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Olivier P. Le Maı̂tre5 · Omar M. Knio1

Received: 14 October 2015 / Accepted: 26 May 2016
© Springer International Publishing Switzerland 2016

Abstract This study aims at analyzing the combined
impact of uncertainties in initial conditions and wind forc-
ing fields in ocean general circulation models (OGCM)
using polynomial chaos (PC) expansions. Empirical orthog-
onal functions (EOF) are used to formulate both spatial
perturbations to initial conditions and space-time wind forc-
ing perturbations, namely in the form of a superposition
of modal components with uniformly distributed random
amplitudes. The forward deterministic HYbrid Coordinate
Ocean Model (HYCOM) is used to propagate input uncer-
tainties in the Gulf of Mexico (GoM) in spring 2010, during
the Deepwater Horizon oil spill, and to generate the ensem-
ble of model realizations based on which PC surrogate
models are constructed for both localized and field quanti-
ties of interest (QoIs), focusing specifically on sea surface
height (SSH) and mixed layer depth (MLD). These PC sur-
rogate models are constructed using basis pursuit denoising
methodology, and their performance is assessed through
various statistical measures. A global sensitivity analysis is
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then performed to quantify the impact of individual modes
as well as their interactions. It shows that the local SSH
at the edge of the GoM main current—the Loop Current—
is mostly sensitive to perturbations of the initial conditions
affecting the current front, whereas the local MLD in the
area of the Deepwater Horizon oil spill is more sensitive
to wind forcing perturbations. At the basin scale, the SSH
in the deep GoM is mostly sensitive to initial condition
perturbations, while over the shelf it is sensitive to wind
forcing perturbations. On the other hand, the basin MLD
is almost exclusively sensitive to wind perturbations. For
both quantities, the two sources of uncertainty have limited
interactions. Finally, the computations indicate that whereas
local quantities can exhibit complex behavior that necessi-
tates a large number of realizations, the modal analysis of
field sensitivities can be suitably achieved with a moderate
size ensemble.

Keywords Polynomial chaos expansion · Empirical
orthogonal function · Sensitivity analysis · Basis pursuit
denoising

1 Introduction

Polynomial chaos (PC) methods [7, 14, 21, 25, 39, 41]
have been developed in recent years for uncertainty quan-
tification in a variaty of scientific and engineering fields,
including chemical reaction systems [24, 29], fluid/ocean
dynamics [1, 21, 23, 25, 36]. The main idea of PC meth-
ods is to approximate physical model response to uncertain
inputs in terms of a series expansion, which involves orthog-
onal polynomials of variables parameterizing the uncertain
inputs. The format of this representation readily affords var-
ious statistical analyses, e.g., Bayesian calibration of model
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parameters [27, 34, 35], as well as global/local sensitivity
analysis [1, 9].

The key task in building a PC surrogate of a quantity
of interest (QoI) is to determine the series coefficients.
Two major categories of PC methods exist, namely the
intrusive and non-intrusive approaches. The former requires
reformulation of existing computational models into sys-
tems involving the unknown expansion coefficients [23].
Non-intrusive methods, on the other hand, rely on sam-
pling existing computational models; the PC coefficients are
consequently determined based on an ensemble of deter-
ministic model realizations. Depending on sampling strat-
egy, non-intrusive PC reconstructions are often achieved
either by quadrature-based pseudo spectral projection (PSP)
methods [7, 8, 13, 39] or regression/compressed sensing
(CS) type methods [3, 10, 11, 30]. Quadrature-based meth-
ods have shown promising performance in mitigating the
so-called curse of dimensionality, which manifests itself
as a rapid increase in the number of model realizations
required to evaluate the coefficients as the polynomial
order and the number of uncertain (stochastic) dimensions
increase [23]. Quadrature-based approaches, however, can
face several challenges, for instance when model solu-
tions are subject to noise or random forcing, or when
the computation model fails at specific (“extreme”) val-
ues of the random inputs. In contrast, both regression and
CS techniques allow occurrences of simulation failures at
“extreme” sample points by either treating simulation fail-
ures as missing data, or restricting the range of the uncertain
inputs.

The primary objective of this work is to analyze the com-
bined impact of field uncertainties originating from both
initial condition and wind forcing perturbations in the Gulf
of Mexico (GoM). The GoM is a semi-enclosed ocean basin,
dominated by the intense Loop Current (LC). The LC has
a pathway that varies with time, from a retracted position
to an extended one, where it reaches the northern GoM
before turning southeastward toward the Atlantic Ocean
[17]. When extended, the LC finally sheds a large, anticy-
clonic eddy, called LC Eddy, which drifts westward in the
GoM while the LC retracts to the south. This LC Eddy shed-
ding sequence is influenced by smaller cyclonic eddies at
the edge of the LC, which can trigger temporary or final
detachments of a LC Eddy [31]. The Deepwater Horizon
oil spill in the GoM in Spring 2010, which is to date the
largest oil spill in US history, was affected by this shed-
ding sequence, as a LC Eddy named Eddy Franklin detached
from the LC, shutting an export pathway to the south, while
winds favored the transport of oil toward the northern GoM
coasts [22].

Unlike the most common situation in uncertainty quan-
tification where one focuses on a small number of scalar
parameters [1, 34], in the present case both the initial

conditions and wind forcing are field quantities. A straight-
forward approach (in which field variable at each spatial
grid point is considered as one QoI) would necessitates a
prohibitely large number of uncertain parameters (stochas-
tic dimensions), especially in a high-resolution OGCM. It
is thus essential to formulate both initial and wind forc-
ing fields in such a way that stochastic dimensions are
significantly reduced. Due to the inherent dynamical corre-
lations among field quantities at different spatial locations
and in space–time, a suitable strategy is to employ empiri-
cal orthogonal functions (EOFs) [18, 19, 26] to decompose
both initial and wind forcing fields into a small number of
modes, and associate with each mode an uncertain ampli-
tude. As a result, the number of stochastic dimensions is
significantly reduced, while adequate representation of the
variability of the stochastic fields is still maintained. A sim-
ilar EOF decomposition approach was employed in [36] for
propagating boundary uncertainties.

Our analysis of the combined impact of initial conditions
and wind forcing uncertainties relies on two quantities of
interest, namely the sea surface height (SSH) and mixed
layer depth (MLD) (additional details will be given in
Section 2). For the purpose of propagating uncertainties,
we initially attempted to apply an adaptive PSP method
[7, 39] in order to generate a sparse realization ensemble
(referred to as PSP ensemble) and consequently build PC
surrogates. However, quadrature-based PSP construction of
PC surrogates was precluded by the fact that the model
yielded nonphysical MLD predictions when extreme values
of the random inputs were sampled. As mentioned earlier,
it is possible to remedy this situation by treating the corre-
sponding samples as missing data and to build PC surrogates
relying on a CS approach . Meanwhile, we also considered
generating an independent ensemble via Latin hypercube
sampling (LHS) [28]. Although the symptoms of simulation
failure persisted, the CS approach provided a robust mean
of constructing PC surrogates. Both PSP and LHS simula-
tion ensembles led to surrogates that are in close agreement
with each other, as well as faithful representations of the
simulation data. For brevity, the present discussion shall be
limited to results obtained from the ensemble generated via
LHS only.

This paper is organized as follows. Section 2 outlines the
model setup and specifies the random inputs. The approach
used to construct the PC surrogates is outlined in Section
3. In Section 4, we focus on the analysis of the variabil-
ity in the selected QoIs. We first assess the validity of PC
representations, and then exploit these representations to
assess sensitivities to the uncertain inputs. In Section 5, we
generalize the sensitivity analysis to field quantities. An
EOF decomposition method is developed for this purpose.
In addition to the analysis of sensitivity fields, we exploit
the EOF decomposition to conduct a brief assessment of
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Fig. 1 Bathymetry of the Gulf of Mexico (meters), SSH (blue box)
and MLD (red box) averaging domains.

the impact of ensemble size on the quality of stochastic
predictions. Conclusions are discussed in Section 6.

2 HYCOM setup and uncertainties

The circulation in the GoM (Fig. 1) is simulated using the
HYbrid Coordinate Ocean Model (HYCOM). HYCOM is
an ocean general circulation model that uses a generalized
vertical coordinate system to optimize the distribution of
vertical computational layers; these layers are made to be
isopycnic in stratified regions, terrain-following in shallow
coastal regions, and isobaric in the unstratified mixed layer
[4]. HYCOM serves a large user community who uses it
for a wide variety of oceanic simulations1. The configura-
tion adopted here is similar to the one used operationally by
the US Navy for ocean prediction during the period 2003–
2014. It has a 4-km horizontal resolution and 20 vertical
levels. The computational domain is open along portions
of its southern, eastern and northern boundaries, where val-
ues are provided by a lower-resolution (1/12◦ vs. 1/25◦)
simulation of HYCOM configured for the Atlantic Ocean
(similar to [5]). The model is forced at the surface by
three hourly outputs from the Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMP [15]), which has
a 27-km resolution. For the present study, model simula-
tions with uncertain input parameters are run for 2 months,
starting on May 1, 2010.

The PC methodology a functional relationship between
the uncertain inputs and the quantities of interest, and two
issues arise when contemplating uncertainties in field vari-
ables. The first concerns the identification of the random
input variables that represent the uncertainties in the fields,
and the second issue concerns the need to capture most of
the uncertainty in the system while minimizing the num-
ber of uncertain variables that are needed to characterize

1(See http://www.hycom.org for more information)

this uncertainty. These issues can be effectively addressed
by relying on EOF decompositions [18, 19, 26], that by
construction capture the dominant variability modes of the
system. The EOF modes are the eigenmodes of covari-
ance matrices and are the finite-dimensional equivalent of
a Karahunan-Loève modal decomposition. Furthermore, we
identify the uncertain input variables as the amplitude of
the EOF modes. In the following, we present the methodol-
ogy adopted in constructing the covariance matrices for the
initial conditions and wind forcing perturbations.

The selection of the optimal covariance matrices to char-
acterize variability modes in geophysical systems remains
an open question. Analysts, however, have considerable lee-
way in configuring the covariance matrices to target specific
uncertainties. A primary interest in the present instance is in
the local variability of frontal dynamics at the edge of the
LC. The covariance matrices for the initial condition uncer-
tainties were thus constructed empirically from 14 daily
samples of the near-real-time HYCOM simulation of the
GoM (performed at the Naval Research Lab in Stennis MS
and predating the start of the present experiment). This rela-
tively short period was found sufficient to capture localized
variability in the LC front.

The EOF decomposition was performed simultaneously
over a set of two model variables (see Appendix A for
details). The first one is the 3D hydrostatic pressure incre-
ment within each HYCOM model layer, a quantity that is
guaranteed to be defined at all times despite the hybrid
nature of the HYCOM vertical coordinate system. The 3D
pressure incorporates variability in the model vertical struc-
ture, which is associated with changes in heat and salt
content, as well as in the dynamics (since horizontal gra-
dients are associated with currents). The second variable
is the model sea surface height which is a good proxy for
the model surface dynamics. We use the principal compo-
nents of each mode, which includes the temporal signature
of the mode, to project the EOF modes obtained from the
aforementioned decomposition to the actual model vari-
ables (temperature, salinity, layer thickness, velocity). In the
present study, the four dominant EOF modes were retained
in the initial conditions as they accounted for 68 % of the
variability experienced by the model during this 14-day
period (the percent of variance explained by each of the first
four modes is 35, 15, 10, and 8 %). The amplitude of each
EOF mode is a random variable defining a new dimension
in the uncertain parameter space.

A similar procedure was followed to characterize the
uncertainty in the wind forcing. The EOF analysis used the
wind forcing fields from COAMP over a 60-day period, in
May and June of 2010, i.e., during the study period. The
EOF decomposition was performed over the wind vector
in both horizontal directions, before being projected onto
the wind amplitude and wind stress vectors, which are the

http://www.hycom.org
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variables used to actually force the model. The reason for
performing the EOF decomposition over the wind vector,
and not the wind stress vector, is that the latter approach
tends to emphasize events of large wind (or wind stress)
amplitude, as the wind stress amplitude tends to evolve like
the square of the wind amplitude. The EOF decomposition
of the wind vector allows the identification of variability
modes that are smoother in time (not shown). As for the
perturbation of the initial conditions, we retain the first four
space and time dependent dominant (scaled) modes. The
first four modes account for 31.75, 23.22, 12.22, and 9.15
% of the total variance.

As a result, the initial condition and wind forcing fields
are given as follows:

u(x, t = 0, ξa) = ū(x, ξa = 0)

+ αu[
√

λ1U1,
√

λ2U2,
√

λ3U3,
√

λ4U4]ξT
a

(1)

f (x, t, ξb) = f̄ (x, ξb = 0)

+ αf [√η1F1,
√

η2F2,
√

η3F3,
√

η4F4]ξT
b (2)

where ū and f̄ are the unperturbed initial and wind
forcing conditions; x denotes spatial coordinates; ξa =
[ξ1, ξ2, ξ3, ξ4] and ξb = [ξ5, ξ6, ξ7, ξ8] are stochastic
random vectors where all random variables ({ξi |i =
1, 2, ..., 8}) serve as amplitudes of corresponding perturba-
tion modes and are assumed to be independent and uni-
formly distributed over [−1, 1]. (λi ,Ui) and (ηi ,Fi) are
eigenvalue/eigenvector pairs of covariance matrices in ini-
tial and wind forcing EOF analysis respectively. Note that,
for wind forcing perturbations, all EOF modes are time-
dependent as well. Two scale factors (αu = 0.8 and αf =
0.04) are introduced to limit the amplitudes of perturbations
in initial conditions and wind forcing respectively.

Two quantities of interest are the focus of the present
study. The first is the SSH whose variations are a reflec-
tion of baroclinic and barotropic processes in the ocean, and
whose slope is associated with ocean surface currents. SSH
highs are usually associated with anticyclonic circulation,
typically the LC and LC Eddies in the GoM, while SSH
lows are associated with cyclonic circulation, in the GoM
with LC frontal eddies. The second variable of interest is
the MLD. The MLD defines the thickness (in meters) over
which waters are homogeneous at the surface of the ocean.
This homogeneity is mostly due to mixing by the surface
winds, which tends to counteract the stratification gener-
ally caused by insolation at the surface of the ocean. In the
present HYCOM simulation, the MLD is estimated as the
thickness of the surface layer in which the water density
is lighter than the surface density modified by a tempera-
ture decrease of 0.3 ◦C. Hence, the first variable of interest
(the SSH) is essentially due to inherent oceanic dynamics,

whereas the second one (the MLD) is essentially responding
to local wind forcing. It is thus expected that the SSH will be
sensitive to perturbations of the ocean state (typically of the
initial conditions), whereas the MLD will be more sensitive
to perturbations in atmospheric forcing.

3 Polynomial chaos surrogate

In this section, we detail the construction of the PC surrogate
of a generic QoI, Q(ξ), from the realizations Qi=1,...,NLHS at
the LHS points. For simplicity, we consider the case where
Q is a real scalar. Since a HYCOM simulation depends on ξ ,
Q is a functional of ξ as well and is therefore a real-valued
random variable. We shall assume that all QoIs considered
are second-order random variables, that is

E

[
Q2

]
=

∫

�

Q(ξ)2p(ξ)dξ < +∞. (3)

Following the discussion in Section 2 above, ξ is an
eight-dimensional random vector, whose components ξi

are independent and identically distributed, with uniform
distributions in [−1, 1]. Thus, the ξi’s have joint density

p(ξ) =
{

2−8 for ξ ∈ �,

0 otherwise.
(4)

Observe that the first four components of ξ are involved
in the parameterization of the initial conditions, while the
last four concern the wind forcing. We shall denote by �

.=
[−1, 1]8 the 8-dimensional hypercube, and by L2(�, p) the
space of second-order functionals in ξ , equipped with the
inner product 〈·, ·〉, ∀Q, Q′ ∈ L2(�, p),

〈
Q, Q′〉 .= E

[
QQ′] =

∫

�

Q(ξ)Q′(ξ)p(ξ)dξ, (5)

and norm ‖Q‖2
L2

.= 〈Q, Q〉.

3.1 Polynomial Chaos approximation

Because Q ∈ L2(�, p), Q(ξ) admits an infinite PC expan-
sion of the form

Q(ξ) =
∞∑

α=0

qα�α(ξ), (6)

where the qα ∈ R are the expansion coefficients and the
functions �α : ξ ∈ � �→ R are orthogonal multivari-
ate polynomials in ξ . The orthogonality condition can be
expressed as:

〈
�α, �β

〉 =
{ ‖�α‖2

L2
if α = β,

0 otherwise.
(7)

Also, because the ξi’s are independent and identically dis-
tributed in [−1, 1], the �α are products of one-dimensional
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Legendre polynomials [36]. We shall adopt the classical
convention that �0(ξ) = 1. With this convention, we have:

E [Q] =
∞∑

α=0

qα 〈�α, 1〉 = q0, (8)

while

V [Q] = E

[
(Q − E [Q])2

]
=

∞∑

α,β=1

qαqβ

〈
�α, �β

〉

=
∑

α≥1

q2
α‖�α‖2

L2
. (9)

In practice, the PC expansion is truncated, yielding an
approximation Q̃ of the quantity of interest:

Q(ξ) ≈ Q̃(ξ)
.=

Np∑

α=0

qα�α(ξ). (10)

We have denoted (Np+1) the total number of terms retained
in the truncated expansion. Classically, the truncation is
made with respect to some polynomial order. However,
due to the rapid increase in the basis size when increasing
the polynomial order, the hyperbolic truncation introduced
in [40] is employed in this study. Specifically, we use an
isotropic polynomial basis which is the union set of three
hyperbolic truncated basis given by maximum total order
of No = [6, 20, 35]; the corresponding truncation parame-
ters are q = [1, 0.55, 0.42], respectively. The choice of this
basis has been carefully analyzed for all the approximations
constructed below. For this setting, the basis dimension is
Np + 1 = 8695. With the basis defined, the core task of the
PC approximation is then determination of the expansion
coefficients qα’s in Eq. 10.

3.2 Determination of PC expansions

Several methods are available for the determination of the
PC expansion coefficients qα in Eq. 10. As mentioned in
Section 2, we generate an ensemble of realizations of Q

at randomly selected values ξi (ξi ∈ PLHS , where PLHS

denotes the LHS set of random inputs). Let NLHS denote
the ensemble size (We choose NLHS = 798 in this study
to obtain faithful empirical estimations of various statis-
tical measures), Y = (Q1 · · · QNLHS)

T be the vector of
realizations, [�] ∈ RNLHS×(Np+1) denote the matrix with
coefficients

[�]i,α = �α(ξi), (11)

and q ∈ R
Np+1 denote the vector of unknown PC coeffi-

cients qα . Thus, [�]q is the vector of predicted values for
the QoI at the sample points; q is defined as the solution of
the following basis pursuit denoising problem:

q = arg min
c∈RNp+1

‖c‖	1 s.t. ‖Y − [�]c‖	2 ≤ σ ||Y ||	2,

(12)

with 	1 and 	2 the classical 1 and 2 norms in R
m. This

optimization problem is solved using the SPGL1 algorithm
[37, 38]. The 	1-norm promotes the sparsity in the con-
structed PC model while σ > 0 is an error tolerance factor
in the present context. The value of σ is adjusted in order
to avoid over-fitting the realization data. The appropriate
selection of σ is critical as we are considering a large PC
basis while disposing of a limited number of realizations.
To this end, we rely on K-fold cross validation procedure
[10, 30], with K = 5, to determine the optimal value of σ

(minimizing the estimated L2-prediction error). The result-
ing predictions have been carefully analyzed and validated
against alternative approaches and different basis selections.

3.3 Global sensitivity analysis

Though the uncertainty in initial conditions and in wind
forcing are specified in terms of independent random vari-
ables, their effects may still combine in a complex manner
because of the non-linear dynamics of the ocean model.
Thus, we shall rely on variance-based sensitivity analysis
methods [33] to investigate the global impact of uncertain-
ties in initial condition and wind forcing. The approach
selected is briefly outlined in this subsection.

Let i be a subset of {1, · · · , 8} and i∼
.= {1, · · · , 8}\ i its

complement. Following [16], we define the first-order and
total-order sensitivity indices associated to i as

Si = V [E [Q|ξi]]

V [Q]
, Ti = 1 − V

[
E

[
Q|ξi∼

]]

V [Q]
, (13)

where V [·] denotes the variance operator and E [Q|ξi] is the
expectation of Q conditioned on the ξi for i ∈ i. Briefly,
the interpretation of the indices is as follows [16]. The first-
order index Si measures the fraction of the variance of Q(ξ)

arising solely due to the random variables ξi with index i ∈
i. On the other hand, the total-order sensitivity index Ti is
the fraction of variance due the variables ξi with index i ∈ i

as well as all their interactions with the others. When Si is
close to 1, this indicates that other variables with indices in
i∼ have a low effect on Q. Additionally, one can conclude
that variables with index in i are unimportant when Ti is
close to zero. In the analysis below, we shall often report
the global effects of the initial condition (that is sensitivity
indices for i = {1, . . . , 4}) or wind forcing (i = {5, . . . , 8}),
as the effect of individual variables is not as informative.

Note that the avalaibility of a PC representation of Q

greatly simplifies the estimatation of the corresponding
sensitivity indices. Specifically, the latter can be readily
obtained from [1, 9]:

Si =
∑

α∈Si
q2
α‖�α‖2

L2∑∞
α=1 q2

α‖�α‖2
L2

. (14)
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and

Ti =
∑

α∈Ti
q2
α‖�α‖2

L2∑∞
α=1 q2

α‖�α‖2
L2

, (15)

where Si (resp. Ti) is the set of polynomial indices α > 0
such that �α has degree 0 in all the ξj with j /∈ i (resp. has
degree > 0 in all ξj with j ∈ i). In other words, the indices
are obtained from partial sums involving the coefficients of
the PC expansions, and the norms of the basis elements.

4 Regionally averaged QoIs

In this section, we apply the PC methodology above in order
to analyze the combined effects of initial condition and wind
forcing uncertainties on two scalar QoIs, namely the SSH
and MLD. Both quantities are regionally avaraged over Sub-
domains, as described in Section 4.1. We start in Section
4.2 by analyzing the performance of the PC representation,
and exploit it in Section 4.3 to perform a global sensitivity
analysis of the impact of the random inputs.

4.1 Definitions of QoIs

We refer to [4] and online HYCOM documentation2 for a
more detailed discussion of SSH and MLD. It is worth-
while to note that whereas SSH is a dynamic HYCOM
variable, the MLD is a diagnostic quantity. The analysis in
this section is based on two QoIs, obtained by (1) averaging
SSH over the rectangular subdomain

�SSH = [−86.04◦, −85.20◦] × [25.19◦, 26.23◦],
and (2) averaging MLD over the subdomain

�MLD = [−88.84◦, −87.88◦] × [28.40◦, 29.07◦].
The two averaging domains are plotted in Fig. 1. As noted
earlier, the former subdomain is located in an area asso-
ciated with LC detachment, whereas the latter is near the
DWH well.

4.2 Validation of the PC approximations

We start by illustrating the procedure of constructing PC
approximations for our QoIs, focusing on the averaged SSH
and MLD at day 30. Recall that the two QoIs are represented
as:

Q̃SSH,MLD(ξ) =
Np∑

k=0

q
SSH,MLD
k �k(ξ), (16)

where the respective PC coefficients are computed by solv-
ing the minimization problem in Eq. 12.

2http://www.hycom.org

Figure 2 reports the surface plots of the PC models of
the regionally averaged SSH and MLD at day 30, in the
plane (ξ1, ξ5) (all other random coordinates being set to 0).
In addition to the PC model surfaces, several independent
HYCOM simulations were performed for ξ in the consid-
ered plane and are reported using blue points. From these
independent simulations, one can appreciate the fidelity of
the PC approximations. It can be seen that most of HYCOM
simulations of SSH closely agree with the PC model surface
(top plot), demonstrating that Q̃SSH provides a reasonable
prediction for ξ outside the construction set PLHS. The
same conclusion holds for MLD surrogate model. We also
observe that in the (ξ1, ξ5) plane the averaged SSH is essen-
tially affine in ξ1, whereas the averaged MLD appears to
depend mostly on |ξ5|. Such distinct behaviors highlight the
need for global sensitivity analysis to properly characterize
the various effects of the different random inputs.

The quality of PC models can be more quantitatively
examined using empirical error measures. The empirical

Fig. 2 Surface plots of PC models Q̃(ξ) in the plan (ξ1, ξ5) all other
coordinates being set to zero: (Top) SSH; (Bottom) MLD. Also shown
using blue points are several HYCOM deterministic simulations in the
same plan. Both SSH and MLD are in meters

http://www.hycom.org
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Fig. 3 Cumulative distribution functions of the relative local errors,
see Eq. 17, for the regionally averaged SSH and MLD QoIs as
indicated

errors for a QoI Q compare the PC predictions at the sample
set points, Q̃(ξi), to their corresponding HYCOM values Yi .
For i = 1, . . . , NLHS we then define the relative empirical
error on Q according to:

εi = |Q̃(ξi) − Yi |
maxj (Yj ) − minj (Yj )

. (17)

Figure 3 shows the cumulative distribution functions of
relative empirical errors εi for the two QoIs. It shows that
in both cases the median relative empirical error is less than
2.5 % demonstrating the quality of the PC models. We fur-
ther define the global accuracy measure (Err95) using the
relative empirical error level for which the CDF reaches 95
%, namely

Err95 = ε|CDF=0.95 (18)

In other words, the criterion suggests that the relative error
between Q(ξ) and its PC approximation Q̃(ξ) is less then
Err95 with ≈ 0.95 probability. For SSH and MLD, the com-
puted Err95 are 5.5 % and 3.8 %, respectively, confirming
the quality of the constructed PC models. These findings are
further confirmed by the results reported in Table 1 which
compares the empirical (based on HYCOM realizations at
ξi ∈ PLHS) and PC model standard deviations for the two

Table 1 Standard deviations of the regionally averaged SSH and
MLD: empirical (from the NLHS HYCOM simulations) and PC
approximations

Empirical PC model

SSH (m) 0.1000 0.0956

MLD (m) 2.8873 2.7456

QoIs. It is seen that the empirical and PC standard devi-
ations again agree within approximately 4–5 %. Note the
lower values for the PC standard deviations compared to
the empirical ones, as expected from the model construc-
tion method which treats a fraction of the variability in Q(ξ)

as noise, and the fact that the number of realizations is
insufficient to fully capture all the relevant features.

Further examination of the PC models for SSH and MLD
is performed by plotting in Fig. 4 the probability density
functions of Q̃SSH(ξ) and Q̃MLD(ξ). These densities are
estimated by means of a classical kernel-density-estimation
(KDE) method [32], from a large sample set of 105 ξ points
drawn randomly in � (blue curves). These PC densities are
also contrasted with KDE estimates based on the HYCOM
realizations Yi (red curves) generated at the sample points
ξi ∈ PLHS. Overall the different densities qualitatively
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Fig. 4 Comparison of the SSH (top) and MLD (bottom) density func-
tions estimated by KDE method. Empirical estimations from HYCOM
realizations on ξi ∈ PLHS (red curves) and PC model predictions (blue
curves) obtained by evaluating PC surrogates over a fine sampling of
� using 105 points
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agree, with however shorter tails for the densities using
the PC approximations Q̃(ξ) (and consequently generally
higher density peak(s)). Again, the shorter tails for the PC
approximations, compared to the empirical densities, are
expected due to the regularization which tends to smooth
extreme values and features when they are not sufficiently
observed by the realization ensemble.

All the analyses presented above were conducted using
predictions obtained at day 30. These analyses were
repeated for intermediate times, providing confidence in the
ability of the PC approach to suitably model the essential
trends in QSSH(ξ) and QMLD(ξ). A sample is provided in
Fig. 5, which shows the evolution of Err95 (top plot) and
compares the empirical and PC standard deviations for the
two QoIs. Overall, the conclusions reached for the PC mod-
els at day 30 hold true at earlier times, though the error
level can fluctuate significantly from one day to another. In
particular, it is seen that for SSH Err95 seems to roughly
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Fig. 5 Evolution in time of 95 % relative error estimates (Err95, top
plot) and comparison of the empirical and PC standard deviations for
the SSH (center plot) and MLD (bottom plot)

increase in time, whereas for MLD it has a much noisy
behavior. This is due to a more complex dynamics for MLD,
which exhibits sharp variations in time; see for instance the
time evolutions of the MLD-standard deviations in the bot-
tom plot. Note that increasing the averaging domain �MLD

reduces the PC approximation error, as measured by Err95,
but sharp time variations can still be observed (not shown).

4.3 Global sensitivity indices

The PC models for the two quantities of interest are now
exploited to conduct a global sensitivity analysis. We start
by discussing results obtained at day 30. The first and total
sensitivity indices, computed from the PC expansion of
Q̃SSH and Q̃MLD using Eqs. 14 and 15 with i = {i} using
i = 1, . . . , 8, are reported in Fig. 6. For the regionally aver-
aged SSH (top plot) we observe that all T{i} are insignificant
except for i = 1 and 2. It can then be concluded that the SSH
is primarily influenced by the first two modes of the ini-
tial condition, while the wind forcing uncertainty has nearly
no impact on the predicted SSH (at day 30). This finding
has to be contrasted with the case of the regionally aver-
aged MLD, for which T{5} is clearly dominant, followed
by much weaker effects reported for ξ6 and ξ1. Thus, the
first wind forcing mode appears to be the main contribu-
tor to the MLD uncertainty. Further, the comparison of the
total and first order indices reveals significant interactions
between random sources within initial condition and wind
forcing respectively, as one could have anticipated from the
non-linearities of the model.

To simplify the sensitivity analysis, we now set IC =
{1, . . . , 4} and WF = {5, . . . , 8}, such that SIC and TIC

(resp. SWF and TWF) are the first and total order sensitiv-
ity indices associated with the uncertain initial condition
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variables at day 30: (Top) SSH; (Bottom) MLD
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(resp. uncertain wind forcing). Since no other source of
uncertainty is considered, we have

TIC + SWF = TWF + SIC = 1, (19)

and

TIC − SIC = TWF − SWF = IIC×WF. (20)

In the previous equation, we have denoted IIC×WF the sensi-
tivity index, which measures the fraction of the variance due
to the interaction between the uncertainties in the initial con-
ditions and in the wind forcing. An alternative expression
for this additional index is IIC×WF = 1 − SIC − SWF.

With these definitions, we finally examine the evolu-
tions in time of sensitivities of the regionally averaged SSH
and MLD responses to the different sources of uncertainty.
These evolutions are shown in Fig. 7. From the top plot, it
is evident that essentially only the uncertain initial condi-
tion plays a role in the variability of the regionally averaged
SSH, since both the corresponding SWF and IIC×WF remain
very low over the whole time span reported. On the contrary,
for the regionally averaged MLD response, we observe that
at the beginning of HYCOM simulations, the initial con-
dition is dominant (but the variance is then very low, see
bottom plot of Fig. 5) as it take some time for the forcing
to affect the flow. However, after day 2, the wind forcing
is the clearly dominant source of uncertainty in the region-
ally averaged MLD prediction. Note that at day 22, the
interaction between the two sources of uncertainty becomes
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Fig. 7 Time evolutions of the sensitivity indices SIC, SWF and IIC×WF:
(Top) SSH; (Bottom) MLD;

significant, but again this event occurs at a time when the
variance in the averaged MLD achieves a low value.

It is worth pointing out that all sensitivity indices pre-
sented so far concern the SSH and MLD responses averaged
over two spatial locations, namely the LC frontal area and
the DWH region, respectively, as discussed in Section 4.1,
and for a limited time horizon of 30 days. As a result, the
conclusion on the weak interaction between initial condition
and wind forcing uncertainties regarding the two QoIs may
not hold for other averaging domains and for other times. In
the specific configuration of the LC during our study period,
it seems that local conditions in the DWH area during May–
June 2010 are not sensitive to the uncertainties in LC frontal
conditions on May 1st . Clearly, a more complete investi-
gation is needed to better understand the dynamics of the
uncertainties and the way they propagate in time through the
domain. To this end, in the next section we investigate field
uncertainties in SSH and MLD throughout the GoM.

5 Field sensitivities

Though it is possible to construct the whole SSH (or MLD)
field over the GoM by building PC surrogates for field vari-
ables at each spatial grid independently, the computational
cost would make this brute-force approach impractical due
to the large number of grid points. As a result, the EOF-PC
analysis is employed here to reduce the dimensionality of
the field PC reconstruction problem. For clarity, we outline
the EOF-PC approach below.

5.1 Decomposition and approximation

We first briefly discuss the EOF decomposition (also
known as Proper Orthogonal Decomposition, Karhunen-
Loeve Expansion, and Principal Component Analysis) [18,
19, 26]. Let x ∈ � and U(x, ξ) be a real-valued second
order stochastic process. We denote (·, ·)� the spatial inner
product,

(u, v)�
.=

∫

�

u(x)v(x)ρ(x)dx, (21)

with the spatial weighting function ρ : � �→ R+, and define
‖·‖L2(�) the associated norm. From the NLHS realizations of
U at the sample points ξj ∈ PLHS, we define the empirical
average U(x) and the fluctuations U ′

j (x) as

U(x)
.= 1

NLHS

NLHS∑

j=1

U(x, ξj ), U ′
j (x)

.= U(x, ξj )−U(x),

and construct the matrix [C] ∈ R
NLHS×NLHS of empirical

(spatial) covariance, through

[C]i,j =
(
U ′

i , U
′
j

)

�
, 1 ≤ i, j ≤ NLHS. (22)
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We observe that [C] is symmetric, non-negative, and we
denote λk ∈ R and φk ∈ R

NLHS its proper-elements such
that

[C]φk = λkφk, (φk)T(φk) = 1. (23)

The empirical spatial modes are subsequently defined as

uk(x) =
NLHS∑

j=1

U ′
j (x)φk

j . (24)

It can be easily checked that the modes uk are mutually
orthogonal:

(
uk, ul

)

�
=

NLHS∑

i,j=1

φk
i

(
U ′

i , U
′
j

)

�
φl

j =(φk)T[C]φl =λlδk,l .

Ordering the eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ 0, the
truncated expansion of the stochastic field becomes

U(x, ξ) ≈ U(x) +
r∑

k=1

uk(x)φk(ξ), (25)

where the φk(ξ) are uncorrelated, centered, second-order
random variables and r ≤ NLHS is the number of modes
retained in the reduced representation. The number of
modes is selected such that Eq. 25 retains a fraction p ∈
[0, 1] of the empirical fluctuation energy. Specifically, we
set r such that

r∑

k=1

λk ≥ p

NLHS∑

k=1

λk. (26)

It now remains to construct the PC approximations for the
set of random coefficients φk(ξ). These random coefficients
are treated as independent quantities of interest and each
φk(ξ) is associated with a vector Y of realizations (see
Eq. 12) defined as

Yj = φk(ξj ) =
(
U ′

j , u
k
)

�
/λk, 1 ≤ j ≤ NLHS. (27)

By using the method discussed in Section 3, namely the
BPDN algorithm, each φk(ξ) can be approximated by a
truncated PC expansion as follows:

φk(ξ) ≈ φ̃k(ξ) =
Np∑

α=0

ck
α�α(ξ) (28)

As a result, the EOF-PC approximation of the stochastic
field can eventually be expressed as

U(x, ξ) ≈ UPC(x, ξ)
.= U(x) +

Np∑

α=0

uα(x)�α(ξ), (29)

where

uα(x) =
r∑

k=1

uk(x)ck
α. (30)

5.2 EOF-PC at day 30

In this section, we investigate the use of the EOF-PC
approximation for the representation of the SSH and MLD
fields. We used a constant spatial weighting ρ(x) = 1,
but restrict the domain of interest to the inside of the GoM
disregarding the grey-areas in the next figures. Similar to
the regionally averaged quantities of interest, we restrict
the analysis to the quality of the SSH and MLD EOF-PC
approximations at day 30 only; similar trends were observed
for earlier times (not shown).

5.2.1 SSH field

Starting with the SSH field at day 30, Fig. 8 presents the
empirical average SSH field from realizations at the LHS
set PLHS (top plot). That figure illustrates the dominant
dynamical features, with the LC associated with high SSH
in the Eastern GoM, as well as a LC Eddy at (26◦ N, 94◦ W)
, while small cyclonic frontal eddies are noticed at the edge
of the LC, associated with low SSH. An isolated cyclonic
eddy is also present at the southwest corner of the GoM.
The decay of the spectrum (eigenvalues λk) in the empirical
decomposition of the SSH fluctuation is then shown in the
bottom plot of Fig. 8. In the present case, r = 10 empirical

mode index
1 2 3 4 5 6 7 8 9 10

10 0

10 1

10 2

10 3

Fig. 8 SSH field at day 30. Top: empirical average using the LHS
set of HYCOM realizations. Bottom: spectrum of the empirical spatial
covariance
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modes were found sufficient to retain 90 % of the energy
fluctuation according to Eq. 26.

The first five spatial modes uk(x)/
√

λk of the decom-
position of the SSH field fluctuation are shown in Fig. 9.
Modes 1, 3, and 4 mostly resolve structures in the LC
area, while mode 2 is dominated by coastal dynamics
along the Northern GoM. Mode 5 mixes signatures in
the LC area and along the coast. Following modes (not
shown) exhibit features at smaller and smaller scales,
with more and more homogeneous energy distribution in
the domain analysed. In other words, the truncation prin-
cipally affects small scale fluctuations with low energy
levels.

The impact of the truncation on the field energy can be
better appreciated in Fig. 10 where the standard deviation

of the SSH field at day 30 is reported. The figure com-
pares the empirical standard deviation estimated from the
LHS ensemble of HYCOM simulations (left plot) with
the standard deviation obtained from truncated EOF-PC
approximation of the SSH field (right plot). These two plots
demonstrate that with r = 10 modes only, the fluctua-
tion of the field is very well approximated, particularly in
areas of high energy fluctuation, namely the LC and north
and west coastal areas. Such a low number of modes capa-
ble of reconstructing a field is quite common when EOF
decompositions are used for analyzing ocean data (e.g.,[2]).

Finally, to briefly illustrate the effect of relying on
a finite set of HYCOM realizations and using a PC
approximation for the random coordinates, we present in
Fig. 11 a comparison between the HYCOM solution and its

Fig. 9 First five spatial modes uk/
√

λk in the expansion of the SSH field at day 30
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Fig. 10 Standard deviation of SSH fields at day 30. Left: empirical standard deviation calculated from the LHS set of HYCOM simulations.
Right: standard deviation in the truncated expansion of the field using r = 10 modes

EOF-PC approximation for ξ = 0. Note that this partic-
ular realization of the HYCOM simulation is not part of
the LHS sample set used in the reconstruction. In order
to highlight the differences between both fields, the fig-
ures only show the fluctuations of SSH (with respect to the
empirical average from the LHS simulation ensemble). As
expected, the HYCOM realization (left plot) presents small-
scale features of low-amplitude that are not present in the
EOF-PC approximation (right plot); the latter field appears
much smoother. However, it is seen that the principal struc-
tures, particularly the local SSH lows associated with LC
frontal eddies, are well captured. Of course, this particular
realization may not be representative of the approxima-
tion error for other realizations of ξ , but it nonetheless
provides a clear illustration of the smoothing effect of
truncation.

5.2.2 MLD field

We now repeat the analysis of the EOF-PC approximation
of the previous section, but for the MLD field at day 30. The
empirical MLD average on day 30, seen on Fig. 12 (top plot)

shows that the MLD is deeper in the LC region than that in
the rest of the GoM, and it tends to be shallower along the
coast. As for the small-region average, it is found that the
MLD field is significantly more complex and more demand-
ing to approximate. Specifically, Fig. 12 shows that though
the empirical average of the MLD field (top plot) is rela-
tively smooth, the decay rate of the perturbation spectrum
is significantly slower than that of the SSH field (bottom
plot). Specifically, r = 142 modes are necessary to retain
90 % of the empirical variance. Because faithful PC recov-
ery of higher-order modes would require a larger ensemble
than is practical, in this analysis below the EOF expansion
for MLD is limited to retain 80 % of field variability, which
corresponds to r = 27 modes.

The first five dominant modes of the MLD covariance are
plotted in Fig. 13. As for the SSH decomposition, Mode 1
is dominated by variability in the LC, which is also the case
for Mode 4 to a large extent. Modes 2, 3, and 5 are mixed,
with signals in the deep GoM as well as along the coasts.
Compared with the dominant modes in SSH (Fig. 9), the
dominant MLD modes involve shorter scale features, and
tend to be less spatially localized.

Fig. 11 SSH fluctuation fields for realization at ξ = 0 at day 30. Left: target fluctuation field. Right: EOF-PC reconstruction of the target
fluctuation field
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Fig. 12 MLD field at day 30. Empirical average using the LHS set
of HYCOM realizations (Left) and spectrum of the empirical spatial
covariance (Right)

In Fig. 14 we compare the empirical standard deviation
of the MLD field (left plot) with the standard deviation
of its EOF-PC approximation (right plot). As for the SSH,
it is seen that the EOF-PC approximation is able to prop-
erly capture the main structures of the MLD uncertainty,
in particular (1) near the LC region, (2) along the northern
coastline, and (3) around the LC Eddy at (26◦ N, 94◦ W).
However, we also observe that the differences between the
two standard deviation fields are more significant than in the
case of SSH (Fig. 10). In fact, the EOF-PC approximation
contains only 80 % of the fluctuating energy in the set of
HYCOM realizations. It is noted that inclusion of additional
modes in the EOF-PC approximation would slowly improve
the capture of the remaining field variability; again, this can
be explained by the complex response of the local MLD to
random inputs, which makes it difficult to approximate the
reduced random coordinates φk(ξ). Indeed, the PC approx-
imation of the φk yields an additional loss of variability, as
some fluctuations are interpreted as realization noise by the
PC construction procedure.

It should be stressed that though part of the variability
in the MLD field is lost, the main structures in the empir-
ical standard deviation field given by HYCOM realization
ensemble are still present in the EOF-PC approximation and
we shall see below that the information retained is enough to
perform a suitable sensitivity analysis. However, the error in

the EOF-PC approximation can be significant, in particular
if it is used to predict specific realizations of the HYCOM
simulation. This can be appreciated in Fig. 15 where the dif-
ference between the true HYCOM fluctuation at ξ = 0 (left
plot) and its EOF-PC approximation (right plot) is much
more significant than for the case of the SSH at the same
parameter value (Fig. 11).

5.3 Global sensitivity analysis

From the EOF-PC approximation, one can easily compute
field values for the sensitivity indices of SSH and MLD.
Similar to the discussion in Section 4, we focus on the first
order sensitivity indices with respect to the initial condition
and wind forcing (as well as the contribution to the variance
of the interaction between them).

Figure 16 reports the first order sensitivities at day 30 of
the SSH (left column) and MLD (right column) fields to ini-
tial condition (top row), wind forcing (center row) and their
interactions (bottom row). It can be seen from Fig. 16 that
the SSH field is more sensitive to the initial condition almost
everywhere except for the near shore area where wind forc-
ing exhibits significant impact. This strong impact of wind
forcing on the near shore SSH can be understood from the
following facts: (1) the variability of the initial condition is
concentrated in the LC region making initial SSH perturba-
tion along coastline negligibly small; (2) The propagation
over a 30 days time horizon of the initial uncertainty away
from the LC area is limited; and (3) Wave amplitude is natu-
rally more sensitive to wind forcing, when waves propagate
from deep water to shallow water, and when the wave ampli-
tude grows and thus amplifies the sensitivity to wind forcing
near the coastline.

In contrast, the MLD field values at day 30 seem essen-
tially sensitive to the wind forcing perturbations, which is
expected since the MLD is primarily related to the tur-
bulent mixing process in the near surface layer, where
both momentum and heat fluxes are directly influenced by
wind forcing perturbations. The initial condition impacts the
MLD only in the LC region, where the perturbations were
localized. Finally, one can notice that both SSH and MLD
fields exhibit weak interactions between initial condition
and wind forcing perturbations at the considered analysis
day.

Finally, we quantify the time evolution of 1st order sen-
sitivities of both SSH and MLD fields to initial condition,
wind forcing and their interactions. Figure 17 depicts at days
10, 20, and 25 (from top to bottom) the first order sensi-
tivity indices associated with the initial condition impact
on the SSH (left) and to the wind forcing impact on the
MLD. Because the interactions between initial condition
and wind forcing remain relatively insignificant over the
simulation span, the sensitivity indices associated with the
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Fig. 13 First five spatial modes uk/
√

λk in the expansion of the MLD field at day 30

impact of wind forcing (resp. initial condition) on the SSH
(resp. MLD) field can be estimated using SIC + SWF ≈
1. We remark that the analysis at different times are pro-
cessed independently, so proposed EOF-PC approach offers
flexibility of analyzing sensitivities at moments of interest
only. This flexibility in turn provides means of investi-
gating the dynamic of the uncertainty propagation. For
instance, the plots for the SSH (left column) in Fig. 17
show how the effect of wind forcing becomes progres-
sively important near the LC region as time advances.

Similarly, observing the time evolution of the variability of
the MLD fields (see right column of Fig. 17), one notices
the fast evolution of MLD variance induced by uncer-
tainties in the initial condition in the western half of the
GoM.

5.4 Effect of sample set size

This section explores the robustness of the proposed EOF-
PC approach with respect to the size of HYCOM realization
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Fig. 14 Standard deviation of MLD fields at day 30. Left: empirical standard deviation calculated from the LHS set of HYCOM simulations.
Right: standard deviation in the truncated expansion of the field using r = 27 modes

ensemble in global sensitivity analysis for the SSH and
MLD fields. Our objective is to show that, for the present
problem, a limited number of HYCOM realizations pro-
vides adequate estimates of the sensitivity indices. To this
end, we repeat the previous procedure for the EOF-PC
approximation of the SSH and MLD fields and subsequent
sensitivity analysis, for different sizes of the realizations
set. In order to avoid having to repeat multiple HYCOM
simulations when the new sample sets are considered, a
sub-sampling of the original LHS set considered so far is
introduced. Figure 18 illustrates in two dimensions the sub-
sampling strategy employed in this study, which is now
briefly discussed. From the original set PLHS with NLHS

samples, the objective is to select a subset P ′
LHS ⊂ PLHS

preserving the covering property of LHS schemes. To this
end, we first draw at random a new set of N ′

LHS sample
points; for every element of this new sample set, we select
its closest neighbor in PLHS (with respect to the L2 dis-
tance) that has not been previously drawn and complete the
new sample set P ′

LHS with this selected sample point. It
is noted that the resulting P ′

LHS may not necessarily be an
LHS set.

The accuracy of the EOF-PC approximation of the SSH
or MLD field depends on the error in the empirical covari-
ance estimate, the number of modes r retained in the
expansion, and finally the accuracy of PC approximation
of the random coordinates φk(ξ). With the above quasi-
uniform sub-sampling scheme, we choose different number
of HYCOM realizations from the original LHS ensemble
and reconstruct EOF-PC approximations UPC for both SSH
and MLD fields. The quality of the resulting approxima-
tions is first assessed using the (normalized) L2-norm of the
approximation error,

ε2
L2

=
E

[
‖U − UPC‖2

L2(�)

]

E

[
‖U‖2

L2(�)

] . (31)

This error can not be computed exactly and to avoid the
need to perform additional HYCOM simulations, we here
consider estimates based on the LHS sample set PLHS,

ε2
L2

≈
∑

ξj ∈PLHS
‖U(·, ξj ) − UPC(·, ξj )‖2

L2(�)
∑

ξj ∈PLHS
‖U(·, ξj )‖2

L2(�)

. (32)

Fig. 15 MLD fluctuation fields for realization at ξ = 0 at day 30. Left: target fluctuation field. Right: EOF-PC reconstruction of the target
fluctuation field
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Fig. 16 Sensitivity analysis of the SSH (left) and MLD (right) fields at day 30. Plotted are the first order sensitivity indices related to the initial
condition (top row), wind forcing (center row) and interaction between the two (bottom row)

Because this error estimate relies on the same sample set
used for the construction, it is expected that it will under-
estimate the true L2-error. However, this estimate remains
useful to monitor the robustness of the approximation when
different number of samples are used in the construction
of the EOF-PC expansion. The evolutions of the estimated
errors are shown in Fig. 19. The top plot concerns the SSH
case at day 30, while the bottom plot corresponds to the
MLD at the same date. In each plot, the blue curve cor-
responds to the estimate in Eq. 32 while the red curve
corresponds to similar estimate obtained using the same
subset as for the EOF-PC approximation. Finally, the dot-
ted line corresponds to the a priori error estimate (εpriori =
1 −

∑r
k=1 λk

∑NLHS
i=k λk

) based on the truncation of the expansion

retaining only r terms.
For the two fields, a similar behavior is reported. First,

the lowest error estimation is the one based on the truncation
criteria (dotted line), as one would have expected. This

estimate is sightly smaller than the estimate based on the
reduced sample set used for the construction of the EOF-
PC approximation (red curve). The difference between these
two estimate arises from the PC approximation of the
stochastic coordinates φk , as discussed previously. Inter-
estingly, the distance between the dotted and red curves
remains essentially constant, suggesting that reducing the
PC approximation error would require a significantly larger
sample set. Finally, the two previous errors are seen to sig-
nificantly under estimate the true error, as denoted by their
distance to the blue curve which can be considered as a
better approximation of the true L2-error when the sam-
ple set size used for the construction is small compared to
NLHS. Obviously, the estimates for the original and reduced
samples agree when the number of samples used for the con-
struction goes to NLHS. Overall, from the curves reported, it
can be concluded that the EOF-PC error quickly decreases
with the number of samples involved in the construction, but
then stagnate as many more samples would be necessary to
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Fig. 17 1st order sensitivity of SSH to initial condition (left column) and MLD to wind forcing (right column) perturbations on selected days as
indicated
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Fig. 18 Illustration of the sub-sampling strategy in 2D case. Left: original LHS set PLHS. Center: independent LHS set N ′
LHS < NLHS elements.

Right: resulting sample set P ′ ⊂ PLHS
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Fig. 19 Estimates of the mean squared error of the EOF-PC approxi-
mations for SSH (top) and MLD (bottom) fields as function the size of
the subset of HYCOM realizations used in the construction

properly capture fine stochastic features. As discussed pre-
viously, this finding indicates that one should be cautious in
using the EOF-PC approximation as a surrogate model to
predict realizations of the HYCOM simulations at ξ points
that do not belong to the sample, as significant (point-wise)
errors can be expected.

However, despite the occurrence of appreciable point-
wise errors and appreciable L2 error estimates, we note
that the EOF-PC is still able to capture how the variabil-
ity is distributed as well as the impact of the different
uncertain parameters. In fact, a closer inspection reveals
that even for a sample set of only 50 HYCOM simu-
lation the EOF-PC based sensitivity indices for both the
SSH and MLD fields are well determined. This finding
is illustrated in Fig. 20 which depicts in the left column
(resp. right column) the standard deviation of the EOF-PC
approximation for the SSH at day 30 (resp. MLD) and first
order sensitivity indices associated to the initial condition
(resp. wind forcing). It is seen that while using roughly
16 times less samples the approximations agree fairly well
with the results reported previously (see corresponding plots
in Fig. 10, 14, 16). It thus appears that a moderate num-
ber of HYCOM realizations would be sufficient to perform
the global sensibility analysis of the SSH and MLD fields

Fig. 20 Standard deviation fields (top) and first order sensitivity index (bottom) of the SSH (left) and MLD (right) fields at day 30. The first order
sensitivity index is related to the initial condition for the the SSH (left plot) and to the wind forcing for the MLD case (right plot)
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through EOF-PC reduction approach. This is an encour-
aging result for applying the EOF-PC methodology in the
context of data assimilation, which requires quantifying
model uncertainties. Because ocean models are computa-
tionally expensive and generate very large quantities of
data, ocean data assimilation cannot be based on techniques
requiring large ensembles. To date, ensemble data assimila-
tion techniques implemented in oceanography typically use
ensembles of size �(100) (e.g., [12, 20]), comparable to
the ensemble size we find reasonable for implementing the
EOC-PC approach.

6 Conclusion

A PC method was used to quantify the impact of initial con-
dition and wind forcing uncertainties on the circulation in
the GoM. Attention was focused on the sea surface height
(SSH) and mixed layer depth (MLD). A LHS ensemble
of oceanic forecasts covering a 30-day period were gener-
ated using HYCOM. The resulting database of realizations
was then exploited to construct PC surrogates. A BPDN
algorithm [37, 38] was used for this purpose.

For the purpose of propagating uncertainties, two quan-
tities of interest were defined, obtained by averaging the
SSH over a region located close to the zone of the LC
detachment, and the MLD around the location of the DWH
well. The adequacy of the PC representation was exam-
ined in light of discrete error metrics, and the analysis
revealed that the reconstructions adequately capture the
stochastic response of the QoIs, and provides robust esti-
mates of statistical moments, including means and vari-
ances. A global sensitivity analysis was then performed
in order to quantify the impact of the uncertain inputs.
The analysis indicated that during the time of the sim-
ulation, the regionally averaged SSH response near the
LC region is dominated by initial condition uncertainties,
whereas the MLD around DWH is mostly sensitive to wind
forcing.

A EOF-PC decomposition methodology was then devel-
oped in order to assess the field sensitivities of SSH and
MLD. Due to the smooth response of SSH field in both
spatial and stochastic domains, we were able to build faith-
ful PC surrogates for SSH fields with as few as 10 EOF
modes, and to capture the region of peak SSH uncertainty
around the LC. On the other hand, the EOF-PC represen-
tation of MLD field was limited to include only 80 % of
its variability due to the fact that capturing fine structures
in MLD fields requires more HYCOM realizations. Nev-
ertheless, despite the fact that fine spatial structures in the
MLD field are smoothed out in the reconstruction, the dom-
inant structures in variance and sensitivity fields were well
captured.

A computational study was also conducted to assess the
impact of the size of the realization ensemble on the per-
formance of the EOF-PC representation. In order to avoid
generating inpedendent ensemble, a simplified approach
was adopted, based on coarsening the original LHS ensem-
ble while maintaining its covering property. The analysis
revealed the possibility of capturing the dominant features
of the stochastic variability with a relatively modest ensem-
ble size of 50 members, which offers perspective for apply-
ing the EOF-PC technique in an ocean data assimilation
context.

We finally recall that the present analysis considers sta-
tistically independent uncertainties for the initial conditions
and wind forcing fields, such that their respective EOF
decompositions can be easily sampled simultaneously with
a classical LHS ensemble construction. Though well moti-
vated from the mathematical perspective, this simplified
approach disregard the link between the ocean and atmo-
sphere states. Similarly, passive OGCM simulations where
wind forcing is not affected by the ocean states should be
improved to a coupled atmosphere-wave-ocean model to
better simulate the dynamics across the atmosphere-ocean
interface. Based on the insight provided by the present expe-
riences, work is underway to enhance both the construction
and propagation of more realistic uncertain input fields,
particularly by relying on the fully coupled atmosphere-
wave-ocean model [6]. Results from this ongoing effort will
be reported in a future study.
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Appendix

EOF Calculation

The state vector in the EOF calculation consisted of the
hydrostatic pressure increments in each layer and the sea
surface pressure (which can be considered as an additional
layer for the sake of accounting). The dimension of this state
vector is then the product of the number of “wet” HYCOM
points (150,684) times the number of layers plus one (21),
i.e., 3,164,364; the data matrix, X, had 14 columns. The
data were first standardized by removing each variables
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mean and dividing by its standard deviation, so that all
could be represented on a common scale (The components
of the EOFs were multiplied by the corresponding stan-
dard deviations to restore their units prior to forming the
perturbation).

The EOFs can be computed by a singular value decom-
position: X = USV � where U and V are unitary matrices
whose columns are the left and right singular vectors,
respectively, and S is a diagonal matrix containing the sin-
gular values. The EOFs are the left singular vectors and
the principle components are the right singular vectors. It
is more efficient for highly rectangular matrices to compute
the principal components by explicitly forming the (14×14
in the initial conditions case) covariance matrix, C = X�X,
and performing an eigenvalue decomposition using the mat-
lab function [V,�] = eig(C). The principle components
are then the eigenvectors of C and the eigenvalues are the
squares of the singular values. The EOFs can then be com-
puted as: U = XV S−1. The principle components obtained
from this procedure were used to identify the modes of the
prognostic variables in the model: U = XV S−1 where X is
the state vector referring to temperature, salinity or velocity
and U are the corresponding EOFs. This device to com-
pute the EOFs of the model variable was needed because
of the hybrid nature of HYCOM’s vertical coordinate sys-
tem which switches freely between isopycnal and isobaric
coordinates, by the need to maintain non-negative layer
thicknesses and by the need to maintain hydrostatic stability.
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