model, particularly the moist

convection process. Even in modern atmospheric reanalyses

where the global prediction model is tightly constrained by

observed atmospheric data the phase bias in the diurnal cycle

is prominent. Too early development of rainfall and hardly

precipitating in the nighttime over land is a typical problem

pointed out by previous studies (e.g., Lee et al., 2007). A

wrong phase of the precipitation diurnal cycle might introduce

the erroneous diurnal variation of cloud and radiation, possibly

distorting feedback in the land surface and degrading the

quality of seasonal prediction, though the possibility has not

been addressed quantitatively in the literature. 

Fig. 10. Changes in the prediction skill as measured by anomaly correlation coefficient at the increase of forecast lead time. Left
column is for the surface air temperature, and the right is for precipitation. Runs initialized in November are averaged for boreal
wintertime prediction. Grey shading shows the area statistically insignificant at the 90% level.
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4. Prediction skill of climate variability

a. Overall prediction skill

The overall prediction skill of surface air temperature and

precipitation by GloSea4 ensemble hindcasts is evaluated in

this section. The prediction skill is measured in this study by the

anomaly correlation coefficient (ACC) between the observed

and the predicted by GloSea4, which is one of the common

choices used in the previous studies (e.g., Wang et al., 2009).

We present the case for winter prediction as a typical case

when the ENSO signal is stronger than other seasons. Note

that the qualitative features of the prediction skill such as the

geographical distribution of high skill and its changes with

respect to the forecast lead time are more or less similar.

Figure 10 shows the ACC map of surface air temperature and

precipitation from the hindcasts initialized in November. We

only show skills for the first three months after the month of

initialization, because the prediction skill quickly goes away

after the first three months particularly in the midlatitudes. In

general, the model prediction for surface air temperature

shows a better performance in oceanic area than that over the

continental region. Gaining of the prediction skill is in fact

mostly driven by high persistent nature of the sea surface

temperature, rather than the actual skill (see Fig. 11). ACC

tends to drop below the value of 0.42 (the 10% significance

level) after the month 2 (for example, January in this plot) in

the most of the continental region. This skill of seasonal

prediction by GloSea4 is not much different from those

performed by other seasonal prediction systems (e.g., Wang et

al., 2009), indicating a current level of skill by global coupled

model predictions. Note that the prediction skill is also poor

over the maritime continent. This seems to be related with the

relatively poor SST prediction skill in the western Pacific (e.g.,

the Nino 4 region), which will be discussed more in detail in

Section 4b. 

Figures 10d-f show the ACC map for precipitation. Overall,

except the region of equatorial ocean where rainfall is strongly

forced by ENSO, the prediction skill is quite poor in most of

the area even in the month 1, suggesting that the prediction of

precipitation is more challenging than that of surface air

temperature. One can obtain a very similar feature in the boreal

summer too (not shown), when a more accurate prediction is

desired in monsoon areas including East Asia. Multi-model

ensemble prediction shows similar skill for precipitation

(Wang et al., 2009). 

b. ENSO

The study of A11 showed that GloSea4 exhibits a decent

skill of ENSO prediction as measured by ACC of the Nino 3.4

index (SST anomaly averaged over 5
oS-5oN, 120o-170oW).

ACC remains as high as 0.85 up to the 5 month lead time in

the August forecast, for example. The results also showed the

so-called “spring predictability barrier”, where the prediction

skill drops sharply as the forecast extends into the boreal

spring time. We basically expand the analysis into the other

indices, Nino 3 (5oS-5oN, 150oW-90oW) and Nino 4 (5oS-5oN,

160oE-150oW). 

In our investigation to all season hindcasts, ACCs of three

forecasted Nino indices remain above 0.6 throughout the

forecast lead time up to 6 months (not shown). This suggests

that the ENSO prediction by GloSea4 in two seasons ahead

should remain useful. ACC for Nino 3.4 at 6-month lead time

is about 0.75, which is fairly high when compared to other

seasonal forecast systems such as SNU and MPI model (Jin et

al., 2008). Among the three indices investigated, the GloSea4

system predicts Nino 3.4 index slightly better, and the pre-

diction skill of Nino 4 is slightly lower than others. This result

is somewhat contrary to the result of Hendon et al. (2009) who

showed a better skill of the Nino 4 index than that of Nino 3 at

lead times beyond 3 months. In our study, the prediction skill of

Nino4 is almost comparable to that of Nino 4. The correlation

skill for Nino indices exhibited a large spread depending on

years, and the resulting statistics may depend on the validation

period. 

Figure 11 compares the skill of Nino 4 index between the

hindcasts initialized in May and those initialized in November.

As indicated in A11, the prediction skill is quickly dropping in

the May runs (Fig. 11a). At this time of the year, the SST

persistency in the observation in this region is also low (as

Fig. 11. Anomaly correlation skill of SST prediction by GloSea4
(black) in the Nino4 region. (a) shows the case of May initialized runs,
and (b) the case of November initialized runs. The prediction skill is
compared with the persistence curve (red). 
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indicated in red line), which makes the forecast more difficult.

GloSea4 demonstrates the skill over the persistence forecast,

and ACC remains over 0.6 thought the forecast lead time. On

the other hand, ACC remains higher apparently in the hind-

casts initialized in November, but this is mostly due to the

persistency of SST in the observations and the actual pre-

diction skill is not significantly different from the persistence

forecast. 

Figure 12 shows the ACCs calculated as a function of fore-

cast lead time (abscissa) and the initial month (ordinate). The

plots indicate the prediction skill change at the increase of the

forecast lead time (horizontal direction), as well as the forecast

skill depending on the initialized month (vertical direction). It

is shown that the GloSea4 system has a relatively higher

prediction skill for the Nino indices when the system is

initialized in September to January. The decrease of ACC and

the increase of root mean squared error (not presented) as a

function of lead time is most slow when the system is

initialized in these months. On the other hand, when the

system is initialized in March and April, ACC drops quickly,

and RMSE increases rapidly, which again indicates problem of

the spring predictability barrier. In general, the central tropics

(Fig. 12b) show a better prediction skill than others. For Nino

3.4, correlation coefficient is higher than 0.69 even with initial

months of March and April. Compared with ECMWF forecast

system, ENSO prediction skill on all initial months is com-

parable with (slightly lower than) that presented in Kim et al.

(2012). Also note that there is a difference in the timing of the

prediction barrier across the regions. The prediction barrier is

more pronounced and degrades the forecasts that initialized

during the summer months over the Nino 4 region. SST anom-

aly over this region is known to have a considerable relation to

the tropical storm activity (Emanuel, 2000), and this poor

prediction skill of Nino4 index might have a potential to

degrade the seasonal prediction skill of the tropical storm

activity in summer season.

c. East Asia monsoon

Figure 13 shows the prediction skill of precipitation, surface

temperature, and the 850-hPa zonal wind in the Asian mon-

soon domain during boreal summer. The geographical distribu-

tion of the prediction skill as measured by ACC is shown for

each variable and for the first three months from June to

August. These hindcasts were all started from May initial con-

ditions. Even in the first month, the prediction of precipitation

shows no good skill in most of the area except for the maritime

continent and the western Pacific. Even these regions also

experience a quick decay of the skill with the increase of the

lead time. Throughout the season, most of the continent shows

no statistically significant skill in the seasonal prediction of

precipitation. At least for the first month prediction of surface

air temperature, a broader region, particularly over the tropical

oceans and western Pacific, shows a significant skill higher

than 0.5, which is influenced by the persistence of the slowly-

varying SST over the region. Coinciding with this signal, the

850-hPa zonal wind also exhibits a significant skill in the

monsoon domain, which signal tends to last longer than other

variables. 

Being motivated by the case of 850-hPa wind prediction that

shows an extended skill in summer, this study further exam-

ined the monsoon index prediction skill. This study tested two

monsoon indices, one defined by Wang and Fan (1999) as the

western Pacific East Asian monsoon index (WPEMI) and

another defined by this study as the East Asian summer

monsoon index (EASMI). WPEMI is defined as the 850-hpa

wind speed anomaly difference between the average of 5-15
oN

and 100-130oE and that of 20-30oN and 110-140oE. EASMI

uses the 850-hPa zonal wind only and it is defined as the wind

anomaly difference between the average of 5-10oN and 130-

Fig. 12. Correlation coefficient between predicted and observed SST anomalies for (a) Nino 3, (b) Nino 3.4 and (c) Nino 4 regions
indicated as a function of initial month and lead-time.
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150oE and that of 25-30oN and 110-130oE. The domain for

EASMI was chosen so as to correspond to the high ACC

region in Fig. 13g. Figures 14a, b show the observed WPEMI

and EASMI and the predictions by GloSea4, respectively. The

predictand is the JJA-mean monsoon indices from the May

initialized ensemble hindcasts. As a result, the temporal

correlation of WPEMI between the observation and the

ensemble mean GloSea4 prediction is 0.42. This suggests that

GloSea4 has a marginal skill for the WPEMI prediction. This

correlation goes as below as 0.16 when the month-to-month

values of WPEMI is predicted, implying that there seems

much room to improve the prediction of sub-seasonal

variability of East Asian monsoon. In the case of EASMI

prediction, the GloSea4 prediction performs somewhat better

than the prediction of WPEMI, with a higher temporal correl-

ation of 0.67. This is a result somewhat expected by design,

and it suggests that the dynamical prediction can be optimized

further by utilizing past prediction skill from the hindcasts.

Even if the dynamical model prediction suffers from systematic

biases, an index-based prediction is still possible, such as the

East Asia monsoon index prediction in this study. The index

prediction is then translated using the observed relationship

between the index and regional patterns of meteorological

variables, based on any epoch composites or regression

methods. This is the basis of the so-called “hybrid”-type

seasonal prediction, which is one of the remedies to cure of the

systematic bias of the dynamical prediction system. 

 

Fig. 13. Prediction skill of precipitation (left), surface air temperature (middle) and zonal wind at 850 hPa (right) between GloSea4
and observation (precipitation: GPCP, surface air temperature: MERRA and U850: ERA-interim). Grey shading shows the area
statistically insignificant at the 90% level. Black boxes in (g) indicate the wind average region for the WPEMI monsoon index in
Fig. 15, and blue boxes indicate the regions for the EASMI monsoon index. 
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d. Arctic Oscillation

The AO is known as an important seasonal climate vari-

ability of the East Asia especially during boreal winter. The

definition of AO by Thompson and Wallace (1998) was used

to examine the prediction skill by GloSea4, which is a leading

EOF pattern of the monthly-mean sea level pressure (SLP)

anomalies over north of 20oN during boreal winter (DJF). The

AO index, as a predictand, is defined as the principal compon-

ent (PC) of the 1st EOF (EOF1). Figures 15a, b are the SLP

regression patterns associated with EOF1 from the MERRA

reanalysis as the observation and the GloSea4 simulation. All

12 ensemble runs started from November (1-month lead

hindcasts) were used for individual EOF analysis to SLP data,

and Fig. 15b is the composite of those regression patterns. The

SLP regression pattern from MERRA exhibits a dipole

structure whose centers of action locate in the Arctic and the

high latitudes, especially over the northeastern Pacific and

Atlantic Ocean (Fig. 15a). The GloSea4 system has a robust

pattern of AO with a clear dipole structure as in the obser-

vation. The variance of EOF1 is also comparable between the

observed and the predicted, by explaining around 40% to the

total wintertime variability. Figure 15c shows the PC time

series from MERRA and GloSea4 hindcasts. Here we compare

two hindcast results, one from the November starting runs (1-

month lead hindcasts), and the other from the runs from

September (3-months lead hindcast). To construct the forecast

AO indices (time series), we used the EOF1 from MERRA for

the time series projection in GloSea4 ensemble runs, although

the results were not significantly different when the modeled

EOF patterns were used respectively. Both AO PC time series

display substantial year-to-year variation. Note that there was a

strong negative phase of AO during 2009/2010 winter. The

ACC between the observed AO index and the forecast AO

indices are 0.52 for the 1-month lead hindcasts, and 0.26 for

the 3-month lead hindcasts. This demonstrates that the GloSea4

has a significant prediction skill for the 1-month lead forecast,

but the prediction is no good with 3 month lead time. 

Figure 16 shows surface temperature and precipitation pat-

terns regressed by AO index in MERRA and GloSea4. In the

positive phase of AO, the observation (the MERRA reanalysis)

shows a continental-scale pattern with a strong warming signal

over the northern Siberia and eastern part of the North America,

whereas anomalous cooling is in the Arctic, the northern part

of the North America, northern Africa, Middle East and the

Central Asia (Fig. 16a). The region of northern China, Korea,

and Japan shows a warmer-than-normal state in the AO

positive phase. The spatial structure of AO is reproduced

remarkably well in GloSea4, although the magnitude is

relatively weaker than the observed (Fig. 16b). Changes in the

200-hPa zonal wind according to the phase of AO (not shown)

tend to explain much of this continental-scale response in the

surface temperature anomaly, which feature is also reproduced

well by GloSea4. Figures 16c, d compare the precipitation

change associated with AO. Observed precipitation (Fig. 16c)

shows higher (lower) precipitation in the Arctic and lower

(higher) precipitation over mid- to high latitudes in the positive

(negative) phase of AO. GloSea4 hindcasts (Fig. 16d) show

very similar structure compared to observation. Note that the

overall pattern of precipitation change simulated by GloSea4 is

realistic as shown in this normalized pattern, but with much

weaker amplitude in the non-normalized case. This suggests

that, although the AO simulated by the GloSea4 system seems

existing and physically consistent with the observed, its year-

to-year variability is much weaker than the observed. 

e. Madden-Julian Oscillation

The MJO is an eastward propagating, planetary-scale, sub-

seasonal variability of tropical convection. Many studies have

Fig. 14. The boreal summer (JJA) (a) WPEMI (Western Pacific East Asian Monsoon Index) and (b) EASM (East Asian Summer
Monsoon) indices from observations (ERA-interim) and GloSea4. WPEMI (Wang and Fan, 1999) is defined as the wind speed
anomaly at 850 hPa averaged over the region of 5-15oN and 100-130oE minus that over 20-30oN and 110-140oE. EASM is defined
as the zonal wind anomaly at 850 hPa averaged over 5-10o

N and 130-150
o
E minus that over 25-30

o
N and 110-130

o
E. The

correlations between the observed and the GloSea4 predicted monsoon indices are 0.42 for WPEMI, and 0.67 for EASM. 
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suggested the importance of MJO in affecting mid-latitude

low-frequency variability in subseasonal time scale (e.g.,

Ferranti et al., 1990), including the recent study of Moon et al.

(2011) who showed global teleconnection patterns associated

with MJO and ENSO. For the evaluation of the MJO

prediction skill in the GloSea4 hindcast data, the method of

Wheeler and Hendon (2004) was adopted to obtain the MJO

index. The Real-time Multivariate MJO (RMM) index of

Wheeler and Hendon can be used for real-time MJO moni-

toring and forecasting, where the index is calculated using the

combined EOF analysis with OLR and zonal wind at two

levels of 850-hPa and 200-hPa. The other details of the analysis

method are described in Wheeler and Hendon (2004). Note

that for the forecast data, the previous 120-day mean is

constructed by combining forecast data after the forecast

starting date and observation data before the starting date. The

RMM indices are obtained as the two leading principal com-

ponents from the EOF analysis of the combined variable. In

this analysis, we use spatial pattern obtained from Wheeler’s

website (http://cawcr.gov.au/staff/mwheeler/maproom/RMM),

which is constructed using NOAA AVHRR OLR, and NCEP/

NCAR zonal wind data. The patterns are used to construct

forecasted RMM indices. 

Figure 17 shows the prediction skill of the MJO by GloSea4

as assessed by two metrics: ACC and RMSE as a function of

the forecast lead time. The calculation of the ACC and RMSE

Fig. 15. DJF mean sea level pressure anomaly regressed onto leading PC for 1996-2009. (a) is MERRA, (b) is GloSea4
hindcast with 1-month lead time (unit is hPa). Percentages in right string indicate explained variance (averaged explained
variance from each ensemble member) from the pattern. (c) is the DJF-mean normalized AO index from MERRA (black),
and GloSea4 (red). The result from the GloSea4 hindcast with 3 month lead time is also presented (blue).
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Fig. 16. Regression patterns of surface temperature (a-b, unit is K) and precipitation (c-d, unitless) by the AO index.
Precipitation is normalized by time averaged precipitation of each grid. GPCP is used to validate of precipitation instead of
MERRA.

Fig. 17. (a) Prediction skill of MJO index by GloSea4 as measured by the correlation coefficient as a function of forecast
lead time and the (b) root-mean-square error (RMSE). The red line indicates the 0.5 correlation. 
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followed that in Lin et al. (2008) and Gottschalck et al. (2010),

and all available ensemble runs for 14 years were used to plot

Fig. 17. The multi-year and multi-ensemble averaged ACC

decreases at the increase of the forecast lead time, showing an

useful forecast skill (ACC = 0.5) up to about 20 days. Note

that this prediction skill is similar to what showed in A11 (their

Fig. 17). Consistent with ACC, RMSE monotonically increases

with the forecast lead time. Although not shown, there is

substantial difference in the MJO prediction skill from year to

year. For example, ACC drops to 0.5 in lead day 25 for year

1996, while it is about 13 day for year 2003. This suggests that

the prediction skill of the MJO might depend on sea surface

temperature condition in the tropics, although a further in-

vestigation is warranted.

4. Summary and conclusions

This study evaluated the basic performance of the seasonal

prediction using a series of ensemble hindcast runs for 14

years (1996-2009) produced by the UK Met Office GloSea4

ensemble prediction system. GloSea4 is a state-of-the-art

global prediction system for sub-seasonal to seasonal time

scale, based on the fully-coupled HadGEM3 climate system

model, with comprehensive initialization processes of atmos-

phere, land, ocean and sea ice. In this study, each ensemble

hindcast run was initialized from the ERA-interim reanalysis

for atmosphere and land surface. Ocean and sea ice states were

also initialized by the ocean data assimilation. 

To examine the fidelity of the system to reproduce and to

forecast phenomena that are closely related to the East Asian

climate, this study focused on two important aspects: quality of

hindcast climatology and prediction skill of major climate

variability. The first one includes the evaluation and the identi-

fication of the systematic biases in the global prediction model,

judged from long-term averaged states with many ensembles.

This diagnostic hopefully provides a useful guidance for the

further improvement of the modeling system. The second one

focuses on the prediction skill of ENSO, East Asian summer

monsoon, AO, and the MJO, which are major drivers of

weather and climate variability in East Asia. 

The validation results have revealed that GloSea4 in general

exhibits a remarkably good agreement with the observed cli-

matology. A couple of systematic biases were identified, which

are also commonly found in other climate models and pre-

diction systems as well. The GloSea4 hindcasts show the

energy imbalance at TOA and surface with a magnitude of less

than 5 W m−2. In addition, about 0.4 W m−2 energy is lost

internally in the atmosphere, which seems to be responsible for

the overall cold bias in atmospheric temperature simulations.

The cold tongue bias in SST in the eastern to central equatorial

Pacific is pronounced, as like in other state-of-the-art climate

models, and the more-than-observed SW reflection by cloud is

speculated to be one of the causes and/or the feedbacks

responsible for the bias. 

Simulated climatology of precipitation captures the observed

wet regions reasonably well, with a few model deficiencies

including overall wet bias over the highly elevated region, and

the split of ITCZs possible caused by the cold tongue SST

bias. Zonal-mean precipitation is somewhat stronger than the

observed, suggesting the modeled water cycle is stronger as

well. GloSea4 exhibits a realistic East Asian summer monsoon

simulation. In particular, the model is able to capture the

seasonal, northward migration and retreat of rain belt associated

with Changma, suggesting a potential to predict the Asian

summer monsoon with a high fidelity. 

The study also identified problems in the physical param-

eterizations, particularly in the deep convection scheme, re-

quiring a further improvement of the global climate model in

the seasonal prediction system. The analysis of the simulated

hourly precipitation showed the substantial phase bias, where

the modeled precipitation comes mostly in daytime and too

earlier than the observation. 

The overall seasonal prediction for surface air temperature

and precipitation by GloSea4 shows a better performance in

tropical ocean where SST has a high persistency. Prediction

skill quickly drops at the increase of the forecast lead time in

most of the continental region, with ACC below 0.42 in two

months from the initialization. This poor performance in sea-

sonal prediction is also common in other state-of-the-art pre-

diction systems (Wang et al., 2009), defining overall status of

the dynamical seasonal prediction. 

Despite the system shows poor skill in predicting seasonal

anomaly patterns in space, it nevertheless performs a statis-

tically significant skill in the prediction of indices, such as

ENSO, East Asian summer monsoon, AO, and MJO. This

demonstrates that the prediction system has a capability of

resolving observed major climate variability and predicting its

temporal variation, in spite of the systematic biases in their

forecast field in space. The GloSea4 system reasonably pre-

dicts ENSO indices at least 0.6 anomaly correlation coefficient

with 6-month lead time. However, the spring barrier (i.e., the

quick decrease of the ENSO prediction skill during boreal

spring) is also pronounced as like in other systems such as

CFS and ECMWF (Jin and Kinter, 2009; Kim et al., 2012). 

The ACC skill score for the prediction of summer monsoon

is also useful with a significant correlation of 0.67, providing a

possible opportunity of the hybrid prediction that combines

statistical and dynamical seasonal prediction. The wintertime

AO index prediction based on the EOF analysis also demon-

strates a useful skill. The ACC between the observed AO

index and the forecast AO indices are 0.52 for the 1-month

lead hindcasts, but the skill disappears in the 3 month lead

forecast. This is somewhat contrary to the findings in A11,

where the NAO prediction skill using the same GloSea4

system shows only a low correlation of 0.2. It is speculated

that the AO prediction in this study can be substantially

benefitted by the sea ice initialization in the Arctic Ocean,

which was not implemented in A11 (see Section 2). The

forecast skill of tropical MJO lasts up to about 20 days with

ACC higher than 0.5. This is comparable to other prediction
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systems (Kim et al., 2012). 
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