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ABSTRACT

Satellite-tracked drifting buoy data are being collected by numerous investigators and agencies in several
countries for the World Ocean Circulation Experiment--Tropical Oceans Global Atmosphere (WOCE-TOGA)
Surface Velocity Program. By the end of the century, and thereafter, this global dataset will provide the best
available climatology and chronology of the surface currents of the World Ocean. To expedite completion of
research quality datasets for archival and dissemination, a data acquisition activity is being conducted at NOAA
Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, Florida. At AOML, data from drifting
buoys of cooperating operators are quality controlled and optimally interpolated to uniform 6-h interval trajec-
tories for archival at the Marine Environmental Data Service (Canada). This report describes in detail the
procedures used in preparing these data for the benefit of second- or third-party users, or future buoy operators
who may wish to process data in a consistent way. Particular attention is given to provide quantitative estimates

for uncertainty of interpolation,

1. Introduction

A global dataset of ocean surface currents and tem-
perature is being collected for the World Ocean Cir-
culation Experiment—Tropical Oceans Global Atmo-
sphere (WOCE-TOGA) Surface Velocity Program
(SVP) using the ARGOS system to coliect data and
find locations of free-drifting surface buoys. Standards
for Lagrangian performance and designs to meet these
standards have been promulgated through the WOCE -~
TOGA planning process. Regional buoy operations
have been managed by numerous independent inves-
tigators; consequently, several observing schedules
have been used, and there have been no generally
agreed upon standards for processing such Lagrangian
data. To expedite development of a uniform and timely
research quality global dataset of ocean surface cur-
rents and temperature, a data acquisition center for the
SVP was established at the NOAA Atlantic Oceano-
graphic and Meteorological Laboratory (AOML). This
report is published to document the procedures used
for the benefit of the many expected users of the global
dataset, and to present ideas and statistical resuits that
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may be of value to others who may wish to treat these
or future drifter data differently to achieve their pur-
poses, :

Operation of an expansive array of drifting buoys be-
gan in the tropical Pacific Ocean in 1988, General over-
views of the oceanographic results based on the subset
of these data from the tropical Pacific appear in Reverdin
et al. (1994) and P. Niiler et al. (1996; manuscript sub-
mitted to J. Phys. Oceanogr.). Subsets of these daia
have been used also in numerous special investigations
(cf. Hansen and Maul 1991; Maul et al. 1992; Poulain
et al. 1992; Poulain 1993). Drifting buoy releases were
subsequently extended to the North and South Pacific,
Atlantic, and Indian Oceans beginning in 1991,

The primary datasets consist of two variables: time
series of buoy locations and sea surface temperature
(SST) measurements from hull-mounted thermistors.
All buoys reported in this archive were initially at-
tached to drogues or sea anchors centered at 15-m
depths to secure adequate water-following behavior
and carried one of a variety of sensors for detecting and
reporting the presence or loss of the subsurface drogue.
Other measurements, such as barometric pressure, sa-
linity, or chlorophyll, made on a very limited or ex-
perimental basis, are included in this archive, but at
present only in the form of unedited sensor values as

transmitted from the buoys and translated by Service
ARGOS.
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Operators of SVP buoys are encouraged to have data
from their buoys disseminated via the Global Telecom-
munications System (GTS) by Service ARGOS for use
in operational SST analyses. These GTS transmissions
are collected and placed also in the international drift-
ing buoy data archive maintained by the Canadian Ma-
rine Environmental Data Service (MEDS). Due to in-
sufficient knowledge or interest and sometimes tech-
nical or proprietary considerations, many SVP
operators have not had data from their buoys dissemi-
nated via the GTS. SVP buoy data that were dissemi-
nated via the GTS are mixed with data from other kinds
of drifting buoys, mostly not designed for measurement
of current. Also, the SVP data transmitted via the GTS
do not include information about presence or loss of
the subsurface drogues because the GTS data format
has no provision for it, and drogue sensor data often
cannot be interpreted on a day-to-day basis anyway. In
sum, the GTS-derived drifting buoy data available from
the MEDS is incomplete and of mixed and unknown
quality in respect to ocean currents.

AOML receives complete series of position data
computed from Doppler measurements directly from
Service ARGOS or, rarely, from the buoy operator. Po-
sition and temperature values that violate rather simple
but carefully applied continuity criteria to be described
are then edited from the series. These edited data are
the best available in terms of both location and tem-
perature, and therefore are most appropriate for uses
such as pointwise matchups to satellite SST measure-
ments. They are irregularly distributed in time, how-
ever, and therefore are generally ill conditioned for
many kinds of analysis or even for satisfactory display.
They are, therefore, interpolated to uniform 6-h inter-
vals using an optimum interpolation procedure. The
method used is that of kriging, which is commonly used
for two- and three-dimensional analyses. In our appli-
cation, latitude, longitude, and SST are treated as sep-
arate one-dimensional time series. All of these datasets
(complete raw data, edited data, and interpolated data)
are forwarded to the MEDS for archival and distribu-
tion to requestors.

Initial processing is usually completed within a
month after acquisition of the data so as to be available
to managers of buoy operations. The initial processing
includes generation of the edited dataset and a tentative
set of interpolations and uncertainty estimates. At 6-
month intervals, a final processing is completed and
data are forwarded to the MEDS. This 6-month update
schedule is the reason for breaking the data into 6-
month “‘batches’” in the procedure described in sequel.

Our editing procedures are described in section 2.
Section 3 provides a detailed description of the optimal
interpolation algorithms, and our treatment of its key-
stone, the statistical structure function, is covered in
section 4. Section 5 provides some explanation and per-
spectives on our procedures and use of the resulting
datasets.
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2. Data editing
a. Location data

Drifter locations given by the Service ARGOS track-
ing system contain errors arising from instrumental
noise (mainly oscillator stability }, buoy—satellite orbit
geometry, number and distribution of messages re-
ceived during a particular orbital pass, and inaccuracies
in orbit and time coding. Service ARGOS provides
probabilistic quality indices, called location classes, for
all locations determined and offers users options for
receiving only data meeting specified probable accu-
racies. Being probabilistic, these indices do not pre-
clude the occurrences of occasional large errors, espe-
cially with the dominant observing schedule used in
TOGA and WOCE, that is, transmissions made during
one day of three (Hansen and Herman 1989). Rather
than use these indices, we have elected to apply editing
and interpolation procedures based on the full sequence
of data values.

We hereafter present a technique for removing the
occasional bad drifter locations from the raw ARGOS
data. The method is based upon speed between con-
secutive locations. For simplicity, the method descrip-
tion and examples are restricted to positions in one di-
mension. The first step in processing either location or
SST data is to arrange the data in temporal sequence.
Suppose that we have a time series of positions x;
= x(¢;) given at nonuniformly distributed times #;. The
mean velocity between two consecutive points is

1 f’in
— u(t)dt
Ly — 4L ( )

U=
1 i1
=— ox(t)dt =

Lyi— 4 %

(Xis1 — %)
(i1 — &)
and is, therefore, readily obtained from the discrete po-
sitions and times. A maximum value above which ve-
locities are considered bad is determined with the help
of our knowledge of the circulation characteristics in
the study area and with observed velocity histograms
(for the individual drifters and/or for all the drifters).
Once a mean velocity between a pair of points is bad,
we have to decide which point in the pair is the bad
location. This problem is not trivial, due to the diversity
of time intervals between sequential positions.

The simplest method progresses forward in time: for
a bad velocity, the second point of the pair is removed
and the velocity is recomputed using the next point in
sequence. If the velocity again is bad, that point is re-
moved, and so on until the velocity is below the max-
imum allowed. This simple editing technique is not al-
ways efficient. Because the technique is progressing
forward, it can remove many points, although only one
point is seriously in error. To avoid the above problem,
we employ the following procedure using sequential
positions in both forward and backward time direc-
tions.

(2.1)
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Going forward, the initial point is verified as good
and so flagged. If the required velocity to the second
point exceeds a specified criterion, the second point is
flagged as “‘bad,”’ and the speed from the initial point
to the sequential points is computed until another
‘‘good’’-point is found and flagged. This good point is
taken as a new initial point for subsequent speed cal-
culation, and so on through the data sequence for an
individual buoy trajectory. The procedure is then re-
peated in the reverse time direction. All points flagged
as good in both directions are given a global good flag,
and any that were flagged as bad in either direction are
assigned a global bad flag. For each group of bad global
flags, the global flags are updated with flags from
whichever of the forward and backward procedures
contains the largest number of good flags, and all points
with bad global flags are removed. Data are initially
edited using a default speed criterion of 5 kt (257
cms™'), and results in the form of trajectories and
speed histograms are checked. If spikes or other im-
probable features are found, the editing is repeated us-
ing a speed criterion of 3 kt (154 cm s™!), and the
results checked again. Any residual problems are han-
dled by reediting gappy data strings in shorter segments
or subjective judgment. Examples of the functioning of
this logic are shown in Fig. 1. .

This procedure is simply a method of using both for-
ward and backward differencing of the position data
together with the time interval information to minimize
the rejection of valid data and acceptance of faulty data
that can otherwise happen when a bad position follow-
ing a long data interval is followed in turn by several
valid data at shorter intervals, for example. The bottom
panel of Fig. 1 suggests a counterexample, but this cir-
cumstance is most likely to occur in intervals of fre-
quent observations, where loss of some data is least
injurious, and its importance is further limited by use
of a conservative velocity criterion. ‘

b. SST data

Each satellite pass that provides a buoy location
through the ARGOS system also yields several trans-
missions of sensor (SST) data. This larger number of
data and a narrower range of physically meaningful
values makes SST data easier to edit than location data.
First, the median value of the several data transmissions
of each satellite pass is computed and assigned the time
of the location. Then values outside an acceptable SST
range are deleted. For the tropical Pacific, we use the
range 15°-35°C.

Remaining deviant SST values are removed by ap-
plying a temperature change criterion relative to the
recent temperatures experienced by the buoy. The first
valid temperature observation is determined subjec-
tively and is labelled m;. The subsequent values are
then sequentially tested using
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FIG. 1. Three synthetic illustrations of position editing logic. Upper
panel: nf = 1, nb = 6, number of points rejected = 1; center panel:
nf = 2, nb = 3, number of points rejected is 2; lower panel: nf = 2,
nb = 2, number of points rejected is 4.

SSTi — my| < A, (2.2)
while m; is updated by
myyy = CSSTiyy + (1 — C)ymy, (2.3)

with 0 < C < 1. SST values that fail (2.2) are deleted,
and m; is not updated. This procedure can be seen to
be a detector of SST “‘spikes’’ that exceed a running
weighted mean, in which the most recent values are
most heavily weighted by an amount A or more. That
is, an accepted SST value SST,_, that occurred » values
earlier is weighted as (1 — C)""! relative to the most
recent accepted value. To minimize improper data re-
jection when strong temperature fronts are crossed or
large gaps occur in the data, the test is run forward and
backward, and only data that fail the test in both direc-
tions are rejected. After some experimentation with
data from the tropical Pacific, we selected the criteria
C = 1/4, A = 0.5 K. However, if more than 5% of the
data from a particular buoy are rejected, A is increased
by 0.1 K, at most twice, to a maximum of 0.7 K. If
more than 5% of data still are rejected, the record is
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subjectively examined for cause. Such results can be
caused by multiple crossings of strong SST fronts. The
data may be valid, and potentially valuable for evalu-
ation of heat transports, but difficult to edit tightly
enough with the automated procedure.

3. Interpolation of data

We employ a one-dimensional revision of a proce-
dure known as kriging that is mostly used for two- and
three-dimensional analyses in earth sciences and min-
ing engineering (Cressie 1991). It is applicable to in-
terpolation of data that are irregularly distributed, for
which there is no useful norm or first guess, and for
which the autocorrelation may not exist. We apply it
to one-dimensional time series data for latitude, lon-
gitude, and SST. The method is similar in most respects
to the form of optimum interpolation that was intro-
duced to atmospheric and ocean scientists by Gandin
(1963), but has some significant differences in its usual
implementation. Our approach is similar to that used in
Hansen and Herman (1989) except that treatments of
measurement errors and structure functions are im-
proved.

Interpolated values are estimated as linear combi-
nations of a number of observations neighboring in
time. We take each observation x; to be a sum of the
true value £; and a measurement error that has a mean
value of zero and is temporally uncorrelated with either
itself or the true values. Thus,

xi:.f,'+ei

i) — (L) =(e)=0

(x;) — (%) = (e:) ’ 3.1
(eie;) = (e?)

(e;¢) =0, if i#j

where angle brackets are used to denote an average.
Interpolated values are determined as best linear com-
binations of n neighboring observed values, that is,

f(’)k = Z W; X;, (32)
i=1

in which £¢ denotes an estimated value (without mea-
surement error ), the x; are observed values, and the w;
are the set of best weights. ‘‘Best’’ can be qualified in
many ways. Here we choose it to minimize the mean-
square difference between the true values at the inter-
polation points and their estimates from (3.2)
o2 = (£, — £&)?) = minimum. (3.3)

Methods of optimum interpolation, familiar to
oceanographers and meteorologists, use an expression
obtained from equations corresponding to (3.2) and
(3.3) containing the autocorrelation of the interpolation
variable to determine the weights w;. Because our in-
terpolation variable is location, its autocorrelation func-
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tion cannot in general be expected to exist, for the same
reason that it does not exist for a simple Brownian mo-
tion, that is, its variance increases without limit, or in
practical terms, to the dimension of the ocean basin,
which is of little help locally. Rather, we must use the
structure function

1 2 _l _ 312
Sy =5 (G —)%) =5 AIx (1) — 21, (34)

which, in addition to being of more general existence,
is more resistant to data defects. It is immediately ob-
vious that it is independent of errors in estimation of
the mean value of x, for example. To obtain an ex-
pression for the optimal weights in (3.2) from (3.3),
in terms of the structure function, it is necessary to
apply an additional constraint, that the n weights sum
to unity,

Swi—1=0. (3.5)
i=1

This constraint has the effect of assuring that the esti-
mated values are unbiased in the mean, that is,

(£ — £5)) =0, (3.6)

which is a useful property in itself inasmuch as we have
not discovered any useful analog of the norm or first-
guess fields commonly used in oceanographic and at-
mospheric applications of optimum interpolation. In
such applications, where (3.5) is not used, the inter-
polations obtained from (3.2) are biased toward zero
in regions of sparse data, so that the climatology, first
guess, or other norm becomes the dominant element in
the final analysis. With (3.5) as a constraint, the mean
of the observations becomes the ‘‘default’ value.

Substitution of (3.2) into (3.3) and use of (3.1) and
(3.5) leads to

or=2

™M s
[N E

n n
wiSe — ¥ T ww,S; + 3, wi(e?) (3.7)
i=1 j=1 i=1

i=1

as the expression to be minimized with respect to w;,
subject to the constraint of (3.5); § der}otes the struc-
ture function for error-free data and S, that for the
interpolation point (x,) relative to the observations
(x;). Adding the constraint with a Lagrange multiplier
of 2X, differentiating with respect to the w; and A, and
equating the result to zero leads to
Z WISAU - Wj<62> + N = ‘§0j’ (3.8)
i=1
as the set of equations for determining optimum
weights. Multiplication of (3.8) by 2L, w;(=1) to
eliminate the double summation from (3.7) provides a
simpler expression for the kriging variance, o'7:
or=3 wSy + \. (3.9)

i=1
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Following some experimentation, we settled on n
= 10, five observations preceding and following each
interpolation point when available, as a suitable com-
promise between computation speed and quality of re-
sult. When data are few, as at the beginning or end of
a buoy life, or where there are long data gaps, inter-
polations are also done with as few as a single obser-
vation on either side of the interpolation time. Both the
interpolated values and their associated estimation er-
rors (o) are contained in the archive data.

Illustrative 16-day time series of edited and inter-
polated latitude and longitude data are shown in Fig.
2. Also indicated, in exaggerated form, are the o, ex-
pressing the varying uncertainty of the interpolation.
The manner in which the o, are modulated by the den-
sity and temporal distribution of observations is evi-
dent. Figure 3 shows the buoy trajectory generated
from these data, also with o, values. It should be kept
in mind that the o, are statistical estimates equal to one
standard deviation, so they will be exceeded in about
one-third of the interpolation. In section 4 we describe
our procedure to make the o, as quantitative as possi-
ble, but they may be either conservative or optimistic
for individual points or, due to temporal nonstationarity
and spatial nonhomogeneity of the ocean, for major
segments of, or even entire trajectories. :

4. Specification of structure functions
a. Location data

It is evident that the structure function plays a key
role in the interpolation. It must be known from prior
data or determined from the observations themselves.
Equations (3.8) and (3.9) require the structure function
for error-free data but the observations contain mea-
surement errors that, for our edited data, are small rel-
ative to the geophysical variance, but which we chose
to include nonetheless. Use of (3.1) in (3.4) glves the
relationship

Si=S8; +(e?) — (e q)) 4.1)
between the structure function for observations and that
for error-free data. Hence for i # ], S‘ =8, — (e?),
and fori =j, §; = S; = 0 (ie., Sy is dlscontmuous at
the origin). The rneasurement error {e?) was estimated
from historical data from drifting buoys operated in the
tropical Pacific Ocean (Hansen and Herman 1989; Bit-
terman and Hansen 1993).

Empirical values of the structure functions were
computed from observations representative of data
from the tropical Pacific to be interpolated. Data from
1988 through 1993 were sorted into 11 6-month (Jan-
uary—June, July—December) batches for three zonal
bands defined by latitudes 23.5°N, 7°N, 3°S, and
23.5°S. This regionalization was motivated by evalua-
tions of the distribution of kinetic energy density such
as that shown by P. Niiler et al. (1996; manuscript sub-
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FiG. 2. Hlustrative time series of edited (circles) and interpolated
(dots) latitude and longitude coordinates for drifting buoy 2898. Ver-
tical bars through interpolated points show magnitude of 200,.

mitted to J. Phys. Oceanogr.), and an expectation that
the structure function will reflect the kinetic energy
density, especially at the shorter time separation of im-
portance here. Squared differences of the observations
were binned at quarter-day lag intervals and averaged.
The locus of such empirical values is typically concave
upward for lags to several days, becoming more linear
for lags of a few weeks, and becoming very irregular
due to the smaller number of data pairs available for
averaging at long lags. Results shown by Hansen and
Herman (1989) are illustrative.

To provide structure function values at all possible
lags needed for the interpolations, the empirical values
must be modeled by a conditionally negative definite
function (Cressie 1991). We used a fractional Brown-
ian motion model (Mandelbrot and Van Ness 1968),

S s O 4.2)

S=ar”,
in which 7 denotes time (nondimensionalized by 1
day) and a and B are parameters to be determined from
the empirical data. This model is well known in the
literature on kriging; it is conditionally negative defi-
nite for 0 < # < 2, and has been found useful for
agricultural and hydrologic applications (Cressie
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1991). For drifting buoy movements, the physically
meaningful range is 1 < f < 2. At § = 1, the model
is that for Brownian motion, or pure diffusion ( Einstein
1905). The limit, 8 = 2, is readily seen to be the model

for rectilinear motion. For such motion, from (3.4),
(xi —x) 2 u(t; — ) = ur,

in which u denotes the (constant) value of the velocity
component, and hence § = u?72. This model is not
usable for kriging because it is not conditionally neg-
ative-definite. That is of no concern here because drift-
ing buoys do not show rectilinear motion for more than
brief intervals. (Were it to occur, it would imply the
possibility of exact, linear interpolation.)

The WOCE-TOGA SVP data from the tropical Pa-
cific are fit by values of 8 near 1.6 for latitude data and
1.8 for longitude data, indicating properties interme-
diate between the extremes of an uncorrelated random
walk (diffusion) and perfectly correlated motion (rec-
tilinear advection), with advection being of greater in-
fluence in the zonal direction. We have not evaluated
the full range of validity of this model for ocean surface
particle displacements. It appears to be usefully accu-
rate for timescales from a few hours to a few days, at
least in tropical regions, and is a useful precept for sta-
tistical interpolation of quasi-Lagrangian buoy data.
Hansen and Herman (1989) show some examples of
least square fits of the fractional Brownian motion
model to data for lags of up to six days. Although these
fits to the empirical data appear to be excellent, twofold
differences occurred between the kriging variances and
the values obtained by cross validation, indicating that
least square fits, even to seemingly regular data, do not
necessarily provide the best results. In general, the krig-
ing variances associated with the interpolation tend to

be more sensitive to changes in model parameters than
are the interpolations themselves. To evaluate the range
of lags over which the model should be tuned, we de-
termined the distribution function of data intervals used
for estimation of kriging variances (3.9) for approxi-
mately 10° interpolations in the tropical Pacific. The
median time separation used was about 1.5 days, the
mean about 2 days, and the 95th percentile was about
5.4 days. Hence, we conclude that the critical range for
accuracy of the structure functions is zero to about 1
week.

The smoothly varying empirical structure function
values shown by Hansen and Herman (1989) were de-
rived from data from buoys in continuous transmission,
that is, usually five or six locations were received each
day. In the TOGA and WOCE SVP programs, how-
ever, the principal observing schedule was for buoy
transmissions during one day of three. Each day of
transmissions is expected to provide several locations
during that day. Such a sampling schedule, if uniformly
implemented, would yield no empirical structure func-
tion values at all for lags of one to two days, four to
five days, etc. For various reasons, individual investi-
gators have used other transmission schedules for all
or a part of the operating life of their buoys. The com-
posite dataset, therefore, also contains varying amounts
of data from buoys in continuous transmissions, trans-
missions during 1 day of 2, and during 8 hours of 24.
Also, buoys programmed for transmissions during one
day of three occasionally shifted the phase of their
transmission duty cycle. The admixture of observing
schedules provides large numbers of data pairs for
computing structure function near lags of 3, 6, 9, etc.,
days when many buoys contribute data, but smaller
numbers of data at the intervening lags. The structure
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F1G. 4. Empirical structure function values for two 6-month batches
of drifting buoy data. Circles denote empirical structure function val-
ues, asterisks denote number of difference-pairs used. Upper panel:
data for latitude, north tropical region, first half of 1992; lower panel:
data for longitude, equatorial region, first half of 1993.

function values computed at these intervening lags are
subject to the usual perils of averages from small sam-
ples and may be biased toward the particular time and
region where an individual investigator chose to use,
for example, continuous transmissions for 2 or 3
months. In contrast to the smooth loci of empirical val-
ues of structure functions shown by Hansen and Her-
man (1989), those derived from the composite
WOCE~TOGA datasets often shown large variations
at multiples of 3-day lag intervals that reflects the vary-
ing number of data pairs. Figure 4 shows examples for
which the structure function has maxima (minima)
near 3, 6, 9, etc., days. A fit of the model to such data
by a simple least squares procedure is inappropriate.
Quantification of the model might be improved by a
weighted least squares procedure, or simply by deleting
from the fit structure function values derived from too
few data. These possibilities carry undesirable degrees
of arbitrariness in specifying a weighting scheme or
deciding just what number of data is too small. Con-
sidering that the range of validity of the structure func-
tion model need not exceed about a week, that the two
best determined values are at 3 and 6 days, and that the
results of Hansen and Herman (1989) show that struc-
ture functions computed from uniform and higher fre-
quency data are smoothly varying, we decided upon a
two-step procedure for quantification of the structure
function model using a first-guess based on a deter-
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ministic fit of the model to the empirical values at 3-
and 6-day lags. Thus, for (4.2) we use

(%
A= 1“(5})’ s
5 (4.3)

o = B

W

in which S;, S5 are the empirical structure function val-
ues [adjusted for measurement error as per (4.1)] at 3-
and 6-day lags.

The median values of the 11 determinations of & and
B for each of the three regions are listed in Table 1. It
is evident that the exponent g is systematically larger
for longitudinal than for latitudinal displacement data,
presumably reflecting the stronger mean zonal advec-
tion. The amplitude coefficients « are about twice as
large for longitude data as for latitude data and also
strongly reflect the distribution of kinetic energy den-
sity (P. Niiler et al. 1996; manuscript submitted to J.
Phys. Oceanogr.) that motivated regionalizations of the
structure function model. The extremes of temporal
(batch) variations from the median values given in Ta-
ble 1 never exceeded 7% for g, but varied from nearly
40% to nearly 100% for a.

The model coefficient « is a simple multiplier that
nearly factors from (3.7) because measurement error
in our data is small. The interpolations, therefore, have
small sensitivity to variations of «, but must be ex-
pected to vary with 3. The associated values of o7,
however, are nearly proportional to « as well as sen-
sitive to . Our objective is to obtain quantitative es-
timates of o} as well as optimum interpolation. The
accuracy of the o} values can be evaluated batchwise
by cross validation. Observations are sequentially de- .
leted and their value estimated from neighboring ob-
servations using the kriging algorithm with the struc-
ture function model under test. The average mean
square difference (%) between these estimates and the
actual observations can then be compared with the av-
erage value of o2 for the interpolation. If the o esti-
mates are accurate, (o 2) should be close to {(§%) — (e?).
For the first guess at @ and 3, we use median values
from 11 6-month data batches from the tropical Pacific
(Table 1). For final processing, the cross-validation

TaBLE 1. Generic or first-guess values of displacement structure
function parameters determined from 6.5 years of drifter dara from
the tropical Pacific Ocean.

Latitude Longitude
Region 10%a(°p)? B 10%a(°N)? B
North tropical 1.152 1.604 1912 1.846
Equatorial 1.896 1.538 5.151 1.854
South tropical 0.596 1.673 1.129 1.861
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test is run on each batch using the first-guess values of
« and S, and « is adjusted by
(8%) — (e?)
a' = ————"aq, (4.4)
(o)
which assures that (g2) = (§2) — (e?), batchwise, in
the final processing for archival.

b. SST data

WOCE-TOGA SVP buoys are designed for nominal
accuracy of 0.1 K in measurement of SST, which Bitter-
man and Hansen (1993) show seems to be mostly real-
ized. In some data batches, we have found S (1 day)
< 0.01 K2, indicating a smaller than expected measure-
ment error. Hence, for SST, empirical values of the struc-
ture function are evaluated for each data batch, and (e?)
is defined as the lesser of 1072 K? or 0.5 S (1 day).

Interpolation of SST measurements could be done in
terms of departures from a norm, such as Reynolds
(1982) climatology of SST, obviating the need for the
constraint (3.5) on optimization of the weights, which
in principle should make them ‘‘more optimal.”” We
elected not to do this in order to keep the interpolations
as close as possible to the measurements, albeit with
larger kriging variance, even in the circumstance of low
data density in the presence of large thermal anomalies,
such as El Nifio. Given the large scale of patterns in
both SST climatology and El Nifio variations, the short-
term structure functions for the departure data are ex-
pected to be very similar to those for the full measure-
ments. Kriging variances for SST are sufficiently small
as not to be a major concern in any case (Hansen and
Herman 1989).

A substantial part of the zero to several day variance
of SST measurements is associated with the diurnal cy-
cle (Hansen and Herman 1989; Bitterman and Hansen
1993) and can be included in the model. Thus, for SST
we use

S =ar? + y(1 — cos2rr). 4.5)

Unlike the model for buoy displacements, there seems
to be no a priori reason to expect that 8 should not be
less than unity. Usually a value near unity has been
found for § from the drifting buoy temperature data, a
result presumed by Hansen and Herman (1989) and
Bitterman and Hansen (1993).

Because the factor (1 — cos2n7) is zero at 3- and 6-
day lags, (4.3) can be used to evaluate «, 8 for the
structure function model for SST, just as for buoy dis-
placements. To avoid the problems associated with
widely varying numbers of data pairs, we estimate y
from the empirical structure function value at 0.5-day
lag,

y = 0.5[5(0.5) — a(0.5)"]. (4.6)

Finally, a different regionalization was defined for
the structure function model parameters for SST than
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for displacements. We evaluated the parameters for six
regions spanning the tropical Pacific, again using 5.5
years of buoy measurements in 6-month batches. Pa-
rameters derived from measurements made west of
130°W are nearly equal, and can be treated in common.
Values obtained with data from opposite sides of the
equator, east of 130°W, were sufficiently different from
those for the west—central Pacific, and from each other,
as to merit separate treatments. The resulting first-guess
values are listed in Table 2. The magnitude of the rms
diurnal cycle, and the nearly linear rate of increase of
the several-day variance are common to all regions.
The magnitude of the several-day variances varies in
the approximate ratio 1:2:3, reflecting the low vari-
ability of SST in the west—central tropical Pacific, and
the large SST variability associated with the equatorial
front (Philander et al. 1985) and coastal processes
along the coast of Central America. The moderate value
of a for the southeast region appears to be inconsistent
with the SST-variance map shown by P. Niiler et al.
(1996; manuscript submitted to J. Phys. Oceanogr.),
until it is understood that much of this variance occurs
on annual and interannual timescales and thus does not
affect the structure function or the interpolation on
timescales of a few days.

5. Discussion

Two relatively different situations in interpolating
the WOCE-TOGA SVP data can be distinguished.
One is that of interpolating data during days when a
buoy is transmitting so that there are typically several
observations within a day of the interpolation time. The
other is that of interpolating across the 2-day transmis-
sion gaps, where at least half of the interpolation times
have no observations within 1 day. Hansen and Herman
(1989, Fig. 3) show the temporal modulation of o3 that
results from this varying pattern of data density. The
cross-validation method that we use to adjust (o7} for
equality with the mean square misfit of estimates to
observations is more relevant to the transmission days
than to the gaps because the cross-validation data nec-
essarily come from days with transmissions and typi-
cally have near neighbors. Because the structure func-
tion model contains two parameters, we sought a
method by which they could be adjusted jointly to sat-
isfy {(oz) = (62) — (e?) for two different densities of
data; (o) = (6*) — (e?) for a given dataset can be

TaBLE 2. Generic or first-guess values of SST structure function
values determined from 6.5 years of drifter data from the tropical
Pacific Ocean.

Region 10%« B 10%y
West-central 0.65 K2 1.0 0.7 K?
Northeast 1.70 K? 1.0 0.7 K?
Southeast 1.20 K? 1.0 0.7 K?
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thought of as defining a curve in the (a, 3) plane. If

the density of this dataset is reduced by deleting ob- -

servations, a different curve is defined. An intersection
of these two curves would give (a, 8) meeting our
objective at both data densities, and hopefully be close
at intervening densities as well. This hope foundered
on the result that in about 10% of the cases we tested,
the curves do not intersect within the range 1 < 8 < 2,
and for the other 90%, the intersections tend to be at
very small angles, causing large batch-to-batch varia-
tions, especially in 8. We therefore elected to use re-
gionally generic values of 8 and to adjust only the more
variable a by the batch cross-validation process. The
extreme range of (g 2)((62) — (e?)) " obtained by this
process for the full edited data batches was 0.90-1.02,
and the median value was 0.99. We also tested the ro-
bustness of the structure functions to variation in tem-
poral density of the measurements. The cross-valida-
tion procedure was applied also to the same data
batches thinned by deleting all measurements during
the day of the interpolation except the first and last,
thus forcing the algorithm to use measurements more
distant in time. For this thinned dataset, the fractional
" Brownian motion model using generic coefficients in
Table 1 followed by adjustment using (4.4) yielded
values of {(o2)({62) — (e?)) ™! with an extreme range
of 0.41-1.24, and the median values listed in Table 3.
Thus, the kriging variances that are archived with the
interpolations are tuned to be accurate during times of
plentiful measurements and to become conservative,
more so for the more energetic variables, when mea-
surements are sparse.
We experimented also with use of an exponential
model that is familiar in the literature on kriging and a
model,

S=ar*(r+28)7", (5.1)

which at short lags behaves similarly to the rational
quadratic function (Cressie 1991), but which appears
to be new to the literature. We have qualified it as con-
ditionally negative-definite using the procedures de-
scribed by Christakos (1984 ). It is attractive on phys-
ical grounds in that the parameters «, § can be identi-
fied with the diffusivity and integral timescale from the
well-known results of Taylor (1921) for homogeneous
turbulence. That is, for large lags, 7, S — ar, so that
is equivalent to the diffusivity D as defined by Taylor.
For small lags, § = a/B27% and § = 0.5(v?)72, so that
B = k/{(v*) = T, the integral timescale. In our appli-
cation, however, this model proved less robust to vari-
ations in temporal density of measurements than was
the fractional Brownian motion model. The median
values of {(o2)({6%) — (e?))~" were not notably infe-
rior to those shown in Table 3, but the range increased
to 0.97-2.49 for full-data cross validation, and 0.28—
2.10 for thinned data. Fractional Brownian motion ‘is
said to be ‘‘self-similar,”’ a form of invariance with
respect to scale that makes properties determined at a
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TABLE 3. Median values of kriging variance ratios
from thinned data batches.

Region Latitude Longitude
North tropical 0.93 0.81
Equatorial 0.80 0.58
South tropical 0.86 0.79

particular scale applicable also at adjacent scales (Man-
delbrot and Van Ness 1968). This appears to explain
the relative robustness of kriging variances obtained
with this model to variations of data density, and adds
to the growing body of evidence that ideas about frac-
tals have relevance to drifter data. ,

The model, (5.1), had another interesting defect in
that values of the parameters o, § proved to be quite
sensitive to the length of lag interval used for fitting
the model to data. In particular, the diffusivity and the
integral timescale both increased with the range of the
lag interval to which the model was fit. Sanderson and
Booth (1991) show that this is characteristic of frac-
tional Brownian motion for which an integral timescale
is computed in the usual way by integration of the ve-
locity autocorrelation function. The value of 8 implied
by fractal dimensions of drifter data from the northeast
Atlantic by Sanderson and Booth is 1.3—1.6 for scales
of 5-100 km. Comparison of these values to Table 1
suggests that the northeast Atlantic is a relatively more
diffusive regime than is the tropical Pacific, as one
might expect from the more prominent appearance of
eddies in higher latitudes generally. One obvious prob-
lem with use of (5.1) is that, lacking a useful norm, we -
elected to use the full displacement data rather than a
“‘turbulence’’ component in our structure function and
interpolation. It is mentioned here with the thought that

"it may be more useful in application to deviation data

at such future time when the surface circulation cli-
matology becomes sufficiently well described to pro-
vide a useful norm.

Data from WOCE-TOGA sometimes contain gaps
of several days. Interpolations are made across gaps not
exceeding one month. The associated large values of
o, serve as a flag that these interpolations should be
used judiciously. They can be used, for example, for
computation of pseudo-Eulerian average velocities if
the size of the averaging elements is sufficiently large
relative to o, for locations. The velocity averaging
property of Lagrangian data can be used effectively to
control errors so long as it is assured that a drifter con-
tinuously occupies the averaging domain. Applications
requiring more precise velocity data over shorter inter-
vals can be satisfied by computing velocities by differ-
encing locations with low o, values, which mostly oc-
cur at 3-day intervals.

Most of the particulars of structure function models
given in this report are based on observations made
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over a period of years in the tropical Pacific. These
results will be used as a default strategy for other trop-
ical oceans until sufficient observations have been
made to confirm or change them. For higher latitudes,
it seems desirable to model effects of inertial oscilla-
tions as well as possible. A model similar to that used
for the diurnal variation of SST, but with frequency a
function of latitude, seems a possibility, but consider-
able new observations are needed for quantification.
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