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ABSTRACT

A scheme is presented for assimilating expendable bathythermographic data into HYCOM, an oceanic
circulation model featuring a hybrid vertical coordinate. The scheme is fully multivariate, using observations
of temperature to correct density, pressure, salinity, and momentum, in addition to temperature. Central to
the scheme is the estimation of companion profiles of salinity and potential density. The potential density
profiles are used to estimate the thicknesses of the model’s layers, so that layer-averaged values of potential
density and potential temperature can be computed. These derived data and the derived layer thicknesses are
assimilated via optimal interpolation. Salinity corresponding to the corrected potential density and potential
temperature fields is determined by the equation of state of seawater, and corrections to the momentum field
are computed geostrophically from the corrections to the pressure field. The scheme is illustrated using data
from March 1995 in the Atlantic Ocean.

1. Introduction

Given initial conditions and subsequent boundary
fluxes, numerical models of oceanic circulation sim-
ulate the evolution of temperature, salinity, and cur-
rents. Unfortunately, both the initial state and the fluxes
are subject to substantial uncertainty, so the simulated
oceanic state can be expected to be in error. Errors in
density manifest in the pressure field to adversely effect
currents and, via advection, feed back to further ag-
gravate the density distribution. Furthermore, model-
ing unresolved mixing processes is difficult at best,
and errors in buoyancy only make matters worse. With-
out some way to control errors, simulations can diverge
from reality. While this is a concern for all oceano-
graphic models, this paper focuses on a particular mod-
el: the Hybrid-Coordinate Oceanographic Model (HY-
COM) (Bleck 2002), which describes the ocean as a
stack of fluid layers that are density-like in and below
the pycnocline and pressure-like within the surface
mixed layer.

Data assimilation is the process by which observa-
tions are used to correct the evolving state of the model
(Bengtsson et al. 1981; Daley 1991; Malanotte-Rizzoli
1996). Most methods for assimilating data are statistical
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in nature and are supported by a common formalism,
even though they might differ widely in their imple-
mentation. While this formalism is often presented with-
in a variational context, at heart it amounts to nothing
more than regression: corrections are estimated as linear
functions of model–data differences. The principal dif-
ference between the various methods lies in how the
regression coefficients are obtained, or more precisely,
how error covariances are modeled. For example, Kal-
man filtering (Kalman 1960; Gelb 1974; Cohn 1997)
attempts to exploit the effects of dynamics on the evo-
lution of errors, even though the initial errors, their cor-
relations, and the rate of injection of error are quite
difficult to approximate. On the other hand, optimal in-
terpolation (Gandin 1963; Derber and Rosati 1989; Car-
ton and Hackert 1990; Behringer et al. 1998) often as-
sumes the error structure to be temporally stationary
and spatially inhomogeneous. Although both approach-
es generally assume the model to be unbiased, ignoring
mean errors while relying on a covariance-based for-
malism, Dee and da Silva (1998), Evensen et al. (1998),
and Carton et al. (2000) do address the important issue
of correcting for model bias.

The statistical basis for any data-assimilation scheme
should derive from a careful study of model–data dif-
ferences. If any biases are detected, the model should
be corrected, either via the introduction of empirical
compensating terms or, better, by tracking the biases
back to identifiable causes that can be corrected in a
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more physically meaningful way. Once biases have been
removed, the scatter of the data about their model coun-
terparts provides information about the error covari-
ances needed for correcting the model state. Because of
the sparsity of the data and the irregularity of the sam-
pling, the process of inferring the error statistics is dif-
ficult. Details of this process are beyond the scope of
this paper. Here, these statistics are assumed to be given,
albeit with considerable uncertainty.

An important aspect of Kalman filtering is that, by
accounting for the dynamically evolving uncertainties,
it generates cross-field error covariances. For example,
errors in the mass field evolve into errors in the mo-
mentum field. However, with no strong dynamical con-
nection between temperature and salinity,1 cross co-
variances between errors of those fields cannot be ex-
pected to evolve if initially absent, even though they
might be implied by water-mass properties. Given our
limited ability to quantify the model errors and their
correlations, worrying about how errors should be
propagated dynamically or how assimilation should
impact the error statistics is not of highest priority. Our
strategy is to start with a simple scheme that can exploit
the bulk of the information carried by the data. How-
ever, this scheme should be fully multivariate, cor-
recting all model fields. Later, as confidence builds in
the model and in the error statistics, the assimilation
scheme can be improved.

The focus here is on the assimilation of XBT profiles,
as they are the most numerous in situ oceanographic
observations and provide the core of the present oceanic
observing system.2 Some strategy is needed for cor-
recting salinity, which is essentially unobserved. Here,
each temperature profile is complemented by estimated
companion profiles of salinity, density, and pressure,
which are reduced to data for the pressure (depth) of
the model’s layer interfaces and for layer averages of
potential temperature and potential density. These layer-
specific values are the data to be assimilated. Near the
surface, interface pressures should need little or no cor-
rection, because the preprocessing of the XBT profiles
is designed to reflect the model’s preferred layer thick-
nesses; here, layer properties are adjusted as for a con-
ventional z-coordinate model. For deeper layers, density
estimated from the XBT data and its model counterpart
should both be close to the model’s target density, so
density should need little or no correction; layer thick-
ness and temperature, on the other hand, might need
substantial adjustments.

When assimilating data, it is important to keep in
mind exactly what is being modeled in order to un-
derstand what information the data provide. The nu-

1 Because of the geostrophic relationship, correcting density can im-
prove momentum, but nothing guarantees that correcting temperature
will improve salinity or density; in fact, the opposite might occur.

2 Satellite-based observations will be addressed in a subsequent
paper.

merical model starts as a code for solving the partial-
differential equations governing oceanic dynamics and
the boundary and initial conditions that specify the
particular situation. Its spatial and temporal resolutions
can depend on the particular configuration, as can its
spatial and temporal extents, allowing the same code
to be used for high-resolution, short-term problems as
for low-resolution long integrations. Data, on the other
hand, reflect all spatial and temporal scales and must
be interpreted within the appropriate context. This is
accomplished through the specification of error co-
variances, which determine the impact of the data. The
problem is that of estimating month-to-month changes
in the circulation as expressed by the XBT data ac-
quired over the past few decades. Consequently, details
such as eddies will not be represented in the model,
even though they are manifest in the data. To handle
the data properly is a monumental task that is beyond
the scope of this work, requiring estimates of which
casts lie within eddies and how representative of am-
bient conditions any given cast might be. Conversely,
for an eddy-resolving model, it would be necessary to
identify which model eddies should be eliminated as
being only numerical artifacts. Nevertheless, the ap-
proach taken here should accommodate these issues,
as long as attention is given to extracting the needed
information from the available data.

2. Model

HYCOM has evolved from the University of Miami’s
Isopycnic Coordinate Oceanic Model (MICOM) (Bleck
and Chassignet 1994; Bleck 1998) to allow for more
flexible vertical resolution, building on the foundations
laid by Bleck and Boudra (1981) and Bleck and Benjamin
(1993). It preserves the original intent of using a density-
like vertical coordinate to eliminate unrealistic diapycnic
mixing caused by truncation errors, while allowing the
low-density layers needed to characterize tropical near-
surface waters to become more pressure-like at higher
latitudes, where they can give additional resolution within
the surface mixed layer. Each layer’s potential density is
maintained close to a specified target value, wherever
possible, so that the oceanic stratification is well resolved.
When there is no water locally that is near the target
values for the upper layers, those otherwise unused layers
default to a prescribed minimum thickness and charac-
terize the local density of the near-surface water. As the
ocean restratifies and water resembling some target val-
ues reappears, interfaces are adjusted so that the layers
become more nearly isopycnic.

The upper panel of Fig. 1 illustrates the hybrid nature
of HYCOM with results3 taken from a coarse-resolution
configuration for the North Atlantic4 after 30 years of

3 Thanks to George Halliwell.
4 Figures 11 and 13 illustrate the model’s Mercator grid. Resolution

increases from 28 3 28 at the equator to 18 3 18 at 608N.
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FIG. 1. Vertical section at 258W from HYCOM simulation forced for 30 yr with
climatological annual cycle of surface fluxes before (upper) and after (lower) assim-
ilating data for Mar 1995. Shades of blue indicate variations of potential density with
pressure and latitude. Pressures of layer interfaces are indicated by black curves,
contours of potential temperature (28C spacing) by magenta, contours of salinity (0.2
psu spacing) by green, and bottom of the mixed layer by yellow.

forcing by the climatological seasonal cycle of air–sea
fluxes. Shown is the meridional section at 258W for
March as characterized by the 15th day of the month.
The changing nature of the model’s layers can be seen
by examining layer interfaces (black) and potential den-

sity anomaly5 (blue). Pressure is read on the vertical

5 Potential density anomaly is the deviation of potential density
(referenced to 0 MPa) from 999.975 kg m23.
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axis.6 Contours of potential temperature7 (magenta) and
salinity (green) have been added to emphasize their con-
tributions to density. The depth of the mixed layer (yel-
low), as computed by the model (Large et al. 1994), is
also shown. Note that interfaces become horizontal as
they cross into the deep northern mixed layer, indicating
a transition of the vertical coordinate from being den-
sity-like to being pressure-like.

To allow for the changing nature of the layers, the
model transports both salinity and potential temperature.
In addition, each layer follows the motion of its target
water wherever it can, and the thicknesses of the layers
evolve dynamically to conserve mass, while the slopes
of the interfaces determine the pressure-gradient forces.

When using observations to correct the model state,
at times it may be necessary to move layer interfaces
and at other times to correct layer densities. The strategy
taken here is to make both types of corrections, allowing
the data to determine how much of each type. Correcting
the mass distribution will change the pressure forces felt
by the currents that advect heat and salt. While the cur-
rents might be expected to adjust quickly to the pressure
corrections without unduly altering the corrected mass
distribution, it is best to correct the currents as part of
the assimilation process.

3. Formalism

Data assimilation can be described quite generally by
a variational formalism that defines the updated model
state as a compromise between a background (prior)
estimate and the data (Lorenc 1986; Evensen 1994). The
desired compromise is the model state vector x that
minimizes the quadratic objective function:8

1
T 21J(x) 5 (x 2 b) B (x 2 b)

2

1
T 211 (Hx 2 d) D (Hx 2 d). (1)

2

The vector b represents the prior state estimate with
uncertainties characterized by the error-covariance ma-
trix B, the vector d contains the observational data with
errors characterized by D, and the matrix H transforms
the state vector into a vector of model counterparts of
the observations.

Here, b will be taken to be the uncorrected model
state, but caution is advised: this formalism implies that
b should be unbiased, so the model and observations
should not disagree in any systematic way. The state
vectors x and b encompass potential temperature u, po-

6 To convert from international units to decibars, note that 100 db
5 1 MPa.

7 Distinction between temperature and potential temperature (ref-
erenced to 0 MPa) is insignificant at these pressures.

8 This objective function presumes that errors in the data and those
in the background state are uncorrelated.

tential density anomaly su, and layer thickness Dp.
While salinity and velocity components could be in-
cluded in the state vectors, it is simpler to diagnose their
updates as described below. When the XBT data are
preprocessed as described in section 4, d provides layer
averages of potential temperature, potential density, and
layer thickness for observed grid cells. Because obser-
vations are sparse, vectors Hx and d are generally much
shorter than vectors x and b.

Differentiating J to get the condition for its minimum,
solving first for Hx and then substituting, gives

x 2 b 5 K(d 2 Hb), (2a)

where

21T TK 5 BH (HBH 1 D) . (2b)

Each row of the matrix K contains regression coeffi-
cients for updating one of the model variables as a linear
combination of background–data differences. The factor
(HBHT 1 D)21 converts the differences d 2 Hb into
their data-space ‘‘fingerprint’’ (Hasselmann 1993;
Thacker 1996) to account for redundant and uncertain
information. The error-covariance9 matrix BHT provides
the mechanism for correcting unobserved aspects of the
model state. For example, if measurements reveal that
the temperature for a particular layer and a particular
grid cell should be corrected, then it is reasonable that
temperatures for that layer in nearby cells have related
errors and should also be corrected. Matrix B effects
these corrections via spatial covariances of temperature
errors within that layer. If all other covariances are ne-
glected, that is, other matrix elements of B are zero, the
formalism reduces to a conventional two-dimensional,
univariate scheme that spreads the temperature correc-
tion in that layer over a region of influence.

This formalism can be applied at each step in a se-
quential assimilation procedure. The background esti-
mate b taken from a HYCOM simulation changes as
the simulation evolves in time, and, in principle, its
error-covariance matrix B should also change. First, B
should reflect the reduction of uncertainty after data
have been assimilated.10 Second, as the flow evolves, B
should also evolve (Gelb 1974; Thacker and Lewan-
dowicz 1994). Ideally, the model could be used to prop-
agate the uncertainties, but this could be computation-
ally prohibitive. Third, model imperfections can be ex-
pected to increase uncertainty at each time step, further
modifying B; modeling this additional error covariance
is difficult. Kalman filtering, which implements these
three tasks, fits nicely into this formalism.11 For systems
with only a few variables and a wealth of data, it might

9 Interpret the matrix of covariances of errors of model counterparts
of the data and those of the state variables as BHT 5 cov(Hdx, dx).

10 In other words, B should be replaced by (I 2 KH)B, the posterior
error-covariance matrix given by the inverse of the Hessian matrix
of J (Thacker 1989) before additional data are assimilated.

11 Within this context, K is referred to as the Kalman gain matrix.
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be practical to determine the covariances of the initial
state errors and the modeling errors through model–data
comparisons and to update the error statistics with a
Kalman filter. However, within the context of oceano-
graphic modeling, our limited ability to estimate the
initial-error and dynamical-error covariances, the un-
favorable ratio of data to variables, and the Kalman
filter’s computational costs suggests using less involved
estimates of B.

While the formalism addresses all model variables
and all data via a single objective function J, simplifi-
cations are possible. For example, the objective function
might be decomposed into terms corresponding to dif-
ferent layers:

J 5 J . (3)O k
k

This would not be the case for altimeter data, because
the model counterparts of surface elevation would in-
volve the thicknesses of all of the layers, but this could
be the case for XBT data when cross-layer error-co-
variances are neglected. Minimizing J then amounts to
minimizing each of the Jk separately, giving a solution
like (2) for each layer. Neglecting cross-field error co-
variances allows each of the Jk to be further decomposed
into terms for each field, giving solutions like (2) for
each field in each layer. As each row of (2a) is a re-
gression equation for one of the state variables, J can
also be partitioned into regions (indexed by k) so that
each term in (3) involves only the observations that
carry information about the variables in that region.

This formalism can be implemented numerically in
two ways. One is to compute the corrected model state
using an optimization algorithm such as conjugate–gra-
dient descent (Gill et al. 1981) to minimize J iteratively.
In this approach corrections for all state variables are
computed simultaneously as the solution to a very large
optimization problem. Alternatively, each row of the
matrix equation (2a) can be computed independently,
solving for the corrections one by one. In doing so, it
is useful to break the calculation into two steps: first,
solving (HBHT 1 D)y 5 d 2 Hb for the data-space
fingerprint y and, second, multiplying each element of
y by the appropriate covariance to compute the correc-
tions for each state variable in turn. For the example
discussed below, we use the second approach.

It is difficult to incorporate salinity, temperature, and
density all into the variational formalism, because they
are related via the equation of state of seawater (Bryden
1973; Fofonoff 1977; Brydon et al. 1999). This could
be done with the use of Lagrange multipliers (Thacker
and Long 1988), but it is much simpler to include only
two of the three in the formalism and to use the con-
straint to correct the third. Because temperature is ob-
served and density is essential for configuring the model
layers, it is reasonable to work with these two, diag-
nosing S from the updated values for u and su.

As is the case for salinity, there are no velocity data

to assimilate and none to gauge the magnitude of the
velocity errors. Moreover, when available, velocity mea-
surements tend to exhibit much more high-frequency
variability than do measurements of temperature or sa-
linity, rendering them difficult to assimilate. Tradition-
ally, currents have been inferred geostrophically from
the observed mass distribution. Similarly, when assim-
ilating data, corrections to velocity can be based on
dynamic balance. While such corrections can be effected
via the background error-covariances (Lorenc 1981),
they might also be computed diagnostically. One ap-
proach is to work with the corrected pressure field, it-
erating the model’s momentum equation until the un-
corrected velocity field is brought into a closer balance
(Bryan 1984). Another is to assimilate the data repeat-
edly with reduced amplitude over an interval spanning
the observation time, letting the velocity field adjust to
the changing pressure field (Behringer et al. 1998).

4. Preprocessing XBT data: Salinity strategy

Within the context of HYCOM, when correcting tem-
perature, it is necessary to decide whether to move in-
terfaces, keeping potential densities of the layers un-
changed, or to correct the densities, leaving the inter-
faces unchanged. The decision should be based on the
actual density profile. Because salinity is unobserved,
it must be estimated. The simplest approach is to esti-
mate a companion salinity profile for each observed
temperature profile and to use it to estimate potential
temperature and potential density profiles. Then the po-
tential density profiles can be used to determine the
depths of the model’s layer interfaces, and layer-specific
data can be inferred from the profiles. This approach
provides information for adjusting both pressure and
density, in addition to temperature, so the question is
not which to adjust but how much of each.

One strategy for estimating companion salinity pro-
files is to base them on the background state: the profile
can be assumed to vary linearly between adjacent layer
centers and to be constant in the top half of the top layer.
However, because the background state is to be provided
by the model, this strategy could be dangerous. The
evolving salinity field is subject to substantial uncer-
tainties in the flux of moisture through the air–sea in-
terface, and there would be no mechanism for correcting
the accumulating errors in the salinity field.

We prefer to estimate the salinity profile to be the
climatological mean for the time and place of the XBT
cast. Climatological data (Levitus et al. 1994; Antonov
et al. 1998; Conkright et al. 1998) for specified depths
can be used to estimate the profiles in a manner similar
to that described in the previous paragraph. The cli-
matology of Carnes et al. (1994), which relates salinity
profiles to values of surface observables and to tem-
perature profiles, could provide an alternative estimate.
While this approach avoids perpetuating drift in the
model’s salinity, it cannot recognize how the true sa-
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FIG. 2. Estimated salinity profiles (magenta) at locations of four
XBT casts in Mar 1995 and their approximation for HYCOM as layer
averages (black).

linity differs from the climatological mean. For exam-
ple, it would not be able to handle events like the great
salinity anomaly (Dickenson et al. 1988).

A better approach would be to base the companion
salinity profiles on temperature–salinity correlations
manifest in past conductivity–temperature–depth (CTD)
data (Hansen and Thacker 1999). Near the sea surface
where such correlations are weak, additional observa-
tions of surface salinity would be most useful; otherwise
the estimate reverts to climatology. For this strategy to
be implemented, it is necessary to take on the task of
examining the CTD archives to construct the empirical
models for salinity profiles on a region-by-region basis.
Until all regions have been modeled, a compromise
would be to use such estimates where available and to
use climatology everywhere else.

The companion salinity profiles provide the basis for
estimating companion profiles of potential temperature
and potential density. The question remains of how to
transform such profiles into information about the mod-
el’s layers.12 The answer is found in the motivation for
the hybrid nature of the model’s layers: each layer is
required to have a minimum thickness and, after that
requirement is satisfied, to be as close as possible to its
specified target value for potential density. Thus, each
cast is processed as follows. The estimated surface den-
sity for the cast is compared to the top layer’s target
density to decide whether any sufficiently low-density
water was observed. If not, the layer is assigned its
minimum thickness, potential temperature and potential
density for the first layer are computed as averages, and
the question is repeated for the second layer. Once water
with the target density is encountered, the remainder of
the potential density profile can be partitioned so that
layer averages correspond to target densities. This pro-
cess gives ‘‘data’’ values of u, su, and Dp (thickness)
for each layer to the depth of the cast.

Four XBT casts have been chosen at random to il-
lustrate the preprocessing at four different latitudes for
March 1995. Figure 2 shows their companion salinity
profiles (magenta) estimated by interpolating the cli-
matological March salinity (Levitus et al. 1994). Depth
is converted to pressure using an empirical function of
latitude (Saunders and Fofonoff 1976). The measured
temperature and estimated salinity are combined using
an equation of state (Bryden 1973; Fofonoff 1977; Bry-
don et al. 1999) to obtain the estimated profiles of po-
tential temperature (Fig. 3, magenta) and of potential
density (Fig. 4, magenta). The pressure interfaces for
the layers are computed from the potential density pro-
files in accordance with the specified minimum layer

12 Target densities should be chosen so that none of the estimated
density profiles will indicate water that is appreciably lighter than
the target value for the top layer or heavier than that for the bottom
layer.

thicknesses (0.1 MPa for all layers) and target densities13

(Fig. 4, cyan), and layer averages for all variables are
computed. The piecewise-constant profiles (Figs. 2, 3,
and 4; black) illustrate both the interface pressures (hor-
izontal segments) and layer averages (vertical seg-
ments). In Fig. 4 the lower two panels, which correspond
to low latitudes, show relatively few target densities that
are less than the lowest estimated density, so there are
relatively few minimum-thickness layers. On the other
hand, at high latitudes, where there is a deep surface
mixed layer, each of the many cyan lines corresponding
to unobserved low target densities is reflected as a layer
with prescribed minimum thickness.

There is no direct information about the thickness
of the layer in which the cast terminates. The cast might
barely penetrate, providing no useful information, or
it could probe well into that layer and provide useful
lower bounds on the density and thickness and an es-

13 The target densities for the 22 layers are 21.20, 21.60, 22.00,
22.40, 22.90, 23.40, 24.02, 24.70, 25.28, 25.77, 26.18, 26.52, 26.80,
27.03, 27.22, 27.38, 27.52, 27.64, 27.74, 27.82, 27.88, and 27.92.
Note that the lightest is not indicated in Fig. 3, nor are the three
heaviest.
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FIG. 3. Estimated u profiles (magenta) based on observed temper-
ature and on estimated salinity profiles from Fig. 2, and their layer
averages (black).

FIG. 4. Estimated su profiles (magenta) based on estimated S and
u profiles from Figs. 2 and 3 and their layer averages (black). Target
values for the model’s layers are indicated (cyan) for comparison.

timate, perhaps biased, for the potential temperature.
An expedient is simply to discard this additional in-
formation, but a strategy might be devised for exploit-
ing it. A related issue is what should be done below
the bottoms of the XBT casts.14 Here, for simplicity,
no corrections are made to unobserved layer thick-
nesses. If there is evidence that lower-ocean corrections
are needed, this might be handled by estimating ex-
tensions to the profiles. Such details are beyond the
scope of this work.

Data-error variances should reflect the spatial and
temporal variability that can be expected within the
model’s grid cells in the month of March. Information
about climatological variability at standard depths
(Antonov et al. 1998; Conkright et al. 1998) can be
used to estimate error variance of the observed and
inferred profiles at these depths. The error variance
for potential temperature is estimated by the corre-
sponding climatological variance for temperature. Er-
ror variance for potential density is taken as the square

14 The problem of what to do below the XBT soundings is similar
to that of inferring subsurface conditions from satellite-based alti-
metric data.

of its standard deviation var(su ) 5 SD 2 (su ), which
is estimated as15

]s ]su uSD(s ) 5 SD(u) 1 SD(S), (4)u 1 2 1 2]u ]S

where the SD(u) and SD(S) are climatological standard
deviations of temperature and salinity, respectively, and
where the partial derivatives of the polynomial equation
of state are evaluated using the climatological mean
values. We neglect uncertainty in pressure due to fall-
rate conversion and depth-to-pressure conversion,16 as
errors in representing monthly mean conditions for the
grid cell dominate.

Figure 5 shows the climatological variability of po-

15 If covariances between salinity and potential temperature were
readily available, we could have estimated the error variance as
var(su) 5 var(u)(]su/]u)2 1 var(S)(]su/]S)2 1 2 cov(u, S)(]su/]u)
(]su/]S).

16 A. Mariano (2001, personal communication) has estimated these
uncertainties to be about 5%–7%.
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FIG. 5. Estimated uncertainties (magenta) of derived su profiles
relative to profiles (black) based on climatological variability of tem-
perature and salinity. Target values for the model’s layers are indicated
(cyan) for comparison.

tential density17 for the locations of the four casts of
Figs. 2–4. The central black curves indicate means for
March without suppressing inversions resulting from
using climatological mean salinity and temperature, and
the adjacent curves indicate standard deviations (4). The
profiles of Fig. 4 are consistent with these estimates of
climatological variability.

The task of assigning uncertainties to the layer-spe-
cific data resulting from the preprocessing is compli-
cated by the hybrid nature of the model. When layers
are assigned minimum thickness, because water with
the target density is not present, the vertical coordinate
is pressure-like, so uncertainties are associated with po-
tential density rather than with pressure. On the other
hand, when layers are defined by their target densities,
uncertainties are associated with thickness rather than
with potential density. In that case, the bounding curves

17 Comparison with Fig. 4 reveals that the climatology at the lo-
cation of the northernmost of these four casts does not extend to the
full depth of the sounding. However, climatology in adjacent cells
suggests that the uncertainty remains constant throughout the mixed
layer that extends beyond the depth of the sounding. In any case, this
illustrates the need to supplement the archived 18 3 18 climatology
when estimating both salinity and uncertainties for preprocessing.

in Fig. 5 can give an idea of the uncertainty that should
be assigned to thickness. In general, the uncertainty
should be partitioned between the two variables to re-
flect the hybrid nature of the model.

The standard deviation of the error of observed po-
tential density can be interpolated to the middepth
(pk 1 pk11)/2 of layer k, as estimated from the XBT
data, to give an initial approximation SD(sk)0 to the
error standard deviation for that layer. However, the final
approximation should reflect the fact that the error stan-
dard deviation should be small when the layer’s potential
density is essentially the same as its target value
SD(sk)T:

SD(s ) 5 min{SD(s ) ,k k 0

max[|(s ) 2 (s ) |, SD(s ) ]}, (5)k 0 k T k min

if the observed thickness of layer k is greater than the
minimum value specified for HYCOM. Here, we take
the minimum error standard deviation SD(sk)min to be
0.001 kg m23. When minimal thickness is assigned to
the layer, SD(sk) is taken to be SD(sk)0.

Uncertainties must also be estimated for the ob-
served layer thicknesses. Everywhere minimum thick-
ness is assigned, the error standard deviation should
be small: here, SD(Dpk)min is 0.001 MPa, that is, about
10 cm. However, for layers that are assigned target
potential densities, the error in thickness should reflect
the uncertainties illustrated in Fig. 5. The closer
SD(sk) is to SD(sk)min , the more SD(Dpk) should ac-
count for the variability of the potential density profile.
Here, rather than trying to estimate uncertainty in layer
thickness from the profiles, we assign a maximum un-
certainty18 SD(Dpk)max taken as 0.5Dpk . Then, for lay-
ers with thickness greater than HYCOM’s minimum
allowed value, the error standard deviation of the layer-
thickness data is

SD(Dp ) 5 SD(Dp ) 2 [SD(Dp ) 2 SD(Dp ) ]k k max k max k min

SD(s ) 2 SD(s )k k min3 . (6)1 2SD(s )k

Uncertainties in estimates of layer thicknesses are cer-
tainly related to those of layer densities, and uncertain-
ties in estimates of densities are related to those of tem-
peratures. Similarly, estimating the positions of layer
interfaces causes between-layer error correlations. Nev-
ertheless, we have made no effort to account for cor-
related errors. Instead, we proceed as though all data
errors were uncorrelated, taking D to be diagonal. In the
future it might be useful to model its off-diagonal el-
ements.

A large number of XBT casts might provide infor-
mation for the same grid cell. While the formalism ref-

18 What is important is the size of the uncertainty relative to the
thickness error of the model state. Later we assign the background
error relative to this arbitrary maximum.
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FIG. 6. Departure of observed temperatures from the Mar clima-
tological mean relative to the local climatological standard deviation
vs latitude of the XBT cast for four different depths. All observations
within three standard deviations of the local climatological mean lie
within the two horizontal lines.

erees redundancies and conflicts between these data to
some extent, we have found it better to combine the
data within each cell into ‘‘super obs.’’ For each model
cell, values for layer thickness, potential temperature,
and potential density from all casts are averaged. This
not only reduces the size of the matrix HBHT 1 D,
making the computations faster, but also avoids ampli-
fication of differences between the individual casts. The
super obs are treated as being located at the centers of
the cells.

5. An example

Because HYCOM is still under development, our goal
is only to illustrate qualitatively how the multivariate
assimilation scheme works. The 30-yr test run19 illus-
trated by Fig. 1 provides an appropriate context. After
being forced by the climatological seasonal cycle of
surface fluxes, starting from zonally constant tempera-
ture and salinity fields,20 the slowly changing model
state can be regarded as an oceanic climatology. For
example, the mid-March fields provide background es-
timates for any particular March. Here, data from March
1995 are used to improve the model’s background es-
timate so that it reflects March conditions for that par-
ticular year.21

a. The data

The XBT data used here are the March 1995 data
assimilated22 by the National Centers for Environmental
Prediction (NCEP) into their operational ocean model
(Behringer et al. 1998). Figure 6 compares the 704
March 1995 XBT casts with the National Oceanographic
Data Center’s 1998 March climatology (Antonov et al.
1998; Conkright et al. 1998) for four of the depths for
which the climatology has been compiled. Each ob-
served temperature has been standardized by subtracting
the local climatological mean temperature and then di-
viding by the standard deviation. The standardized tem-
peratures are plotted versus the latitude of the XBT cast.
Horizontal lines have been added at plus and minus three
standard deviations to make the identification of un-
likely data easier; if the data were distributed normally
with climatological means and standard deviations, the
probability of data lying outside these lines would be
less than 0.27%. Note that many of the suspect data are
more than four standard deviations from the mean,

19 In this simulation, a year had 360 days and each month had 30
days.

20 Zonal averages of Levitus’ 1994 estimates for January.
21 If the forcing would reflect the day-to-day conditions, the same

data-assimilation scheme would be appropriate. However, the error
covariances would have to characterize the richer level of detail,
allowing assimilation to compensate for inadequate forcing and er-
roneous initial conditions.

22 NCEP do not assimilate observations differing by more than 58C
from their model’s background estimates (Ji et al. 1995).

which should occur with a probability of less than
0.0064%. Except for the outliers, the data were distrib-
uted fairly symmetrically about the climatological
means, the exceptions being near the surface south of
the equator and around 408N. The 649 casts with tem-
peratures within three standard deviations of climatol-
ogy at all levels were retained as candidates for assim-
ilation. Of these, 11 were not used, because during pre-
processing the climatology considered their locations to
be over land. Another five were discarded because they
were in boundary cells just outside of the active model
domain, and five more were discarded for having un-
realizable negative values for temperature. After this
screening process, there were 628 casts to be assimi-
lated.

The spatial distribution of the 628 March 1995 XBT
casts is shown in Fig. 7. When compared with that of
other months for which XBT data are archived, this
coverage is relatively good. To give a feeling for the
relationship between the model’s resolution and the
XBT sampling, Fig. 8 shows for which grid cells data
are available for assimilation. Of the 1579 cells com-
prising the Atlantic grid, 351 are observed. Some cells
have information from several casts, while there is no
direct information for many other cells. Preprocessing
provides 351 super obs to be assimilated, one for each
of the observed cells.

b. The background state
The data-assimilation formalism assumes that the

background state is unbiased. This is not the case here.
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FIG. 7. Dots mark the locations of 628 XBT casts for Mar 1995. FIG. 8. Squares indicate the 351 grid cells with data for Mar 1995.

FIG. 9. Departure of model potential temperatures from the Mar
climatological mean temperatures relative to the local climatological
standard deviation vs latitude for layer 6. Model values within three
standard deviations of the local climatological mean lie within the
two horizontal lines.

Figure 9 shows the differences between the potential
temperature23 for layer 6, and the climatological March
mean temperature for the corresponding grid cell inter-
polated to the middle of the layer, which is about 55 m
below the sea surface everywhere in the domain. The
points represent departures from climatology of the 628
casts divided by the local standard deviation for March
so that unlikely values are easily recognized. Note that
the model has a warm bias near 508N associated with
temperatures that are too high in the Labrador Sea. This
bias might be a consequence of the model’s treatment
of the open northern boundary or of the air–sea heat
exchange. Because the model state is from a preliminary
developmental run, it is not profitable to pursue such
biases further here. However, in the future it will be
important to recognize and to eliminate them if at all
possible. Sequential data assimilation can serve to re-
duce the biases by pulling the simulation toward the
data, but the optimality of the formalism is compro-
mised, and error covariances are forced to compensate
for incorrect error means. It is best to fix the model’s
tendency to drift away from the data.

While there are no salinity data to assimilate, it is
nevertheless important to judge whether the model’s
treatment of salinity is consistent with climatological
data. Figure 10 shows a scatterplot for salinity that is
analogous to that of temperature in Fig. 9. Because some
of the climatological standard deviations were found to
be quite small, the smallest being 0.00422 psu, to avoid
exaggerating the difference between model and clima-
tology, standardization was made by dividing the dif-
ference by the larger of 0.1 psu and the climatological
value. Note that the model values are much too saline

23 Temperature and potential temperature are essentially the same
at this depth.

around 508N and too fresh around 358N. These large
differences, like the temperature differences, suggest
systematic problems with the model. Improving the
treatment of the open boundaries might help in both
cases, but the errors in the treatment of evaporation and
precipitation are largely independent from those of sur-
face heat flux. The temperature observations compen-
sate for errors in heat flux, but there are no similar
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FIG. 10. Departure of model salinities from Mar climatological
mean salinities divided by the local climatological standard deviation
vs latitude for layer 6.

observations that compensate for errors in water flux.
Using companion salinity profiles based on climatology,
as suggested here, provides a reasonable basis for cor-
rection when the model tends to depart from the usual
range of salinities.

c. Background error covariances

The background error correlations between potential
temperatures (or potential densities or layer thicknesses)
of adjacent grid cells should be appreciable. Here we
take the background error covariances for all variables
and all layers to be isotropic24 Gaussian functions of the
distance

1
2 2B 5 A exp 2 [(i 2 i ) 1 ( j 2 j ) ] , (7)m,n ;j,k j,k m n m n25 62R

where i and j are, respectively, latitude and longitude
of the grid cells expressed as integer indices; m and n
indicate the pair of cells for which the covariance is
computed; and R is taken to be 2, that is, the two-cell
Nyquist cutoff of the computational grid; j and k in-
dicate model field and layer, respectively. This hori-
zontal parameterization is consistent with the objective
of a low-resolution estimate of monthly conditions. Be-
cause HYCOM is still under development and the char-
acter of its errors remains to be explored, the factors
Aj,k are chosen so that for most cases the data are con-

24 The background error covariance is not homogeneous but rather
reflects the inhomogeneities of the Mercator grid.

sidered more accurate than the model, but the model is
considered more accurate for the largest 20% of model–
data differences. The factors were taken to be indepen-
dent of layer: (1.758C)2 for potential temperature, (0.5
kg m23)2 for potential density, and (0.1 MPa)2 for layer
thickness.

d. Results

The 628 XBT casts for March 1995 were prepro-
cessed, as described in section 4, to obtain model-layer-
specific data for potential temperature, potential density,
and pressure thickness. These data were then assimilated
to correct HYCOM’s climatologically forced March
state. The corrections were computed layer by layer and
field by field, as described in section 3, using the back-
ground error covariances described in section 5c to dis-
tribute model–data differences away from the obser-
vation points. Salinity was estimated from the corrected
potential temperature and potential density fields using
the equation of state for seawater. Velocity corrections
were estimated geostrophically from the pressure cor-
rections. Corrections for interface pressures were esti-
mated by adding the corrected pressure thicknesses, as-
suming pressure at the sea surface to be zero.

The lower panel of Fig. 1 shows the results of data
assimilation for the 258W section. Note that, while the
data add structure to the overly smooth model fields25

in the upper panel, the hybrid nature of the model’s
layers is preserved. The thicknesses of the near-surface
layers change little, while changes in potential density
are evident. And in the thermocline the depths and thick-
nesses of the layers change, while their densities remain
close to the prescribed target values.

Figure 11 shows potential temperature, potential den-
sity, and thickness of layer26 6 before and after assim-
ilation; corresponding diagnosed fields are shown in Fig.
12. As expected, thickness and depth of layer 6 are
largely unchanged, except in the Tropics where the sur-
face mixed layer is relatively shallow. On the other
hand, the potential density of layer 6 is modified sig-
nificantly. Note that after assimilation the water is less
dense off the east coast of North America. The XBTs
provide direct information about potential temperature,
so changes to the model’s potential temperature field is
no surprise. Near 458N and 608W, where the model was
too warm, there is a dramatic cooling. A first impression
is that this cooling should be associated with an increase
in density, not the decrease that is shown here. In fact,
density would have been increased, if the background

25 The model fields were smooth, because they were computed
starting from zonally averaged climatological means and were forced
by seasonal climatologies of surface fluxes. The inferred changes are
real to the extent that (i) the temperature data represent the monthly
conditions and (ii) the March climatological salinity represents the
salinity field for March 1995.

26 Layers are numbered from top to bottom.
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FIG. 11. Background (left) and corrected (right) potential temperature (upper), potential density (middle), and thickness (lower) for layer 6.

salinity had been used for estimating potential density,27

and the ‘‘after’’ would have been the same as the ‘‘be-

27 Because density corrections in this region depend so strongly on
the salinity strategy, it would be wise to try to improve on climatological
salinity using a method like that of Hansen and Thacker (1999).

fore’’ for salinity in Fig. 12. The actual salinity correc-
tions reflect the differences between model and clima-
tology shown in Fig. 10. These differences argue that
preprocessing should use estimates of salinity at least
as good as those from climatology.

Figures 13 and 14 show the results for layer 12. As
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FIG. 12. Background (left) and corrected (right) salinity (upper) and pressure (lower) for layer 6.

expected, in the midlatitudes where this layer is in the
pycnocline, its thickness and depth are modified by the
XBT data, while its potential density is largely un-
changed. The small changes of potential density in the
Tropics appear to be associated with the preprocessing
algorithms, which give data for layer 12 that tend to be
slightly lighter than the target value. South of the Lab-
rador Sea, corrections to potential temperature, potential
density, and salinity are similar to those for layer 6,
again illustrating the importance of a salinity strategy.

Because our focus is principally on adjusting the mass
distribution, we implemented the simplest possible cor-
rections to the velocity field. The corrections were de-
termined geostrophically from the corrections to the
pressure field, except near the equator where no cor-
rections were made. Results were quite reasonable.28 In
subsequent work, when the data-assimilation codes are
coupled to the model codes, our plan is to correct the
velocity field using the model codes to bring the flow
into dynamic adjustment, as discussed in section 3.

28 As the figures illustrating the changes were uninteresting, they
are not included.

6. Conclusions

The procedure presented here for assimilating thermal
data from XBTs into HYCOM works as anticipated. It
corrects depth and thickness of the model’s layers, as
well as potential temperature, potential density, salinity,
and velocity. In accordance with the hybrid-coordinate
philosophy, assimilation preserves the pressure-like na-
ture of the vertical coordinate in the well-mixed surface
layer and its density-like nature in the pycnocline. Cen-
tral to its success is the preprocessing of the observed
temperature profiles to estimate data pertaining to the
model’s layers. The most important step is estimating
companion profiles of salinity, which are used in con-
structing potential density profiles needed for determin-
ing the depths and thicknesses of the model’s layers.
Once the layer-specific data have been determined, they
can be assimilated using a variety of techniques. At this
stage of HYCOM’s development, optimal interpolation
is a reasonable choice.

This approach can be generalized to accommodate
other types of data. High quality coincident profiles of
temperature, salinity, and density from CTD probes,
while few in number, could be easily accommodated.
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FIG. 13. Background (left) and corrected (right) potential temperature (upper), potential density (middle), and thickness (lower)
for layer 12.

Profiling floats, which might provide a substantial
amount of data in the near future, also fit easily into
this framework. Surface temperatures observed from
satellites could be treated as ‘‘short XBT casts’’ to pro-
vide additional information about the model’s upper lay-
er. Altimetric data would require more attention. Be-

cause sea surface elevation reflects the thermal state of
the underlying water as a function of depth, there is the
question of how to infer subsurface corrections from
surface discrepancies.

As optimal interpolation bases its corrections on co-
variances of errors of the model state, this assimilation
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FIG. 14. Background (left) and corrected (right) salinity (upper) and pressure (lower) for layer 12.

procedure can best be improved by improving the way
error covariances are modeled. In particular, more at-
tention should be given to parameterizing the local na-
ture of the errors. The careful model–data comparisons
that are needed to model the error covariances should
also promote improvements to the model to correct for
systematic descrepancies.
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