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Abstract Tropical subseasonal variability of precipita-

tion from five global reanalyses (RAs) is evaluated against

Global Precipitation Climatology Project (GPCP) and

Tropical Rainfall Measuring Mission (TRMM) observa-

tions. The RAs include the three generations of global RAs

from the National Center for Environmental Prediction

(NCEP), and two other RAs from the European Centre for

Medium-Range Weather Forecasts (ECMWF) and the

National Aeronautics and Space Administration/Goddard

Space Flight Center (NASA/GSFC). The analysis includes

comparisons of the seasonal means and subseasonal vari-

ances of precipitation, and probability densities of rain

intensity in selected areas. In addition, the space–time

power spectrum was computed to examine the tropical

Madden-Julian Oscillation (MJO) and convectively cou-

pled equatorial waves (CCEWs). The modern RAs show

significant improvement in their representation of the mean

state and subseasonal variability of precipitation when

compared to the two older NCEP RAs: patterns of the

seasonal mean state and the amplitude of subseasonal

variability are more realistic in the modern RAs. However,

the probability density of rain intensity in the modern RAs

show discrepancies from observations that are similar to

what the old RAs have. The modern RAs show higher

coherence of CCEWs with observed variability and more

realistic eastward propagation of the MJO precipitation.

The modern RAs, however, exhibit common systematic

deficiencies including: (1) variability of the CCEWs that

tends to be either too weak or too strong, (2) limited

coherence with observations for waves other than the MJO,

and (3) a systematic phase lead or lag for the higher-fre-

quency waves.

Keywords Reanalysis � Precipitation � Tropics �
Subseasonal variability � Madden-Julian oscillation �
Convectively-coupled equatorial waves

1 Introduction

Global atmospheric reanalysis products (RAs) have been

widely used in scientific research and applications, and

they are now invaluable resources for weather and climate

studies. Providing dynamically- and physically-consistent

global atmospheric states, that are contiously constrained

by observations in time and space, RAs have helped to

enlarge our understanding of climate and its low-frequency

variability. Since the first global, multi-decadal RA was

produced by the National Center for Environmental Pre-

diction and National Center for Atmospheric Research

(NCEP/NCAR, Kalnay et al. 1996), the number of vari-

ables, time frequency, spatial resolution, and the analysis

period have substantially increased. Examples include the

NCEP-Department of Energy reanalysis (NCEP-DOE,

Kanamitsu et al. 2002), the 40-year European Centre for

Medium-Range Weather Forecast (ECMWF) reanalysis
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(ERA-40, Uppala et al. 2005), and the Japanese 25-year

reanalysis (JRA-25, Onogi et al. 2007). The data quality

has been improved significantly as well, by virtue of

increased observational data over the globe, and improved

global forecast models and data assimilation techniques.

This has led to the production of the most recent RAs: the

NCEP Climate Forecast System Reanalysis (CSFR, Saha

et al. 2010), the ERA-interim Reanalysis (ERA-I, Dee et al.

2011), NASA’s Modern-Era Retrospective Analysis for

Research and Applications (MERRA, Rienecker et al.

2011), and the NOAA-CIRES Twentieth Century Reanal-

ysis (20CR, Compo et al. 2011).

With these multiple modern RAs, it is now possible to

objectively identify the common and discriminating fea-

tures across RAs, as well as assessing improvements from

the older RAs—a major focus of this study. Previous

studies have already shown that there are substantial dif-

ferences among the RAs. For example, Hodges et al.

(2011) showed that the differences among RAs in their

representation of mid-latitude storms were large and sys-

tematic. Another typical example is the representation of

the Madden-Julian Oscillation (MJO) and associated sub-

seasonal variability, where the convective signal and pre-

cipitation in RAs are only weakly constrained by

observations that have coarser time and space scales than

the characteristic scales of tropical deep convection.

Indeed, the representation of the tropical subseasonal var-

iability hinges on the individual assimilation system,

observation sources, and the parameterized moist physics

in the global forecast model. This study focuses on

examining the capability of RAs in representing the MJO

and the associated subseasonal variability in precipitation

in the tropics. Although atmospheric moisture content and

precipitation1 are assimilated in the modern RAs, the rep-

resentation of clouds and precipitation is still significantly

affected by errors in the parameterizations of cloud pro-

cesses. It is often assumed that wind fields from RAs are

more reliable than the precipitation. The winds are, how-

ever, tightly coupled to precipitation through dynamical

balances. Therefore, one needs to be aware of the quality

and uncertainty of RA precipitation even when he works

with wind data.

Tropical subseasonal variability occurs on various

space and time scales. Mesoscale convective systems are

often embedded in equatorially trapped waves referred to

as convectively coupled equatorial waves (CCEWs).

These CCEWs account for a significant portion of the

subseasonal variability of precipitation. By modulating

tropical deep convection, CCEWs have large impacts on a

wide variety of climate phenomena across different spatial

and temporal scales. Some examples include the onset and

break of the Indian and Australian summer monsoons (e.g.

Yasunari 1979; Wheeler and McBride 2011), the forma-

tion of tropical cyclones (e.g. Liebmann et al. 1994;

Maloney and Hartmann 2000a, b; Bessafi and Wheeler

2006; Frank and Roundy 2006; Molinari et al. 2007) and

the onset of some El Nino events (e.g. Takayabu et al.

1999; Bergman et al. 2001; Kessler 2001). For a more

thorough review on the impacts of the CCEWs, the reader

is referred to Kiladis et al. (2009) and Zhang et al. (2005).

Clearly, RAs need to correctly represent CCEWs if they

are to be used to study almost any aspects of tropical

subseasonal variability.

Among the CCEWs, the Madden-Julian oscillation

(MJO, Madden and Julian 1972) is the dominant mode of

tropical subseasonal variability, characterized by planetary

wavenumbers 1–3, a low-frequency period of 30–60 days,

and prominent eastward propagation. Despite its impor-

tance, our level of understanding of the dynamics of the

MJO is still incomplete. For example, there is no single

generally accepted theory for the MJO, though a number of

theories have been suggested (see e.g., Zhang 2005; Wang

2011; Majda and Stechmann 2011). This is reflected in

generally poor simulations of the MJO with state-of-the-art

general circulation models (GCMs) (e.g. Lin et al. 2006;

Kim et al. 2009; Hung et al. 2013; Sperber et al. 2011).

With the exception of the MJO, the existence of CCEWs

was predicted by a theoretical study of Matsuno (1966). He

solved the shallow-water equations on an equatorial beta-

plane and obtained solutions of the various equatorially

trapped waves, including: the Kelvin wave, the n = 1

westward inertia-gravity wave, the mixed Rossby-gravity

wave, the n = 0 eastward inertia-gravity wave, and the

Equatorial Rossby wave. Subsequent analysis of long-term,

global satellite data revealed the signature of these waves

in the variability of tropical deep convection (Takayabu

1994; Wheeler and Kiladis 1999). Further studies have

revealed the structure of the waves using the global RAs

(e.g., Sperber 2003; Yang et al. 2007), but our under-

standing of these waves, especially the interaction between

moist convection and atmospheric circulations is still

limited (Kiladis et al. 2009).

Given the limited number of observations in the tropics,

global RAs are our best choice for studying CCEWs.

Unfortunately, there is currently very limited information

about the quality of the RAs in representing CCEWs, while

several studies examined CCEWs simulated in GCMs (Lin

et al. 2006; Frierson et al. 2011; Hung et al. 2013). We aim

to provide such information through a detailed evaluation

of the RAs’ precipitation.

The paper is organized as follows. Section 2 describes

the RAs and observations used in this study. The mean

state and subseasonal variability of precipitation during

boreal winter and summer are evaluated in Sect. 3. A1 Precipitation is assimilated only in ERA-I and MERRA.
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wavenumber-frequency analysis is also presented in Sect.

3. The summary and conclusions are given in Sect. 4.

2 The reanalyses and observations

The key observational dataset used in this study is version

1.1 of the Global Precipitation Climatology Project (GPCP)

daily precipitation data (Huffman et al. 2001). The original

1o 9 1o latitude-longitude data were interpolated onto a

2.5o 9 2.5o grid. The Tropical Rainfall Measuring Mission

(TRMM) 3B42 version 6 daily precipitation data (Huffman

et al. 2007) is also used to address the uncertainty in the

observed precipitation. Note that both products use

3-hourly global infrared brightness temperature maps to

create daily-mean precipitation estimates. We restrict our

analysis period to 1997–2008 (1998–2008 for TRMM),

because GPCP data is available after 1 January 1997, and

we think more than 10 years of daily data is enough for an

evaluation of the subseasonal variability.

Table 1 summarizes the five RAs to be compared in this

study. For a full description of each RA the interested readers

may refer to the papers listed in the table. Here we only

describe a few features relevant to our discussion. The hor-

izontal resolution of the global atmospheric models used in

the data assimilation systems ranges from 32 to 200 km,

where the T62 (*200 km) of NCEP/NCAR and NCEP-

DOE is the lowest and the T382 (*38 km) of NCEP CFSR

is the highest. The number of vertical levels also varies across

the RAs, with 28 levels in NCEP/NCAR and NCEP-DOE,

and more than 60 levels in CFSR (64), ERA-I (72), and

MERRA (72—this is the number of model levels). Since

most of RAs examined in this study except ERA-I and

MERRA do not use the observed rainfall in the assimilation

Table 1 Description of the reanalyses used in this study

Reanalysis Resolution Convection scheme Assimilation scheme

NCEP/NCAR

(Kalnay et al. 1996)

T62/L28

(top: *3 hPa)

A simplified Arakawa-Schubert convective

parameterization

(Pan and Wu 1994)

SSI

NCEP-DOE

(Kanamitsu et al. 2002)

T62/L28

(top: *3 hPa)

Minor tuning of one in NCEP/NCAR Same as in NCEP/NCAR

CFSR

(Saha et al. 2010)

T382/L64

(top: 0.2 hPa)

Addition of Hong and Pan (1998) modification

and momentum mixing to one in NCEP/NCAR

GSI, FOTO

ERA-I

(Dee et al. 2011)

T255/L60

(top: 0.1 hPa)

A modified version of Bechtold et al. (2001) GSI, IAU

MERRA

(Rienecker et al. 2011)

0.67o 9 0.5o/L72

(top: 0.01 hPa)

A modified version of the relaxed Arakawa-

Schubert convective scheme

(Moorthi and Suarez 1992)

4DVAR

4DVAR Four-dimensional variational assimilation, FOTO First-order time interpolation to the observation (Rancic et al. 2008), GSI Gridded

statistical interpolation (Kleist et al. 2009), IAU incremental analysis update (Bloom et al. 1996), SSI spectral statistical interpolation (Parrish and

Derber 1992, Derber et al. 1991)

Table 2 Summary of satellite radiance data used to constrain tropospheric humidity

Satellites Instruments Reanalyses

NOAA-10, 11, 12, 14 HIRS CFSR, ERA-I, MERRA

NOAA-15, 16, 17, 18, 19 AMSU-A, AMSU-B (16, 17), HIRS, MHS (18, 19) CFSR, ERA-I, MERRA

METOP-A AMSU-A, MHS, HIRS CFSR, ERA-I

EOS-Aqua AIRS, AMSR-E, AMSU-A CFSR, ERA-I, MERRA

DMSP F-8, 10, 11, 13, 14, 15, 16 SSM/I (up to 15), SSMIS (16) ERA-I, MERRA (except for 16)

GEOS-8, 9, 10, 11, 12, 13 Infrared imager CFSR, ERA-I, MERRA

METEOSAT-5, 7, 8, 9 Infrared imager ERA-I

MTSAT-1R Infrared imager ERA-I
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process,2 the moist physics of the global model including the

deep convective parameterization plays an important role in

dictating the spatial and temporal variability of precipitation

in the tropics. All the RAs use local buoyancy-based, mass-

flux convection schemes, although the details of the closure

assumption and convection triggering process are quite dif-

ferent across the global forecast models (Moorthi and Suarez

1992; Pan and Wu 1994; Hong and Pan 1998; Bechtold et al.

2001). Regarding the assimilation technique, CFSR, ERA-I,

and MERRA use techniques that performs in four-dimen-

sional space. This enables the techniques to consider obser-

vations at the future times with respect to the target analysis

(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 1 November–April mean precipitation of a NCEP/NCAR, b NCEP-DOE, c CFSR, d ERA-I, e MERRA, f GPCP, and g TRMM. Unit is

mm day-1

2 When MERRA assimilates precipitation observation over oceans, it

is weighted only very weakly so that it effectively has almost no

impact.
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time. The influence of the observations during the course of

the assimilation occurs through, a first-order time interpola-

tion scheme (Rancic et al. 2008), the four-dimensional var-

iational assimilation technique, and the incremental analysis

update scheme (Bloom et al. 1996) in CFSR, ERA-I, and

MERRA, respectively. Daily-averaged RA precipitation was

created using 6-hourly datasets except for MERRA, where

3-hourly data was used. For this study, all the precipitation

data were spatially interpolated onto the same 2.5o 9 2.5o

latitude-longitude grid.

The quality of RA precipitation is affected significantly

by the quality of tropospheric moisture analysis. In RAs,

tropospheric moisture is constrained by data from various

observational systems including radiosondes, air-borne

sensors, and satellites, among which satellite radiances are

the dominant source of moisture information over the

tropical oceans. This suggests that the availability of

satellite radiances will have a strong impact on the quality

of the RA precipitation products. The list of satellites and

the instruments used to retrieve atmospheric humidity

(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 2 Same as Fig. 1, except for May–October mean precipitation
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(vertical profile or column-integrated) are given in Table 2.

Also indicated in Table 2 is the use of these data in the five

RAs. Note that in the earlier RAs (NCEP/NCAR, NCEP-

DOE) satellite-based moisture observations were not used.

On the other hand, all the modern RAs (CFSR, ERA-I, and

MERRA) incorporate satellite-based moisture data. For

more details about the usage of these data, readers are

referred to Fig. 4 in Saha et al. (2010), Fig. 14 in Dee et al.

(2011), and Table B3 in Rienecker et al. (2011).

3 Results

3.1 Mean state

Kim et al. (2009) found that the quality of the spatial

structure of the time-mean precipitation is closely linked to

the capability to simulate the MJO among other variables,

so we begin this section by presenting the time mean

precipitation patterns.

Fig. 3 A Taylor diagram of November–April (open circles) and

May–October (crosses) mean precipitation over the tropics (0–360oE,

30oS–30oN)

(a)

(b)

(c)

Fig. 4 Probability density of

precipitation over a Warm Pool

(40–180oE, 20oS–20oN),

b ITCZ (182.5–280oE,

2.5–10oN), and c South Eastern

Pacific (220–280oE, 2.5–10oS)

regions
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Figures 1 and 2 show the time-mean precipitation from

the RAs and observations during boreal winter (Novem-

ber–April) and summer (May–October), respectively.

The pattern correlations and normalized amplitudes

against GPCP of the seasonal mean precipitation maps in

the RAs and TRMM are shown in Fig. 3 in a Taylor dia-

gram (Taylor 2001). Note that the two observational esti-

mates—GPCP and TRMM are similar to each other. The

observed magnitude of the mean precipitation is well

captured in NCEP/NCAR, ERA-I, and MERRA, while

NCEP-DOE and CFSR tend to overestimate it (Fig. 3).

Overall, the modern RAs exhibit an improved pattern

compared to the old RAs. Regional biases in RAs over the

inter-tropical convergence zone (ITCZ) and the south

Pacific convergence zone (SPCZ) can be also identified in

the comparison. During boreal winter over the eastern

Pacific (Fig. 1), all RAs exhibit stronger ITCZs in the

southern hemisphere, although this is very weak in the

(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 5 As in Fig. 1, except for variance of 20–100 day band pass filtered precipitation. The unit is mm2 day-2
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GPCP and TRMM observation. In the older RAs (NCEP-

NCAR and NCEP-DOE), this double-ITCZ pattern is also

prominent during boreal summer (Fig. 2). The SPCZ in

boreal winter (Fig. 1) is well captured in all products, while

the peak of precipitation in the SPCZ is somewhat shifted

to the east in NCEP/NCAR and NCEP-DOE, compared to

the observations and other RAs. During boreal summer

(Fig. 2), the RAs are able to capture the rain bands related

to the south Asian and western Pacific monsoons.

In the Maritime Continent, the GPCP and TRMM

observation show rainfall maxima over the big islands with

elevated topography (e.g., Borneo and New Guinea), and

relatively smaller mean rainfall in the adjacent oceanic

areas. This feature is seen in both seasons, but is particu-

larly recognizable during boreal winter. This distribution of

mean rainfall over the Maritime Continent is well captured

in the modern RAs, and is represented with lesser realism

in NCEP/NCAR and NCEP-DOE. The precipitation around

(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 6 Same as Fig. 3, except for May–October variance of 20–100 day band pass filtered precipitation
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the islands over the Maritime Continent is underestimated

in NCEP/NCAR, and the minimum around 130oE is not

captured in NCEP-DOE. The increased horizontal resolu-

tion of the modern RAs (see Table 1) is obviously one

factor that might have led to the improved representation

over the Maritime Continent.

3.2 Probability density of rain intensity

Another statistics that provide useful information is the

frequency of rain intensity. When the RAs reproduce time

mean value of precipitation in a location, they are expected

to do it with the right distribution of rain intensity values. It

could be, however, from a different distribution of rain

intensity values. For example, it is possible that a RA with

too-frequent light rain events reproduces an observed mean

value, which is a result of a few heavy precipitation events.

Such mismatches could be illustrative of differences in

underlying storm type(s), vertical distributions of diabatic

heating, etc., and users of the RA products need to be

aware of these characteristics. The probability density of

rain rates in observations and in RAs is shown in Fig. 4.

Fifty-one precipitation bins are used in the calculation of

the probability density following Eq. (1), where lower (PL
i )

and upper (PU
i ) bounds of each (i-th) bin are defined.

PL
i ¼ 0;PU

i ¼ 0:09797; for i¼ 1

PL
i ¼ PU

i�1; log10PU
i � log10PL

i ¼ 0:065; for i¼ 2;3; . . .;50

PL
i ¼ 150;PU

i ¼ 1000; for i¼ 51 ð1Þ

The probability density of rain rate is obtained using

daily rain rates over the three areas: the Indo-Pacific Warm

Pool (40–180oE, 20oS–20oN), the ITCZ (182.5–280oE,

2.5–10oN), and the southeastern Pacific (220–280oE,

2.5–10oS). The warm pool and ITCZ areas are where mean

precipitation is higher than surrounding areas. It is there-

fore of interest whether the RAs produce mean rainfall in

these areas with similar statistics of intensity of rain events

to those in observations. The southeastern Pacific area is an

area dominated by low mean precipitation and where some

RAs exhibit the double ITCZ bias (Figs. 1, 2). Probability

density of rain events might provide insights on the phys-

ical nature of the bias.

Overall, GPCP and TRMM show a good agreement in

all three areas, and the difference between the two obser-

vational estimates is smaller than the difference between

those and RAs. Nonetheless, a systematic difference

between GPCP and TRMM is notable. In the warm pool

and ITCZ areas, GPCP has the probability of weak rain rate

(\10 mm day-1) lower than that in TRMM, while GPCP

shows a higher probability density of the strong rain event

([10 mm day-1) than that in TRMM. The frequency of

weak rain event in TRMM is also higher than that in GPCP

in the southeastern Pacific area. It should be noted that both

GPCP and TRMM could have a systematic bias in the

light-rain regime, due to the lack of sensitivity of IR-based

sensors to warm rain events (Behrangi et al. 2012).

In the warm pool and ITCZ area, all RAs tend to

overestimate the frequency of rain rates whose magnitude

is near 10 mm day-1. This is especially true in NCEP/

NCAR, ERA-I, and MERRA. The RAs that overestimate

these intermediate-intensity rain events underestimate the

frequency of strong rain events. NCEP-DOE and CFSR

exhibit relatively better statistics of the frequency of strong

rain events. The probability density of strong rain events in

those RAs is similar to those in GPCP and TRMM.

MERRA has a peak near 1 mm day-1 rain rate in all areas

considered, which is not seen in other RAs and observa-

tions. This suggests that the too-frequent light rain is an

inherent feature of MERRA. Over the southeastern Pacific

area, compared to the statistics over the warm pool and

ITCZ areas, strong rain events are hardly observed in

GPCP and TRMM. In this area, the RAs that have rela-

tively larger time-mean double ITCZ bias (i.e. NCEP-

NCAR and NCEP-DOE), overestimate the frequency of

intermediate-to-strong rain events. In NCEP-NCAR, the

frequency of the intermediate (1–10 mm day-1) rain

events is higher than the observed estimates, while NCEP-

DOE overestimates the frequency of the strong

([10 mm day-1) rain events. On the contrary, the modern

RAs overestimates the probability density of weak

(\1 mm day-1) rain events. This suggests that the similar

bias in the time-mean pattern in different RAs originates

from a different physical nature. There is no systematic

difference between the old and modern RAs in Fig. 4.

Fig. 7 As in Fig. 3, except for variance of 20–100 day band pass

filtered precipitation
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3.3 Subseasonal variability

Subseasonal (20–100 day) variability accounts for a sig-

nificant amount of the total variance in many tropical areas.

Figures 5 and 6 display the variance of 20–100 day band-

pass filtered precipitation during boreal winter and sum-

mer, respectively. The pattern correlation with that of

GPCP and relative amplitude to that of GPCP is shown in

Fig. 7. Again, the two observations agree quite well, and

the difference between GPCP and TRMM is much smaller

than that between RAs and observations (Fig. 7), implying

the observational uncertainty is smaller than errors in RAs.

The distribution of the subseasonal variability resembles

that of the time-mean precipitation in general, but with a

notable difference over land. In the observations during

boreal winter (Fig. 5), subseasonal variability has a mini-

mum in the big islands over the Maritime Continent,

whereas the seasonal-mean precipitation peaks there.

During boreal summer (Fig. 6), subseasonal variability in

the Amazon and central Africa is much smaller than that

(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 8 Ratio of 20–100 day variability to total variability (November–April)
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over the Indian Ocean and the west Pacific, although mean

precipitation is comparable in all these areas. This suggests

that the time-mean precipitation over land and its time

variance is also composed of shorter time scale phenomena

such as diurnal convection (e.g. Tian et al. 2006) and other

transients.

Sobel et al. (2008) suggested that the disagreement in

relative magnitudes of time-mean precipitation and sub-

seasonal variability over land against those over ocean is

evidence of the importance of surface heat flux in driving

subseasonal rainfall anomalies. That is, surface tempera-

ture and accompanying surface turbulent heat flux cannot

generate low-frequency variability over land due to the

negligible heat capacity there, consistent with the lack of

subseasonal variability of precipitation over land. In all the

RAs, this feature is well captured (Figs. 5, 6), implying that

the RAs are successfully segregating the subseasonal, low-

frequency variability over ocean and relatively higher-

frequency variability over land. The simulated amplitude

of subseasonal variability over land (especially the islands

over the Maritime Continent) is smaller than that over the

oceanic area with comparable time-mean precipitation.

There are however large differences in the magnitude of

precipitation variance in RAs, where NCEP-DOE and

CFSR overestimate the variance and others underestimate

it (Fig. 7). In Fig. 8, we examine the ratio of the subsea-

sonal (20–100 day) precipitation variance to the total var-

iance. Here the total variance is defined as the squared

averages of daily precipitation anomalies. In NCEP/NCAR,

ERA-I, and MERRA, the fraction of rainfall variability

explained by the subseasonal component is greater than

that of observations (Fig. 8), although the overall subsea-

sonal variability is underestimated (Fig. 7). NCEP-DOE

and CFSR show stronger subseasonal variability than

observed with comparable ratios of subseasonal to total

variability (Fig. 8). This indicates that NCEP/NCAR,

ERA-I, and MERRA tend to produce weaker precipitation

variance in the shorter-time scales (less than 20 days),

compared with observations.

The relationship between time-mean precipitation and

the subseasonal precipitation variance is illustrated in

Fig. 9, in terms of a scatter diagram between tropics

(0–360oE, 30oS–30oN)–averaged standard deviation of

subseasonal precipitation anomaly and the tropics time-

mean precipitation. Relative to GPCP; NCEP/NCAR,

ERA-I, and MERRA underestimate the subseasonal vari-

ability, while NCEP-DOE and CFSR overestimate it.

Among the RAs, the magnitudes of the mean and subsea-

sonal variability in the tropics show a monotonic rela-

tionship in which amplitude of subseasonal variability is

expected to be high when the time-mean precipitation is

high. The RAs, however, have a systematic wet bias

compared to GPCP and TRMM.

3.4 A wavenumber-frequency analysis

In this subsection, we describe our analysis of the sub-

seasonal variability of RA precipitation in zonal wave-

number and frequency space. First, the daily precipitation

anomalies at latitude bands between 15oS and 15oN were

separated into symmetric and antisymmetric components,

following the method of Hendon and Wheeler (2008). For

each component, a total of 83 segments of 256-day long

time series, with a 206-day overlap between two consec-

utive segments, were prepared from the entire 4843-day

(1997–2008) long time series. Using the fast Fourier

transform, time series of daily precipitation anomalies

(either symmetric or antisymmetric with respect to the

equator) in each segment and latitude are transformed into

the wavenumber-frequency domain. Figures 10 and 11

compare the power spectra of precipitation from the RAs

and GPCP for the symmetric and antisymmetric compo-

nents, respectively.

All power spectra from GPCP and RAs precipitation are

red in both space and time, with greater powers in lower

wavenumber and frequency. In a number of areas in

Figs. 10 and 11, the spectral power exceeds the background

spectrum. These signals follow, in the symmetric spectra,

the dispersion curves of the Kelvin wave, the n = 1

Equatorial Rossby (ER) wave, and the MJO, and in the

antisymmetric spectra, the mixed Rossby-gravity (MRG)

wave, the n = 0 eastward propagating inertia-gravity

(EIG) wave, and the MJO. In the following, we focus on

how well the RAs represent the amplitude of the spectrum,

especially the large-scale convectively coupled wave sig-

nals in it.

As shown in Figs. 10 and 11, the two older NCEP RAs

show quite different features in the strength of precipitation

Fig. 9 November–April (open circles) and May–October (crosses)

scatter plot between standard deviation of 20–100 day filtered

precipitation anomalies and tropics (0–360oE, 30oS–30oN) mean of

precipitation. Units for both quantities are mm day-1
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variability; NCEP/NCAR exhibits variability that is too

weak, while it is too strong in NCEP-DOE. This is further

illustrated in Fig. 12, which shows the spectral power of

the waves identified in Figs. 10 and 11 divided by that of

GPCP. In Fig. 12, the sum of spectral powers over the

wavenumber-frequency space for each wave is presented.

We use same wavenumber-frequency spaces for the waves

that were used in Wheeler and Kiladis (1999), except for

the MJO where 30–80 day band instead of 30–96 day is

used. It shows that NCEP/NCAR underestimates the vari-

ability of all waves. NCEP-DOE shows reasonable vari-

ability of the symmetric MJO and the Kelvin wave (close

to the magnitude of GPCP), but it exhibits excessive var-

iability in the n = 1 ER wave, the antisymmetric MJO and

the MRG wave. Also, in both RAs the MJO signal is not as

clearly distinguished from the red spectra as in GPCP

(Figs. 10, 11). Compared to the two early RAs, the overall

variance pattern in the modern RAs is closer to that of

GPCP (Fig. 12), and the MJO signal is more clearly dis-

tinguished from the background spectra (Figs. 10, 11). In

Fig. 12, the amplitudes of precipitation variance in all

waves in ERA-I and MERRA are comparable to each

other. These two RAs show somewhat smaller magnitudes

than that of GPCP, but much better than NCEP/NCAR. On

the other hand, CFSR shows similar wave amplitudes with

those from NCEP-DOE in general. The only exception is

the n = 1 ER wave where the CFSR signal is about half of

that in NCEP-DOE so that it is much closer to observed

value.

To obtain a metric of the MJO, the sum of power over

the MJO band (wavenumber 1–5, period 30–60 days) is

divided by that of the westward propagating counterpart.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Symmetric wavenumber-frequency spectra of a NCEP/

NCAR, b NCEP-DOE, c CFSR, d ERA-I, e MERRA, and f GPCP.

Dispersion curves for the (n = -1) Kelvin, n = 1 equatorial Rossby

(ER) modes, corresponding to three equivalent depths (h = 12, 25,

and 50 m) in the shallow water equations are overlaid (red contours).

MJO is defined as the spectral components within zonal wavenumbers

1–3 and having periods 30 to 80 days
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This East/West power ratio metric has been used in pre-

vious studies, mostly for evaluating climate models (Kim

et al. 2009, 2011; Sperber and Kim 2012). Figure 13 shows

the scatter plot of the East/West power ratios from the

symmetric and antisymmetric spectra. In the observations,

(a) (b) (c)

(d) (e) (f)

Fig. 11 Same as Fig. 10, except for antisymmetric spectra. Disper-

sion curves for n = 0 eastward intertio-gravity (EIG), and mixed

Rossby–gravity (MRG) modes, corresponding to three equivalent

depths (h = 12, 25, and 50 m) in the shallow water equations are

overlaid (red contours). MJO is defined as the spectral components

within zonal wavenumbers 1–3 and having periods 30 to 80 days

Fig. 12 Ratio of powers corresponding to each wave in reanalysis

and TRMM to that in GPCP

Fig. 13 Scatter plot between East/West power ratios of symmetric

and antisymmetric MJO
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the eastward propagation is more dominant than the west-

ward for MJO. The observed ratios are 1.86 for the sym-

metric component and 1.23 for the antisymmetric

component. All RAs tend to underestimate these ratios,

which suggest that the westward propagating components

are too strong in their precipitation products. Encouragingly,

the modern RAs exhibit higher ratios than the older RAs,

especially for the ratio of the symmetric MJO. For the

symmetric MJO, the East/West power ratios of NCEP/

NCAR and NCEP-DOE are smaller than 1.3, while it is close

to (CFSR) or greater than 1.5 (ERA-I and MERRA) in the

modern RAs. These are much closer to the observed values.

The coherence squared (Coh2) and the phase between

the RA and GPCP were calculated using a cross-spectrum

analysis, presented in Figs. 14 and 15 for the symmetric

and the antisymmetric parts, respectively. The cross-spec-

tra are first calculated for each segment and then averaged

over all segments. The Coh2 and the phase of the RA

precipitation with GPCP measure how closely precipitation

anomalies of RAs follow that of GPCP in time. Ideally, if a

RA perfectly reproduces GPCP, the Coh2 and phase will be

one and zero, respectively, for all wave components.

Uncertainty exists in GPCP dataset (e.g., Huffman et al.

2007), however, so that we should not expect RAs to

perfectly reproduce GPCP. To consider such uncertainties

in observations, and to suggest an upper limit for RAs to

achieve, the Coh2 and phase are also computed between

two observational dataset—GPCP and TRMM.

In Figs. 14 and 15, the Coh2 between the RA precipi-

tation and GPCP is actually much smaller than that

(a) (b) (c)

(d) (e) (f)

Fig. 14 Coherence squared (colors) and phase lag (vectors) between

GPCP precipitation and precipitation from a NCEP/NCAR, b NCEP-

DOE, c CFSR, d ERA-I, e MERRA, and f TRMM. The symmetric

spectrum is shown. Spectra were computed at individual latitude, and

then averaged over 15oS–15oN. Computations are conducted using

data in all seasons on 256-day segments, overlapping by 206 days.

Vectors represent the phase by which reanalysis precipitation lags

GPCP, increasing in the clockwise direction. A phase of 0o is

represented by a vector directed upward
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between TRMM and GPCP for most wavenumber-

frequency components (especially for the older RAs). The

overall Coh2 (shaded in Figs. 14, 15) in the modern RAs is

in fact considerably greater than that for the older RAs,

with the improvement occurring at all waves (Fig. 16a). In

NCEP/NCAR and NCEP-DOE, areas of Coh2 greater than

0.5 are mostly limited to within the MJO wave band,

whereas CFSR, ERA-I, and MERRA show much broader

areas with values more than 0.5. By comparison, TRMM

exhibits Coh2 greater than 0.5 in most areas. In particular,

the Coh2 of the symmetric MJO is greater than 0.6 in ERA-

I and MERRA. For the Kelvin wave and the MRG wave,

these two RAs exhibit much greater coherence with the

observations compared to the NCEP RAs.

In many regions of the space–time spectra (Figs. 14,

15), the phase is near zero in the modern RAs. For all five

RAs, the absolute value of the phase difference for the

(a) (b) (c)

(d) (e) (f)

Fig. 15 Same as Fig. 14, except for antisymmetric spectra

(a)

(b)

Fig. 16 a Coherence squared and b the phase (deg) averaged for the

waves from Figs. 14 and 15
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symmetric MJO, the n = 1 ER wave, and the phase dif-

ference for the antisymmetric MJO is smaller than 10

degree (Fig. 16b), except for the symmetric MJO of ERA-

I. The modern RAs, however, show non-negligible phase

differences from GPCP for the high-frequency waves, such

as the Kelvin and MRG waves. Fig. 16b shows that the

Kelvin wave components in the modern RAs systemati-

cally lag GPCP by 10�–20�, while the MRG components

lead GPCP by about 20�. This systematic difference cannot

be attributed to the observational uncertainty as TRMM

shows nearly zero phase difference for these waves.

4 Summary and Conclusion

This study assessed the quality of the time-mean and

subseasonal variability of the tropical precipitation pro-

duced by five global RAs. Twelve-year-long (1997–2008)

precipitation data from three generations of RA products

from NCEP (NCEP/NCAR, NCEP-DOE, and CFSR), and

the recent RA products from ECMWF (ERA-I) and NASA

(MERRA) were compared with GPCP observations. Ele-

ven-year-long (1998–2008) TRMM precipitation data is

also used in the evaluation, namely to assess observational

uncertainties. The analysis includes an examination of the

boreal winter and summer means, probability distribution

of rain intensity, and subseasonal (20–100 day) variability,

as well as wavenumber-frequency power spectra and cross-

spectra with observed precipitation.

The three modern RAs (CFSR, ERA-I, and MERRA)

exhibit an overall improved representation of the seasonal

mean state when compared to the older RAs (NCEP/NCAR

and NCEP-DOE). The modern RAs show a weaker

(improved) double ITCZ bias in the eastern Pacific. The

contrast in magnitude between the time-mean precipitation

and the subseasonal variance over land is well-captured in

all RAs. Despite of the improvement in the pattern of

seasonal mean precipitation, the probability distribution of

daily rain rates in the modern RAs exhibits no systematic

difference from that in the old RAs. The amplitude of

subseasonal variability over the tropics is closer to the

observed in the modern RAs while it is either too weak

(NCEP/NCAR) or too strong (NCEP-DOE) in the older

RAs. It is also found that the magnitudes of mean and the

subseasonal variance of precipitation anomalies in the

tropics show a monotonic proportional relationship across

RAs. But RAs also exhibit a systematic wet bias in their

mean tropical rainfall.

A space-time spectral analysis shows that both obser-

vations and RAs contain a number of identifiable wave

structures including: the symmetric and antisymmetric

MJO, the Kelvin wave, the n = 1 ER wave, and the MRG

wave. NCEP/NCAR underestimates the power of all waves

considered here. NCEP-DOE reproduces the amplitude of

the symmetric MJO and the Kelvin wave reasonably well,

although it shows excessive power for the n = 1 ER wave,

the antisymmetric MJO, and the MRG wave. CFSR is

similar to NCEP-DOE in representing the amplitude of the

waves, although the too-strong bias for the n = 1 ER wave

in NCEP-DOE is significantly improved. ERA-I and

MERRA underestimate the amplitude of all waves, but are

an overall improvement over NCEP/NCAR. TRMM shows

the coherence with GPCP greater than those of RAs for all

waves, suggesting the bias in the coherence cannot be

solely attributed to the observational uncertainties. None-

theless, the modern RAs have greater coherence with

GPCP than the older RAs. Especially, the coherence

squared between GPCP and precipitation from modern

RAs in MJO band is much higher than that of old RAs.

Despite of the notable improvement in the coherence for

the MJO, the coherence for other CCEWs are still limited.

Also, all RAs including the modern ones have a systematic

phase bias for the high-frequency waves (the Kelvin and

MRG waves). These limitations call for further improve-

ment of the RAs, possibly through additional observational

resources related to precipitation and through more holistic,

multi-variate data assimilation methodology.

This study leaves a detailed analysis of impacts driven

by assimilating moisture-related satellite radiances in the

modern RAs for further study, which are speculated as at

least one of the potential sources for the improvement from

the old RAs in the representation of MJO and CCEWs.

Because all components in the assimilation system (e.g.,

assimilated observations, assimilation technique, and

forecast model) have their own influences on the quality of

a resulted RA, it is not easy to disentangle specific con-

tributions made by the moisture assimilation, and this is

well beyond the scope of this study. A set of systematic

data-denial experiments in a data assimilation mode will

help us to identify the importance of the moisture assimi-

lation in the quality of RAs in representing mean-state and

subseasonal variability of precipitation.
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